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Abstract. The notion of travel groupoids was introduced by L.Nebeský in 2006 in con-
nection with a study on geodetic graphs. A travel groupoid is a pair of a set V and a binary
operation ∗ on V satisfying two axioms. We can associate a graph with a travel groupoid.
We say that a graph G has a travel groupoid if the graph associated with the travel groupoid
is equal to G. Nebeský gave a characterization of finite graphs having a travel groupoid.
In this paper, we study travel groupoids on infinite graphs. We answer a question posed

by Nebeský, and we also give a characterization of infinite graphs having a travel groupoid.
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1. Introduction

A groupoid is the pair (V, ∗) of a nonempty set V and a binary operation ∗ on V .

The notion of travel groupoids was introduced by L.Nebeský [5] in 2006 in connection

with his study on geodetic graphs [1], [2], [3] and signpost systems [4]. First, let us

recall the definition of travel groupoids.

A travel groupoid is a groupoid (V, ∗) satisfying the following axioms (t1) and (t2):

(t1) (u ∗ v) ∗ u = u, for all u, v ∈ V ,

(t2) if (u ∗ v) ∗ v = u, then u = v for all u, v ∈ V .

Note that a travel groupoid is an idempotent groupoid, i.e., x ∗ x = x holds for any

x ∈ V ([5], Proposition 1).

Let (V, ∗) be a travel groupoid, and let G be a graph. We say that (V, ∗) is

on G or that G has (V, ∗) if V (G) = V and E(G) = {{u, v} ; u, v ∈ V, u 6= v,

and u ∗ v = v}. It follows immediately from the definition that if (V, ∗) is a travel
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groupoid on a graph G, then u and u ∗ v are adjacent in G for two distinct elements

u and v of V ([5], Proposition 3). Thus the following holds.

Lemma 1. Let G be a graph and let (V, ∗) be a travel groupoid on G. For any

two distinct elements u and v in V , we have u ∗ v ∈ NG(u), where NG(u) denotes

the set of vertices adjacent to u in G.

Nebeský showed the following theorem which characterizes finite graphs having

travel groupoids.

Theorem 2 ([5], Theorem 6). Let G be a finite graph. Then, G has a travel

groupoid if and only if either G is connected or G is disconnected and no component

of G is a tree.

Nebeský posed the following question.

Question 3 ([5], Question 3). Does there exist an infinite graph G with no finite

components such that G has no travel groupoid?

In this paper, we study travel groupoids on infinite graphs. In Section 2, we answer

the above question by Nebeský. In Section 3, we give a characterization of infinite

graphs having travel groupoids, which is an extension of Theorem 2.

2. Answer to a question by Nebeský

An infinite star is a graph S∞ defined by

V (S∞) = {vi; i ∈ {0} ∪ N} and E(S∞) = {{v0, vi}; i ∈ N},

where N = {1, 2, . . .} denotes the set of positive integers.

Theorem 4. Let G be the disjoint union of an infinite star S∞ and an infinite

connected graph H . Then G has no travel groupoids.

P r o o f. Suppose that there exists a travel groupoid (V, ∗) on G, where V =

V (G). Take any vertex w in H . Then w 6= v0. Since NG(v0) = {vi; i ∈ N}, we have

v0 ∗ w ∈ {vi; i ∈ N} by Lemma 1. Let vj := v0 ∗ w. Since NG(vj) = {v0}, we have

vj ∗ w = v0 by Lemma 1. Therefore it follows that (v0 ∗ w) ∗ w = vj ∗ w = v0 while

w 6= v0. Thus (V, ∗) does not satisfy Axiom (t2), which is a contradiction. Hence

the theorem holds. �
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Let G be the disjoint union of an infinite star S∞ and an infinite connected

graph H . Then G has no finite connected component. By Theorem 4, there is

no travel groupoid on G. Hence the answer to Question 3 is YES.

3. Characterization

In this section, we give an extension of Theorem 2.

Recall that a geodetic graph is a graph in which there exists a unique shortest

path between any two vertices. Let G be a geodetic graph. Let V := V (G). For two

vertices u and v of G, let AG(u, v) denote the vertex adjacent to u which is on the

unique shortest path from u to v in G. Define a binary operation ∗ on V as follows:

For all u, v ∈ V , let u ∗ v := AG(u, v) if u 6= v and u ∗ v := u if u = v. This groupoid

(V, ∗) is called the proper groupoid of the geodetic graph G. Remark that the proper

groupoid of any geodetic graph is a travel groupoid.

Lemma 5. For every (finite or infinite) tree T , there exists a travel groupoid

on T .

P r o o f. Since any tree is a geodetic graph, we can define the proper groupoid

(V, ∗) on T . Hence T has a travel groupoid. �

Lemma 6. For every (finite or infinite) connected graph G, there exists a travel

groupoid on G.

P r o o f. Let V := V (G). Fix a spanning tree T of the graph G. Let (V, ∗T ) be

the proper groupoid on T . Now we define a groupoid (V, ∗) as follows. For each edge

{u, v} ∈ E(G), let u ∗ v := v and v ∗u := u. For u and v such that {u, v} 6∈ E(G), let

u ∗ v := u ∗T v. Then we can show that (V, ∗) is a travel groupoid on G as follows.

Consider arbitrary two elements u and v in V .

First we check (t1). Put w := (u ∗ v) ∗ u. We will show that w = u. If u = v,

then u ∗ v = u and therefore w = u ∗ u = u. If u and v are adjacent, then u ∗ v = v

and therefore w = v ∗ u = u. Assume that u and v are not adjacent in G. Then

u ∗ v = u ∗T v is the vertex adjacent to u which is on the path from u to v in T .

Since u ∗ v and u are adjacent, we have w = (u ∗ v) ∗ u = u. Thus (t1) holds.

Second we check (t2). We assume that u 6= v. We show that (u ∗ v) ∗ v 6= u. If

u and v are adjacent in G, then (u ∗ v) ∗ v = v ∗ v = v 6= u. Suppose that u and v

are not adjacent in G. Then u ∗ v = u ∗T v. If u ∗ v and v are adjacent in G, then

(u∗v)∗v = v 6= u. If u∗v and v are not adjacent in G, then (u∗v)∗v = (u∗T v)∗T v

is the vertex which is on the path from u to v in T and the distance from u in T is

two, i.e., (u ∗ v) ∗ v is not equal to u. Thus (t2) holds. Hence the lemma holds. �
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Theorem 7. Let G be a (finite or infinite) graph. Then, G has a travel groupoid

if and only if either G is connected or G is disconnected and no component of G is

a tree with finite diameter.

P r o o f. Assume that G is connected or G is disconnected and no component

of G is a tree with finite diameter. If G is connected, then, by Lemma 6, there exists

a travel groupoid on G. Let G be disconnected. Then every connected component

of G contains a cycle or an infinite path. It is easy to see that there exists a mapping f

from V (G) into itself such that the following statements hold for every vertex u in G:

u and f(u) are adjacent vertices in G and u 6= f(f(u)). By Lemma 6, every connected

component H of G has a travel groupoid, say, (V (H), ∗H). For any two vertices x

and y in G, we define x ∗ y := x ∗H y if there exists a connected component H of G

such that x, y ∈ V (H), and x ∗ y := f(x) if x and y belong to distinct connected

components of G. It is easy to see that (V (G), ∗) satisfies the axioms (t1) and (t2).

Hence G has a travel groupoid.

Conversely, assume that G is disconnected and at least one component T of G is

a tree with finite diameter. Suppose, to the contrary, that G has a travel groupoid,

say, a travel groupoid (V, ∗), where V = V (G). Consider u ∈ V (T ) and v ∈ V (G) \

V (T ). Since V (T ) is finite and T contains neither a cycle nor an infinite path, we

see that there exists a positive integer k such that u ∗k+1 v = u ∗k−1 v. Therefore,

we have ((u ∗k−1 v) ∗ v) ∗ v = u ∗k−1 v, and so, by (t2), u ∗k−1 v = v. Thus u and v

belong to the same connected component of G, which is a contradiction. Hence the

theorem holds. �
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