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Abstract. We study the integral quaternions and the integral octonions along the combi-
natorics of the 24-cell, a uniform polytope with the symmetry D4, and the Gosset polytope
421 with the symmetry E8.
We identify the set of the unit integral octonions or quaternions as a Gosset polytope

421 or a 24-cell and describe the subsets of integral numbers having small length as certain
combinations of unit integral numbers according to the E8 or D4 actions on the 421 or the
24-cell, respectively.
Moreover, we show that each level set in the unit integral numbers forms a uniform

polytope, and we explain the dualities between them. In particular, the set of the pure unit
integral octonions is identified as a uniform polytope 231 with the symmetry E7, and it is
a dual polytope to a Gosset polytope 321 with the symmetry E7 which is the set of the unit
integral octonions with Re = 1/2.

Keywords: integral octonion; 24-cell; Gosset polytope

MSC 2010 : 52B20, 06B99, 11Z05

1. Introduction

The octonions have the most complex algebra among the normed division alge-

bras whose classification consists of the real numbers R, the complex numbers C, the

quaternions H and the octonions O. It is one of the worst cases of algebras since its

product is neither commutative nor associative. But each element in it is still invert-

ible so that its algebraic operations are related to certain types of symmetries which

drive attraction to physics and geometry. Furthermore, the octonion algebra sits on

The second author was supported by the Ewha Womans University Research Grant of
1-2011-0228-001-1 and the NRF funded by the Korea government (MEST) (No. 2010-
2755-1-3).
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the bottom lines of the most complex issues in the exceptional groups including G2

and E8. On the other hand, the octonion algebra is an 8-dimensional algebra with

the 7-degree of freedom. The number eight appears in the elementary particle realm

with 8-fold symmetries, and the number seven is also related to 7-dimensional hy-

perspaces acquired for 10-d string theory, 11-d M-theory or 12-d F-theory in physics.

In fact, one can find numerous studies utilizing the octonions in physics including

the Great Unification Theory or the Theory of Everything. In fact, very often, the

E8-lattice (also called the Gosset lattice) which is a unimodular root lattice of rank 8,

appears as a key player to convey the above symmetries on behalf of the octonions.

The symmetries related to the E8-lattice can be studied via the set of the integral

octonions which is an analog of integers in the real numbers. In particular, Coxeter [3]

considered the integral octonions (also called integral Cayley numbers) to study the

Gosset polytope 421 which is an 8-dimensional uniform polytope with E8-symmetry.

Koca et al. [8], [9], [10] worked on the symmetries given by the integral octonions

and the pure integral octonions, and they applied their studies to mathematical

physics. Recently, Conway and Smith explained the integral octonions and their

relationship to the E8-lattice in [2]. All of these studies used the hierarchy of the

normed algebras. They began with simple symmetries in the integral quaternions and

reached to complicated symmetries in the integral octonions. Led by this motivation,

in this article we consider the integral quaternions along with the 24-cell and explore

the integral octonions along with the Gosset polytope 421.

According to [3], we reproduce the 24-cell in the integral quaternions and the

Gosset polytopes 421 in the integral octonions. And we consider certain shells in

these integral numbers and characterize elements in each shell via the combinatorics

of the polytopes. Thus we conclude integral numbers whose square of the length

< 8 can be written as certain combinations of the unit integral numbers in the

quaternions and the octonions.

Finally, we consider level sets in the polytopes where each of them is determined

by a fixed real part of the integral numbers. We identify each level set as a uniform

polytope given by the symmetry group of the integral numbers. In particular, the

set of the pure integral octonions forms a uniform polytope 231 with the symmetry

group E7. Furthermore, we explain the duality between the level sets such as the set

of the pure unit integral octonions (which is a polytope 221) and the set of the unit

integral octonions with Re = 1/2 (which is a Gosset 321) which are dual to each other

along the correspondence between the vertices in 221 and the 6-crosspolytopes in 321.

This approach can be applied to algebraic geometry of rational surfaces including

del Pezzo surfaces which have the classical correspondence between lines in del Pezzo

surfaces and vertices in Gosset polytopes. This study will be described in another

article (also see one of the author’s recent works [12], [11]).

684



2. Integral quaternions and octonions

In this section, we reproduce Coxeter’s work [3] on the integral normed division

algebras using the modern treatment of the normed division algebras [1], [2].

Let A be an algebra which is a finite dimensional vector space over R equipped

with a multiplication “ · ” and its unit element 1. If the algebra is also a normed

vector space with a norm ‖ ‖ satisfying ‖a · b‖ = ‖a‖‖b‖ for all a and b in A, the

algebra is called a normed (division) algebra. Each norm on the normed algebra

gives a derived inner product defined by

(a, b) := 1
2{‖a+ b‖2 − ‖a‖2 − ‖b‖2},

and moreover, each a in A satisfies the rank equation

a2 − 2(a, 1)a+ ‖a‖2 = 0.

It is well known that the classification of the normed algebras consists of the real

numbers R, the complex numbers C, the quaternions H and the octonions O.

A subset S of a normed algebra A is called integral (or a set of integral elements)

if it satisfies the following conditions:

(1) For each element S, the coefficients of the above rank equation are integers.

(2) The set S is closed under subtraction and multiplication.

(3) 1 ∈ S.

(4) S is not a proper subset of a subset in A with (1), (2) and (3).

For example, the subset {a0 + a1i ∈ C ; a0, a1 ∈ Z} in C satisfies the above

conditions. The elements of the subset are called the Gaussian integers. In the

following subsections, we discuss the integral subsets in the quaternions and the

octonions.

2.1. Quaternions. The set of the quaternions H is a real 4-dimensional vector

space which is spanned by a basis {1, i, j, k}, and its normed algebra is given by an

associative multiplication satisfying

i2 = j2 = k2 = ijk = −1.

Here, H is an extension of complex C, but the multiplication of H is not commutative.

Now, we consider a subsetHI in H consisting of the quaternions a01+a1i+a2j+a3k

whose coefficients a0, a1, a2, a3 are synchronically chosen from either Z or Z+1/2,
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namely,

HI =











q ∈ H ;

q = b01 + b1i+ b2j + b3k or

b01 + b1i+ b2j + b3k + 1
2 (1 + i+ j + k)

for b0, b1, b2, b3 ∈ Z











.

In fact, this subset HI is integral and it is known as the Hurwitz integral quaternions

which we consider in this article.

For the integral quaternions HI , we consider integral shells defined by

HI(n) := {q ∈ HI ; ‖q‖2 = n}.

For small natural numbers 1 6 n 6 6, we can write each shell explicitly as follows:

HI(1) =
{

±1, ±i, ±j, ±k, ± 1
2 ± 1

2 i±
1
2j ±

1
2k

}

,

HI(2) =

{

±a0 ± a1i± a2j ± a3k ∈ H ;
(a0, a1, a2, a3) = (1, 1, 0, 0)

and its permutations

}

,

HI(3) =

{

±a0 ± a1i± a2j ± a3k ∈ H ;
(a0, a1, a2, a3) = (1, 1, 1, 0),

(

1
2 ,

1
2 ,

1
2 ,

3
2

)

and their permutations

}

,

HI(4) =

{

±a0 ± a1i± a2j ± a3k ∈ H ;
(a0, a1, a2, a3) = (2, 0, 0, 0), (1, 1, 1, 1)

and their permutations

}

,

HI(5) =

{

±a0 ± a1i± a2j ± a3k ∈ H ;
(a0, a1, a2, a3) = (2, 1, 0, 0),

(

3
2 ,

3
2 ,

1
2 ,

1
2

)

and their permutations

}

,

HI(6) =

{

±a0 ± a1i± a2j ± a3k ∈ H ;
(a0, a1, a2, a3) = (2, 1, 1, 0)

and its permutations

}

.

Here, |HI(1)| = |HI(2)| = |HI(4)| = 24, |HI(3)| = |HI(6)| = 96 and |HI(5)| = 144.

2.2. Octonions. The set of octonions O is a real 8-dimensional vector space

spanned by {1, e1, . . . , e7} whose multiplication is given by the following table:

e1 e2 e3 e4 e5 e6 e7
e1 −1 e3 −e2 e5 −e4 −e7 e6
e2 −e3 −1 e1 e6 e7 −e4 −e5
e3 e2 −e1 −1 e7 −e6 e5 −e4
e4 −e5 −e6 −e7 −1 e1 e2 e3
e5 e4 −e7 e6 −e1 −1 −e3 e2
e6 e7 e4 −e5 −e2 e3 −1 −e1
e7 −e6 e5 e4 −e3 −e2 e1 −1
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This table is also written as the Fano plane. Here the square of each vector ei

is −1, and the multiplication of two vectors on one side of the Fano plane produces

the other vector on the side where (+) sign is given if the order of the multiplication

is matched with the direction of the arrow of the side and otherwise (−) sign is given.

Here the triangle formed by e1, e2 and e3 is also considered as a side.

1

5

2

6 3

7

Fano plane.

Just like the quaternions H, the multiplication of the octonions O is not commu-

tative, and furthermore, it is not associative. This lack of associativity makes the

research on the octonions O very difficult and complicated, but it is also the main

source of anomalites in mathematical physics such as the M-theory.

We define a subset OI in O consisting of the octonions a01 + a1e1 + . . . + a7e7
whose coefficients a0, a1, . . . , a7 are synchronically chosen from either Z or Z+1/2 to

satisfy
7
∑

i=0

ai ∈ 2Z and the relationships in the Fano plane. Each four choices in the

Fano plane not containing a line in the Fano plane are called a nonassociative block.

We also consider three choices in the Fano plane forming a line. After adding 1 to

such three choices, we call such choice of four octonions an associative block. In fact,

to define the integral octonions, we need to replace e1 by 1 for each nonassociative

block and associative block, and we denote by B the set of four chosen octonions

given by the substitution on these blocks. Define

OI =















a01 + a1e1 + . . .+ a7e7 ∈ O ;

ai ∈ Z ∪
(

Z+ 1
2

)

with
7
∑

i=0

ai ∈ 2Z.

when four ai are in Z+ 1/2,
the four choices are given from B















.

One can show that this subset OI satisfies the conditions to be integral, and in fact

it is known as the Cayley integral numbers or the integral octonions.
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We also consider shells OI(n) in OI consisting of the integral octonions whose

square of length is n. For example, we identify OI(1) as follows:

OI(1) =



































































± 1, ±e1, ±e2, ±e3, ±e4, ±e5, ±e6, ±e7,

1
2 (±1± e1 ± e2 ± e3),

1
2 (±1± e1 ± e4 ± e5),

1
2 (±1± e1 ± e6 ± e7),

1
2 (±e1 ± e2 ± e4 ± e6),

1
2 (±e1 ± e2 ± e5 ± e7),

1
2 (±e1 ± e3 ± e4 ± e7),

1
2 (±e1 ± e3 ± e5 ± e6),

1
2 (±1± e2 ± e4 ± e7),

1
2 (±1± e2 ± e5 ± e6),

1
2 (±e2 ± e3 ± e4 ± e5),

1
2 (±1± e3 ± e5 ± e7),

1
2 (±1± e3 ± e4 ± e6),

1
2 (±e2 ± e3 ± e6 ± e7),

1
2 (±e4 ± e5 ± e6 ± e7)



































































.

The first shellOI(1) has 240 integral octonions, and the second shellOI(2) contains

2160 elements in OI whose square of length is 2. In general, |OI(n)| is given by

240
∑

d|n

d3.

3. 24-cell and Gosset polytope

In this article, we deal with polytopes with highly nontrivial symmetries whose

symmetry groups (called Coxeter groups) play key roles in the corresponding

Coxeter-Dynkin diagrams. In this section, we introduce the general theory of

the regular and semiregular polytopes according to their symmetry groups and the

corresponding Coxeter-Dynkin diagrams. In particular, we consider the family of

semiregular polytopes known as the Gosset polytopes (k21 according to Coxeter).

Here, we only present a brief introduction, and for further details the reader should

look up [4], [5], [7], [6], and [12].

We consider a convex n-polytope Pn in an n-dimensional Euclidean space. For

each vertex of Pn, the set of the midpoints of all the edges emanating from the vertex

in Pn is called the vertex figure of Pn at the vertex when it forms an (n−1)-polytope.

A regular polytope Pn (n > 2) is a polytope whose facets and the vertex figure at

each vertex are regular. Naturally, the facets of a regular Pn are all congruent, and

the vertex figures are all the same. A polytope Pn is called semiregular if its facets

are regular and its vertices are equivalent, namely, the symmetry group of Pn acts

transitively on the vertices of Pn.

The Coxeter groups are reflection groups generated by the reflections with respect

to hyperplanes (called mirrors) and the relationships between them are given by

the Coxeter-Dynkin diagrams. The Coxeter-Dynkin diagrams of Coxeter groups are
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labeled graphs where their nodes present indexed mirrors and the labels on edges

present the order n of dihedral angle π/n between two mirrors. If two mirrors are

perpendicular, namely n = 2, no edge joins two nodes presenting the correspond-

ing mirrors, and this also implies that there is no interaction between the mirrors.

Since the dihedral angle π/3 appears very often, we only label the edges when the

corresponding order is n > 3. Each Coxeter-Dynkin diagram contains at least one

ringed node which represents an active mirror, i.e., there is a point off the mirror,

and the construction of a polytope begins with reflecting the point through the ac-

tive mirror. The Coxeter-Dynkin diagrams of polytopes considered in this article

have only one ringed node and no labeled edges. These are called polytopes with

ADE-type reflection groups. For these cases, the following simple procedure using

the Coxeter-Dynkin diagrams describes possible subpolytopes and gives the total

number of them.

The Coxeter-Dynkin diagram of each subpolytope P ′ is a connected subgraph Γ

containing the ringed node. And the subgraph obtained by taking off all the nodes

joined with the subgraph Γ represents the isotropy group GP ′ of P ′. Furthermore,

the index between the symmetry group G of the ambient polytope and the isotropy

group GP ′ gives the total number of such subpolytopes. In particular, by taking

off the ringed node, we obtain the subgraph corresponding to the isotropy group of

a vertex, and in fact the isotropy group is the symmetry group of the vertex figure.

We present this process in detail for the 24-cell and Gosset polytope 421 below. Here

the orders of ADE-type of Coxeter groups are given in the following table.

Coxeter group An Dn E6 E7 E8

order (n+ 1)! 2n−1n! 27345 210345× 7 21435527

Order of Weyl groups.

The most fundamental polytopes with ADE-type reflection groups are the follow-

ing two classes of regular polytopes and one class of semiregular polytopes.

(1) (A-type) A regular simplex αn is an n-dimensional simplex with equilateral

edges. Then αn is inductively constructed as a pyramid based on an (n − 1)-

dimensional simplex αn−1. Thus the facets of a regular simplex αn are regular

simplexes αn−1, and the vertex figure of αn is also αn−1. For a regular simplex αn,

only regular simplexes αk, 0 6 k 6 n− 1 appear as subpolytopes.

nn1 2
Coxeter-Dynkin diagram of αn.

(2) (D-type) A crosspolytope βn is an n-dimensional polytope whose 2n-vertices

are the intersects of an n-dimensional Cartesian coordinate frame and a sphere cen-
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tered at the origin. And βn is also inductively constructed as a bipyramid based on

an (n− 1)-dimensional crosspolytope βn−1, and the n-vertices in βn form a simplex

αn−1 if the choice is made of one vertex from each Cartesian coordinate line. So

the vertex figure of a crosspolytope βn is also a crosspolytope βn−1, and the facets

of βn are simplexes αn−1. For a crosspolytope βn, only the regular simplexes αk,

0 6 k 6 n− 1 appear as subpolytopes.

nn

1

2 3
Coxeter-Dynkin diagram of βn.

(3) (E-type) Gosset polytopes k21 (k = −1, 0, 1, 2, 3, 4) are semiregular polytopes

discovered by Gosset which are (k+4)-dimensional polytopes whose symmetry groups

are the Coxeter groups Ek+4. Here the vertex figure of k21 is (k − 1)21. And for

k 6= −1 the facets of k21-polytopes are the regular simplexes αk+3 and the crosspoly-

topes βk+3, but all the lower dimensional subpolytopes are regular simplexes. In this

article, we focus on the Gosset polytope 421 with a Coxeter group E8.

1− 0 1 k

Coxeter-Dynkin diagram of k21, k 6= −1.

3.1. 24-cell. The 24-cell is a 4-dimensional convex regular polytope bounded by

24 octahedra whose Coxeter group is known to be F4 with order 1152 or B4 with

order 384. In fact, we observe that the Coxeter group D4 with the Coxeter-Dynkin

diagram

2 3 4

1

Coxeter-Dynkin diagram of 24-cell.

gives the 24-cell. Moreover, D4 is the better choice for us to identify the 24-cell as

the unit integral quaternions in HI and to extend the story for Gosset 421 in OI via

the Coxeter-Dynkin diagram.

The 24-cell is one of very well-known polytopes thanks to its interesting prop-

erties such as self-duality. In this article, we also consider the dualities between

its subpolytopes. In the following, we describe fundamental relationships between

combinatorics of the 24-cell and the Coxeter-Dynkin diagram. Similar relationships
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between Gosset 421 and the corresponding Coxeter-Dynkin diagram will play key

roles for this article.

In the following we describe the subpolytopes in the 24-cell via D4-action and

obtain their total numbers.

(1) Vertices : The diagram of the vertex figure of the 24-cell is of A1 × A1 × A1-

type because the subgraph remaining after removing the ringed node represents

A1 × A1 × A1. Thus the total number of vertices N
24
α0
is obtained by N24

α0
= [D4 :

A1 ×A1 ×A1] = 234!/(2! · 2! · 2!) = 24.

(2) Edges : The edges in the 24-cell are A1-type regular simplexes α1. And the

isotropy group is obtained by the subgraph of A1 containing the ringed node and

another subgraph given by taking off the subgraph of A1 and the nodes adjacent

to the subgraph of A1. As there is no subgraph remaining after this taking off

process, the isotropy group is A1. Thus the total number of edges N
24
α1
is obtained

by N24
α1

= [D4 : A1] = 234!/2! = 96.

(3) Faces (α2-simplexes): The faces in the 24-cell areA2-type regular simplexes α2,

and there are three different ways to get subgraphs of A2-type containing the ringed

node in the Coxeter-Dynkin diagram of the 24-cell. And the isotropy group is A2.

Thus the total number of faces N24
α2
is obtained by N24

α1
= 3[D4 : A2] = 3234!/3! = 96.

(4) Cells (β3-crosspolytopes): The cells in the 24-cell are regular octahedra because

the subgraph of the cells in the 24-cell is which is the Coxeter-Dynkin

diagram of the regular rectified tetrahedron, namely the octahedron. In fact, the

regular octahedra are 3-dimensional crosspolytopes β3. There are three different

ways to get subgraphs of the rectified tetrahedron containing the ringed node in the

Coxeter-Dynkin diagram of the 24-cell. And the isotropy group is A3. Thus the total

number of cells N24
β3
is attained by N24

β3
= 3[D4 : A3] = 3234!/4! = 24.

2 3 4

1

Vertices in 24-cell Edges in 24-cell

2 3 4

1

Faces in 24-cell

2 3 4

1

Cells in 24-cell

2 3 4

1

Coxeter-Dynkin diagrams of subpolytopes in 24-cell.

In the above calculation for the 24-cell, the nodes marked by empty circles repre-

sent the deleted nodes.

3.2. Gosset polytope 421. The Gosset polytope 421 is a convex semiregular

uniform polytope given by the Coxeter group E8 according to the following Coxeter-
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Dynkin diagram:

1− 0 1 2 3 4
Coxeter-Dynkin diagram of 421.

As above, we can describe the subpolytopes in 421 and calculate the total number

of faces in 421 by using the Coxeter-Dynkin diagram. For instance, to calculate the

total number of vertices in 421, we remove the ringed node labelled 4 and transfer

the ring to the node labelled 3 so that we obtain a subgraph of E7-type. Here, the

vertex figure of 421 is 321. Since the subgraphs of A7-type and D7-type are all the

possible biggest subgraphs in the Coxeter-Dynkin diagram of 421, there are two types

of facets in 421, which are 7-simplexes and 7-crosspolytopes, respectively. And all

other facets in 421 are simplexes for the same reason. In the following calculation for

421, the nodes marked by empty circles represent deleted nodes.

(1) Vertices in 421 : N421
α0

= [E8 : E7] = 21435527/(210345× 7) = 240.

1− 0 1 2 3 4

(2) 1-simplexes (edges) in 421 : N421
α1

= [E8 : A1 × E6] = 21435527/(2!× 27345) =

6720.

1− 0 1 2 3 4

(3) 2-simplexes (facets) in 421 : N421
α2

= [E8 : A2 × D5] = 21435527/(3!× 245!) =

60480.

1− 0 1 2 3 4

(4) 3-simplexes (cells) in 421 : N421
α3

= [E8 : A3 × A4] = 21435527/(4!× 5!) =

241920.

1− 0 1 2 3 4

(5) 4-simplexes in 421 : N421
α4

= [E8 : A4 × A2 × A1] = 21435527/(5!× 3!× 2!) =

483840.

1− 0 1 2 3 4
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(6) 5-simplexes in 421 : N421
α5

= [E8 : A5 ×A1] = 21435527/(6!× 2!) = 483840.

1− 0 1 2 3 4

(7) 6-simplexes in 421 : N421
α6

= [E8 : A6 × A1] + [E8 : A6] = 21435527/(7!× 2!) +

21435527/7! = 69120 + 138240 = 207360.

1− 0 1 2 3 4 1− 0 1 2 3 4

(8) 7-simplexes in 421 : N421
α7

= [E8 : A7] = 21435527/8! = 17280.

1− 0 1 2 3 4

(9) 7-crosspolytopes in 421 : N421
β7

= [E8 : D7] = 21435527/(26 × 7!) = 2160.

1− 0 1 2 3 4

4. Polytopes in integral normed algebras

In this section, we consider the reflections defined for the integral normed algebras

and study polytopes in the algebras constructed by the reflections as in the work

of Coxeter [3]. We characterize Coxeter’s reflections producing Coxeter groups and

recover properties of polytopes in [3] along with the Coxeter groups. Moreover, we

discover hidden dualities in the polytopes.

4.1. Reflections on normed algebra. For each element a in a normed alge-

bra A, we define the conjugate of a by ā := −a + 2(a, 1)1. We get the following

useful and well-known lemmas by direct calculations.
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Lemma 1. For elements a, x, y in a normed algebra A, we have

(x · y, a) = (y, x̄ · a) = (x, a · y).

P r o o f. From the definition of the normed algebra, we get (a·x, b·y)+(a·y, b·x) =

2(a, b)(x, y) and apply x̄ = −x+ 2(x, 1)1 to get the lemma. �

In [3], the reflection for the normed algebra A is defined by

σa(x) := −a · x̄ · a

for a ∈ A with ‖a‖ = 1. When the normed algebra is the octonions O, even though

it is not associative, the map is well-defined since (a · x̄) · a = a · (x̄ · a) by the Artin

theorem. The following lemma shows that this map is a reflection indeed.

Lemma 2. For each a in a normed algebra A with ‖a‖ = 1,

σa(x) = x− 2(x, a)a.

P r o o f. By applying the above lemma we obtain

σa(x) = −(a · x̄) · a = −(−x · ā+ 2(a · x̄, 1)1) · a

= (x · ā) · a+ 2(a, x)a = x · (ā · a) + 2(a, x)a

= x− 2(x, a)a.

Here we use x + x̄ = 2(x, 1)1 on the first line and the above lemma on the second

line. �

Remark 3. By this lemma, the reflection hyperplane of the reflection σa is the

linear hyperplane perpendicular to the unit vector a. Moreover, the reflection σa

preserves each affine hyperplane perpendicular to a in A. In particular, if σa fixes 1

in A, we have Rex = Reσa(x).

Since each reflection is an orthogonal transform, we have ‖σa(x)‖ = ‖x‖. More-

over, it preserves the set of integral elements AI by virtue of the following lemma.

Thus each shell AI(n) consisting of elements in AI with the square of length = n is

preserved by the reflection.

Lemma 4. For b ∈ AI with ‖b‖ = 1, the corresponding reflections σb acts on the

set AI of the integral elements in A.
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P r o o f. We consider an integral element x in AI . The conjugate x̄ is also integral

because (x, 1) is an integer. Since AI is closed under multiplication, σb(x) = −b · x̄ · b

is integral. This gives the lemma. �

For a, b ∈ A with ‖a‖ = ‖b‖ = 1, the corresponding reflections σa and σb are re-

lated via the angle between a and b which is cos−1(a, b) = cos−1 1
2 (āb+ b̄a). Thus the

proper choice of the unit elements in A satisfying some relations produces a Coxeter

group. If we choose the unit elements to be integral and satisfy the relationships

given by the above Dynkin diagrams, naturally the obtained Coxeter groups act

on AI . In particular, we consider the Coxeter groups for HI and OI as follows.

4.2. 24-cell in integral quaternions. We consider the integral quaternions HI

and a Coxeter group generated by the following Dynkin diagram where the reflections

are given by the unit integral quaternions in the diagram.

i
1+i+j+k

2

j

k

Dynkin diagram of D4.

Here, the Coxeter group presented by the Dynkin diagram is a Weyl group of typeD4.

Theorem 5. The convex hull of HI(1) in H is a 24-cell.

P r o o f. As the Coxeter group D4 acts on HI(1), it is enough to show that HI(1)

is one D4-orbit and check if its Coxeter-Dynkin diagram presents the 24-cell.

If we consider 1 ∈ HI(1), then we have σi(1) = σj(1) = σk(1) = 1 but

σ(1+i+j+k)/2(1) = (1− i− j − k)/2. Thus the D4-orbit of 1 in HI(1) is the set

of vertices of a 24-cell given by a Coxeter-Dynkin diagram

i
1+i+j+k

2

j

k

Coxeter-Dynkin diagram of 24-cell.

Since |HI(1)| = 24 = the number of vertices of a 24-cell, we show that HI(1) transi-

tively acts by D4 and it is the set of vertices of a 24-cell. This proves the theorem.

�

Remark 6. In fact, the shell HI(1) is a finite group of order 24, but it is not

isomorphic to SL(2,Z3).
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As in subsection 3.1, the subpolytopes in a 24-cell are regular polytopes α0 (ver-

tex), α1 (edges), α2 (regular 2-simplex) and β3 (3-crosspolytope). Each subpolytope

in a 24-cell is identified by its barycenter. As we want to stick to integral elements in

the normed algebra, we take alternate barycenters as follows. The barycenter of a reg-

ular simplex αn is the sum of all the vertices, and the barycenter of a crosspolytope

βn is the sum of an antipodal pair of vertices in it. Therefore, by the above theorem,

the barycenter of a regular simplex αn is the sum of (n+1)-unit integral elements in

HI(1) whose inner product with each other is 1/2, and the barycenter of a crosspoly-

tope βn is the sum of two unit integral elements in HI(1) whose inner product is 0.

Now we describe the relationship between a few first shells in HI and the subpoly-

topes in the 24-cell.

(1) For b ∈ HI(2), by simple calculation we know that b = a1 + a2 for ai ∈ HI(1)

with (a1, a2) = 0. Equivalently, b represents a center of a 3-crosspolytope. Thus

HI(2) corresponds to the set of 3-crosspolytopes (β3) in the 24-cell. Note that each

b ∈ HI(2) can be written by three pairs of elements with (a1, a2) = 0 in HI(1)

corresponding to three antipodal pairs in the 3-crosspolytope.

(2) For c ∈ HI(3), by simple calculation and comparison, we get c = a1 + a2
for ai ∈ HI(1) with (a1, a2) = 1/2. Equivalently, c represents an edge in the 24-

cell. Thus HI(3) corresponds to the set of edges (α1) in the 24-cell. Note that each

c ∈ HI(3) can be written by only one pair of elements with (a1, a2) = 1/2 in HI(1).

(3) For d ∈ HI(4), we get d = 2a1 for some a1 ∈ HI(1). Thus HI(4) corresponds

to the set of vertices in the 24-cell, and each d is uniquely determined by HI(1).

(4) Each element e ∈ HI(5) can be written as e = 2a1 + a2 for ai ∈ HI(1) with

(a1, a2) = 0. Since 2a1 + a2 = (a1 + a2) + a1, the element e corresponds to a 3-

crosspolytope β3 represented by a1 + a2 and a vertex a1 in it. In fact, since the

3-crosspolytope β3 contains three pairs of antipodal vertices producing the common

center a1 + a2, we obtain |HI(5)| = 24× 6 = 144.

(5) For f ∈ HI(6), we observe f = a1 + a2 + a3 for ai ∈ HI(1) with (ai, aj) = 1/2

and obtain the correspondence between HI(6) and the set of 2-simplexes in the 24-

cell. Thus, there is only one triple of elements in HI(1) presenting f .

In summary, we obtain the following identifications for a few first shells in HI .

HI(i) |HI(i)| 24-cell ai ∈ HI(1)
HI(1) 24 vertex (α0) a1
HI(2) 24 cell (β3) a1 + a2 with (a1, a2) = 0
HI(3) 96 edge (α1) a1 + a2 with (a1, a2) = 1/2
HI(4) 24 vertex (α0) 2a1
HI(5) 144 vertex in each β3 2a1 + a2 with (a1, a2) = 0
HI(6) 96 face α2 a1 + a2 + a3 with (ai, aj) = 1/2

Table 1: Small shells in HI .
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Remark 7. For each b in HI(2), the map ϕb(x) := b · x gives correspondences

among HI(1), HI(2) and HI(4). This also produces a correspondence between HI(3)

and HI(6). Therefrom, we obtain the well-known self duality of the 24-cell.

4.3. Gosset polytope 421 in integral octonions. Now, we consider the integral

octonions OI and the Coxeter group generated by the following Dynkin diagram

where the reflections are given by the unit integral octonions in the diagram:

e1 e3

e2

−e4+e5+e6+e7

2

−1+e1+e4+e5

2

1+e1+e2+e3

2

−1+e3−e4+e6

2

−e4+e5−e6+e7

2

Coxeter-Dynkin diagram of E8.

Here, the Coxeter group presented by the Dynkin diagram is a Weyl group of type

E8, and the Dynkin diagram is written as an extension of the diagram of D4 for HI .

As the convex hull of HI(1) in H gives a 24-cell, we have a similar conclusion for

OI(1) as follows.

Theorem 8. The convex hull of OI(1) in O is a Gosset polytope 421.

P r o o f. We consider b = (−e4 + e5 − e6 + e7)/2 ∈ OI(1) and its E8-orbit.

The reflection σ(−e4+e5−e6+e7)/2 is the only active reflection moving b among the

reflections in the above Dynkin diagram. Thus the E8-orbit of b in OI(1) is the set

of vertices of the Gosset polytope 421 obtained by the Coxeter-Dynkin diagram

e1 e3

e2

−e4+e5+e6+e7

2

−1+e1+e4+e5

2

1+e1+e2+e3

2

−1+e3−e4+e6

2

−e4+e5−e6+e7

2

Coxeter-Dynkin diagram of 421.

Since |OI(1)| = 240 = the number of vertices of 421, we show that OI(1) transitively

acts by E8 and it is the set of vertices of 421. This gives the theorem. �

As in a 24-cell, the subpolytopes in 421 can be identified by its barycenter. Again,

by the above theorem, the barycenter of a regular simplex αn is the sum of (n+ 1)-

unit integral elements in OI(1) whose inner product with each other is 1/2, and the

barycenter of the crosspolytope β7 is the sum of two unit integral elements in OI(1)

whose inner product is 0.
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Now we describe the relationships between a few first shells in OI and the sub-

polytopes in 421.

Note the following description may not be obtained by simple calculation. As

a matter of fact, it is motivated by the comparison of the combinatorics of the

Gosset polytope k21 and special divisors in del Pezzo surfaces in [12], [11] via the

representation theory. However, as we consider 421 in OI , the comparison can be

done by studying algebraic relationships in OI via the representation theory. This

is the major benefit of considering 421 in OI .

(1) For b ∈ OI(2), by simple calculation we know b = a1 + a2 for ai ∈ OI(1) with

(a1, a2) = 0. Equivalently, b represents a center of a 7-crosspolytope. Thus OI(2)

corresponds to the set of 7-crosspolytopes (β3) in 421. Moreover each b ∈ OI(2) can

be written by seven pairs of elements with (a1, a2) = 0 in OI(1) corresponding to

seven antipodal pairs in the 7-crosspolytope.

(2) For c ∈ OI(3), by simple calculation and comparison, we get c = a1 + a2 for

ai ∈ OI(1) with (a1, a2) = 1/2. Equivalently, c represents an edge in 421. Thus

OI(3) corresponds to the set of edges (α1) in 421. Therefore each c ∈ OI(3) can be

written by only one pair of elements with (a1, a2) = 1/2 in OI(1).

(3) A shell OI(4) consists of two E8-orbits which correspond to a set of vertices

in 421 and a set of 7-simplexes which is one of the two types of 7-faces in 421. To

see the correspondence between the set of 7-simplexes and one of the E8-orbits in

OI(4), we consider a 7-simplex given by











e1,
1
2 (1 + e1 + e2 + e3),

1
2 (1 + e1 + e4 + e5),

1
2 (1 + e1 + e6 + e7),

1
2 (e1 + e2 + e4 + e6),

1
2 (e1 + e2 + e5 + e7),

1
2 (e1 + e3 + e4 + e7),

1
2 (e1 + e3 + e5 + e6)











.

Here the corresponding barycenter is the sum of all the vertices

9e1 + 3(1 + e2 + . . .+ e7)

2
= 3

(

e1 +
1 + e1 + e2 + e3

2
+

e4 + e5 + e6 + e7
2

)

∈ 3OI

and the barycenter is divisible by 3. Therefore, each d ∈ OI(4) can be written as (i)

2a1 for some a1 ∈ OI(1) just like for some HI(4) and (ii) d = 1
3

8
∑

i=1

ai for ai ∈ OI(1)

with (ai, aj) = 1/2. Thus OI(4) is the union of two Weyl orbits corresponding to the

set of vertices in 421 (case (i)) and the set of 7-simplexes in 421 (case (ii)). Moreover,

since each center of 7-simplexes in 421 is uniquely determined, each d ∈ OI(4) can

be uniquely written by the seven ai ∈ OI(1) with (ai, aj) = 1/2.

(4) By applying the method of HI(5) similarly to OI(5), we obtain that e ∈ OI(5)

can be written as e = 2a1 + a2 for ai ∈ OI(1) with (a1, a2) = 0. And the element e

corresponds to a 7-crosspolytope β7 represented by a1 + a2 and a vertex a1 in it.
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(5) Again, by applying the method of HI(6) similarly to OI(6), we obtain that

each f ∈ OI(6) can be written as f = a1 + a2 + a3 for ai ∈ OI(1) with (ai, aj) = 1/2

and get the correspondence between OI(6) and the set of 2-simplexes in 421. Thus,

there is only one triple of elements in OI(1) presenting f .

(6) By reasoning similar to that used in OI(4), one can get the description for

OI(7). Note that the 6-faces in 421 consist of two E8-orbits where one of them is

contained in OI(7).

Summarizing, we obtain the following identifications for shells in OI .

OI(i) |OI(i)| 421 ai ∈ OI(1), b ∈ OI(2)
OI(1) 240 vertex (α0) a1
OI(2) 2160 7-face (β7) a1 + a2, (a1, a2) = 0
OI(3) 6720 edge (α1) a1 + a2, (a1, a2) = 1/2

OI(4) 240 + 17280 = 17520
vertex (α0)
7-face (α7)

240; 2a1
17280; 1

3

∑8
i=1 ai, (ai, aj) = 1/2

OI(5) 30240 vertex ∈ β7 2a1 + a2, (a1, a2) = 0
OI(6) 60480 α2 a1 + a2 + a3, (ai, aj) = 1/2

OI(7) 13440 + 69120 = 82560
vertex ∈ α1

6-face (α6)

13440; 2a1 + a2, (a1, a2) = 1/2

69120; 1
2

∑7
i=1 ai, (ai, aj) = 1/2

Table 2: Small shells in OI .

4.4. Hidden duality. In this subsection, we introduce a method of analyzing

each shell in the integral normed algebras via reflections. We consider level sets

HI,x(1) or OI,x(1) in HI(1) or OI(1) defined as subsets consisting of elements whose

real part is x. Thus there are 5-level sets in HI(1) or OI(1), respectively. And

we show that there is a duality between the level set of Re a = 1/2 and the set of

Re a = 0 via the Coxeter group. In fact, this study can be naturally extended to

interesting questions for bigger shells of HI or OI which have more levels. We will

discuss it in another paper.

Hidden duality in 24-cell. First, we recall that HI(1) = {±1,±i,±j,±k,± 1
2 ±

1
2 i±

1
2j ±

1
2k}, and its level sets are

HI,1(1) = {1},

HI,1/2(1) = { 1
2 ± 1

2 i ±
1
2 j ±

1
2k},

HI,0(1) = {±i,±j,±k},

HI,−1/2(1) = {− 1
2 ± 1

2 i±
1
2j ±

1
2k},

HI,−1(1) = {−1}.
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Here we observe that the isotropy subgroup of 1 ∈ HI,1(1) in a Coxeter group D4

is A1×A1×A1 (the isotropy group of a vertex) generated by S1 = {σi, σj , σk}. And

the isotropy group acts on each level set.

For 1
2 +

1
2 i+

1
2j+

1
2k ∈ HI,1/2(1), none of the elements in S1 fixes

1
2 +

1
2 i+

1
2j+

1
2k.

This choice of an element in HI,1/2(1) via A1×A1×A1-action produces a cube with

a Coxeter-Dynkin diagram

Moreover, HI,1/2(1) is the set of vertices of a cube which is the vertex figure of

a 24-cell.

For HI,0(1), the A1 × A1 × A1-action on HI,0(1) produces three orbits {i,−i},

{j,−j} and {k,−k} in HI,0(1). Remark: to get a better understanding of HI,0(1),

one can use another construction of the 24-cell given by F4 with a Coxeter-Dynkin

diagram

4

Coxeter-Dynkin diagram of 24-cell.

If we consider an isotropy group of 1 ∈ HI(1) as above, then we observe that HI,0(1)

is in fact an octahedron. According to the famous duality between the cube and the

octahedron, we get a hidden duality between HI,1/2(1) and HI,0(1) in HI(1).

Hidden duality in 421. As in HI(1), we consider 1 ∈ OI(1) and its isotropy

group in E8 which is the Coxeter group E7. And one can show that OI,1/2(1) is

a Gosset polytope 321 given by the action of the Coxeter group E7. In fact, it is the

vertex figure of 421. Furthermore, the isotropy Coxeter group E7 also acts on OI,0(1)

which is the set of the unit pure imaginary integral octonions, and in the following

theorem we show a polytope given by the Coxeter group E7 which has a duality

with 321. For better calculation, we use another set of generators for the Coxeter

group E8 given by

e6 e4 e3

e7

1−e2+e5+e6

2

e4−e5+e6+e7

2

e2+e3+e4+e5

2

−1+e1−e2+e3

2

Coxeter-Dynkin diagram of E8.

Theorem 9. A subset OI,0(1) in OI(1) is the set of vertices of a uniform polytope

231 with the Coxeter group E7. Moreover, there is a duality between OI,1/2(1) and

OI,0(1) via the crosspolytopes in OI,1/2(1) and the vertices in OI,0(1).
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P r o o f. We consider e1 ∈ OI,0(1) and observe the isotropy group of e1 ∈ OI(1)

generated by the above Dynkin diagram is a Coxeter group E7.

Then the Coxeter group E7 gives a polytope in OI,0(1) with a Coxeter-Dynkin

diagram

e6 e4 e3

e7

1−e2+e5+e6

2

e4−e5+e6+e7

2

e2+e3+e4+e5

2

Coxeter-Dynkin diagram of 231.

This polytope is known as a uniform polytope 231 which has 128-vertices. Since

|OI,0(1)| = 128, the convex hull of OI,0(1) in ImO is the polytope 231.

From the above description of OI(2) in table 2, each 6-crosspolytope in OI,1/2(1)

(which is a Gosset polytope 321) can be written as a1 + a2 with (a1, a2) = 0 for

a1, a2 ∈ OI,1/2(1). Then we have a1 + a2 − 1 ∈ OI,0(1) and this gives the second

part of the theorem. �
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[9] M.Koca, R.Koç: Automorphism groups of pure integral octonions. J. Phys. A, Math.
Gen. 27 (1994), 2429–2442.

[10] M.Koca, N.Ozdes: Division algebras with integral elements. J. Phys. A, Math. Gen. 22
(1989), 1469–1493.

[11] J.-H. Lee: Configurations of lines in del Pezzo surfaces with Gosset polytopes. Trans.
Amer. Math. Soc. 366 (2014), 4939–4967.

701



[12] J.-H. Lee: Gosset polytopes in Picard groups of del Pezzo surfaces. Can. J. Math. 64
(2012), 123–150.

Authors’ addresses: Wo o - N y o u n g Ch a n g, Seoul Science High School, 63
Hyehwa-Ro, Jongno-gu, Seoul 110-530, Korea, e-mail: sdr02125@naver.com; J a e - H y o u k
L e e, Department of Mathematics, Ewha Womans University, 52 Ewhayeodae-Gil,
Seodaemun-Gu, Seoul 120-750, Korea, e-mail: jaehyoukl@ewha.ac.kr; S u n g Hwa n
L e e, Seoul Science High School, 63 Hyehwa-Ro, Jongno-Gu, Seoul 110-530, Korea, e-mail:
hwan.lee67@gmail.com; Yo u n g J u n L e e, Seoul Science High School, 63 Hyehwa-Ro,
Jongno-Gu, Seoul 110-530, Korea, e-mail: shujun1994@naver.com.

702


		webmaster@dml.cz
	2020-07-03T21:11:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




