
Kybernetika

Karel De Loof; Bernard De Baets; Hans De Meyer
Cycle-free cuts of mutual rank probability relations

Kybernetika, Vol. 50 (2014), No. 5, 814–837

Persistent URL: http://dml.cz/dmlcz/144109

Terms of use:
© Institute of Information Theory and Automation AS CR, 2014

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://dml.cz

http://dml.cz/dmlcz/144109
http://dml.cz


KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 5 , PAGES 8 1 4 – 8 3 7

CYCLE-FREE CUTS
OF MUTUAL RANK PROBABILITY RELATIONS

Karel De Loof, Bernard De Baets and Hans De Meyer

It is well known that the linear extension majority (LEM) relation of a poset of size n ≥ 9
can contain cycles. In this paper we are interested in obtaining minimum cutting levels αm

such that the crisp relation obtained from the mutual rank probability relation by setting to
0 its elements smaller than or equal to αm, and to 1 its other elements, is free from cycles of
length m. In a first part, theoretical upper bounds for αm are derived using known transitivity
properties of the mutual rank probability relation. Next, we experimentally obtain minimum
cutting levels for posets of size n ≤ 13. We study the posets requiring these cutting levels in
order to have a cycle-free strict cut of their mutual rank probability relation. Finally, a lower
bound for the minimum cutting level α4 is computed. To accomplish this, a family of posets
is used that is inspired by the experimentally obtained 12-element poset requiring the highest
cutting level to avoid cycles of length 4.

Keywords: partially ordered set, linear extension majority cycle, mutual rank probability
relation, minimum cutting level, cycle-free cut

Classification: 06A06, 06A07

1. INTRODUCTION

When considering the probability space consisting of the set of linear extensions (also
called topological orderings) of a given poset P equipped with the uniform probabil-
ity measure, the mutual rank probability relation appears naturally. It expresses the
probability that an element x ∈ P has a higher position than an element y ∈ P in a
linear extension of P sampled uniformly at random. This relation plays an important
role, both from an application [6] as well as from a theoretical [5, 12, 17] point of view.
Although the study of the type of transitivity exhibited by mutual rank probability re-
lations has received considerable attention [5, 12, 19, 23], this transitivity remains far
from characterized. It is, however, well known that mutual rank probability relations
are in general not weakly stochastic transitive [5], allowing for the occurrence of cycles
in the linear extension majority (LEM) relation of posets of size n ≥ 9.

Quite some attention has been given to such LEM cycles in the literature. Examples
of posets with LEM cycles are given in [1, 11, 12, 13, 14, 16, 18], frequency estimates
for LEM cycles have been reported in [15, 17], and the occurrence of LEM cycles in
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certain subclasses of posets has been studied in [2, 9]. Moreover, in previous work [7],
the present authors have succeeded in counting the posets of size n ≤ 13 with LEM
cycles. Besides the fact that the existence of LEM cycles is an intriguing phenomenon
in its own right, a better understanding of LEM cycles might help in the ongoing quest
to characterize the transitivity of mutual rank probability relations.

In this paper we are interested in obtaining minimum cutting levels αm such that the
strict αm-cut of the mutual rank probability relation MP , obtained by setting to 0 its
elements smaller than or equal to αm and to 1 its other elements, is free from cycles of
size m. In other words, we want to obtain the smallest number αm such that at least
one mutual rank probability in any LEM cycle of size m is smaller than or equal to αm.

The outline of this paper is as follows. In Section 3, we invoke known transitivity
properties to establish theoretical upper bounds for the minimum cutting level αm. In
Section 4, minimum cutting levels for posets of size n ≤ 13 are obtained experimentally.
Moreover, posets requiring these minimum cutting levels in order to have a cycle-free
strict cut of their mutual rank probability relation are studied in a modest attempt to
deepen the understanding of the occurrence of LEM cycles. Finally, in Section 5 a lower
bound for the minimum cutting level α4 to avoid LEM cycles of length 4 is computed.
This lower bound for α4 implies that the theoretical upper bound for α4 is quite tight.

2. PRELIMINARIES

A binary relation ≤P on a set P is called an order relation if it is reflexive (x ≤P x),
antisymmetric (x ≤P y and y ≤P x imply x =P y) and transitive (x ≤P y and y ≤P z
imply x ≤P z). A linear order relation ≤P is an order relation in which every two
elements are comparable (x ≤P y or y ≤P x). If x ≤P y and x 6= y, we write x <P y.
If neither x ≤P y nor x ≥P y, we say that x and y are incomparable and write x ||P y.
A couple (P,≤P ), where P is a set of objects and ≤P is an order relation on P , is called
a partially ordered set or poset for short. The size of a poset (P,≤P ) is defined as the
cardinality of P . A poset of size n will be called an n-element poset for short. The dual
poset of (P,≤P ), denoted as (P,≤>P ), is the poset consisting of the same set P and the
converse relation ≤>P of ≤P , i. e. x ≤>P y if and only if y ≤P x, for all x, y ∈ P .

The binary relation ≺P , for which it holds that (x, y) ∈≺P if and only if x <P y
and there exists no z ∈ P such that x <P z <P y, is called the covering relation of
(P,≤P ). The covering relation ≺P of a poset (P,≤P ) can be conveniently represented
by a so-called Hasse diagram where a sequence of connected lines upwards from x to y
is present if and only if x <P y. Examples of representations of posets by such Hasse
diagrams can be found in the appendix of this paper.

Let Q be a set and R and S two binary relations on Q. If R ⊂ S, then (Q,S) is
called an extension of (Q,R). A linear extension of a poset (P,≤P ) is an extension
(P,≤L) for which ≤L is a linear order relation. The mutual rank probability p(x > y)
of two elements x and y of a poset (P,≤P ) is defined as the probability that x >L y in
a linear extension (P,≤L) that has been sampled uniformly at random from the set of
linear extensions of (P,≤P ). Stated differently, it is the number of linear extensions of
(P,≤P ) in which x >L y, divided by the number of linear extensions of (P,≤P ). The
mutual rank probability relation MP is the [0, 1]-valued binary relation on P defined by
MP (x, y) = p(x > y) for all x, y ∈ P where x 6= y and MP (x, x) = 1/2 for all x ∈ P .
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Note that MP is a so-called reciprocal relation since MP (x, y) + MP (y, x) = 1.
The linear extension majority (LEM) relation [20] of a poset P is the antisymmetric

binary relation �LEM on P such that x �LEM y if p(x > y) > p(y > x). Due to the
reciprocity of the mutual rank probability relation, it is equivalent to state that x �LEM y
if p(x > y) > 1/2. It is well known [10] that the linear extension majority relation �LEM

can contain cycles, i. e. subsets {x1, x2, . . . , xm} of elements of P such that x1 �LEM

x2 �LEM · · · �LEM xm �LEM x1, and thus is not transitive. These cycles are referred to
as LEM cycles on m elements, or m-cycles for short.

The strict α-cut, with α ∈ [1/2, 1[, of a reciprocal relation Q on a set A is the crisp
relation Qα on A defined by

Qα(x, y) =
{

1, if Q(x, y) > α ,
0, otherwise.

Note that the LEM relation is nothing else but the strict 1/2-cut of MP .
We define the minimum cutting level αm as the smallest number such that for any

finite poset the strict αm-cut of the corresponding mutual rank probability relation is
free of cycles of length m.

3. THEORETICAL UPPER BOUNDS FOR αm

The problem of characterizing the transitivity exhibited by the mutual rank probability
relation MP was originally raised by Fishburn [12]. For any u, v ∈ [0, 1], define δ(u, v)
as

δ(u, v) = inf{MP (a, c) | MP (a, b) ≥ u ∧ MP (b, c) ≥ v} , (1)

where the infimum is taken over all finite posets (P,≤P ) and all (a, b, c) ∈ P 3. His
problem can be elegantly reformulated as to identify the conjunctor δ : [0, 1]2 → [0, 1]
such that the inequality

δ(MP (a, b),MP (b, c)) ≤ MP (a, c)

holds for all finite posets (P,≤P ) and all (a, b, c) ∈ P 3. A non-trivial lower bound for
δ(u, v) was obtained by Kahn and Yu [19] via geometric arguments. For any u, v ∈ [0, 1],
define δ∗(u, v) as

δ∗(u, v) = inf{Prob(Yi > Yk) | Prob(Yi > Yj) ≥ u ∧ Prob(Yj > Yk) ≥ v} ,

where the infimum is taken over all random Y = (Y1, Y2, . . . , Yn) chosen uniformly from
some n-dimensional compact convex subset of Rn. Kahn and Yu have shown that

δ∗(u, v) =


0, if u + v < 1 ,
min(u, v), if u + v ≥ 1 + min(u2, v2) ,

(1− u)(1− v)
u + v − 2

√
u + v − 1

, otherwise .

(2)

A reciprocal relation Q on a set A is called δ∗-transitive if it holds for all a, b, c ∈ A that

δ∗(Q(a, b), Q(b, c)) ≤ Q(a, c) . (3)
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As Kahn and Yu have shown that Fishburn’s problem can be embedded in this more
general setting, the function δ∗ provides a lower bound for δ. Thus, for any poset P the
mutual rank probability relation MP is δ∗-transitive. Clearly, the set of mutual rank
probability relations MP of all finite posets P is a subset of the set of all δ∗-transitive
reciprocal relations. Therefore, an upper bound ᾱm for the minimum cutting level for
the latter type of relations is necessarily an upper bound for αm.

Let ∆ = {(u, v) ∈ [0, 1]2 | u+ v ≥ 1} and consider the mapping γ : ∆ → [0, 1] defined
by

γ(u, v) =
(1− u)(1− v)

u + v − 2
√

u + v − 1
.

We first prove the following lemmas.

Lemma 3.1. For every u, v, x, y ∈ [0, 1] such that x > u, y > v and u + v ≥ 1, it holds
that δ∗(x, y) > δ∗(u, v).

P r o o f .

(i) Assume that 1 ≤ u + v < 1 + min(u2, v2). It follows that δ∗(u, v) = γ(u, v). It can
be shown easily that the partial derivative of γ w.r.t. u is strictly positive if and
only if 1 ≤ u + v < 1 + v2, which is satisfied by assumption. Analogously, it can
be shown that the partial derivative of γ w.r.t. v is strictly positive if and only if
1 ≤ u + v < 1 + u2. It follows that γ is strictly increasing in each variable, and a
fortiori that δ∗(x, y) > δ∗(u, v).

(ii) Assume that u+v ≥ 1+min (u2, v2). It follows that δ∗(u, v) = min(u, v) and thus
immediately that δ∗(x, y) > δ∗(u, v).

Finally, we prove that δ∗ is continuous on the set {(u, v) ∈ [0, 1]2 |u+v = 1+min(u2, v2)},
i. e. that on this set it holds that

(1− u)(1− v)
u + v − 2

√
u + v − 1

= min(u, v) .

(i) Assume that u < v. As u + v = 1 + u2, it holds that v = 1 + u2 − u. This implies

γ(u, v) =
u(1− u)2

(1− u)2
= u = min(u, v) .

(ii) Assume that u ≥ v. As u + v = 1 + v2, it holds that u = 1 + v2 − v. This implies

γ(u, v) =
v(1− v)2

(1− v)2
= v = min(u, v) .

�

Lemma 3.2. It holds that γ ≤ δ∗ on ∆.
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P r o o f . We first prove that γ(u, v) ≤ u. Expressing that γ(u, v) ≤ u is equivalent to
the condition

u(u + v)− 2u
√

u + v − 1 ≥ (1− u)(1− v) ,

which can be rewritten as

u2 + (u + v − 1)− 2u
√

u + v − 1 ≥ 0 ,

or, equivalently,
(u−

√
u + v − 1)2 ≥ 0 ,

which is trivially satisfied on ∆. The case γ(u, v) ≤ v is completely analogous. �

Lemma 3.3. An upper bound on the minimum cutting level for a δ∗-transitive recip-
rocal relation Q4 on a set {x0, x1, x2, x3} is given by ᾱ4 = 2−

√
2.

P r o o f . We will use shorthands ti = Q4(xi, x(i+1) mod 4) and si = Q4(xi, x(i+2) mod 4)
for i ∈ {0, 1, 2, 3}.

We first assume that t0 = t1 = t2 = t3 = t > 0.5. In order for Q4 to be δ∗-transitive,
i. e. to fulfill condition (3), it is necessary that s0 ≥ δ∗(t, t) and s2 ≥ δ∗(t, t), or, due to
reciprocity, that s0 ≤ 1 − δ∗(t, t). Therefore, it has to hold that δ∗(t, t) ≤ 1 − δ∗(t, t),
or, equivalently, that δ∗(t, t) ≤ 0.5. Lemma 3.2 implies that γ(t, t) ≤ 0.5, yielding an
upper bound ᾱ4 = 2 −

√
2 on t. It is easily shown that δ∗(t, t) = 0.5 and that Q4 is

δ∗-transitive when t = ᾱ4.
We will now show that Q4 is not δ∗-transitive in the case where ti > t = ᾱ4 for

every i ∈ {0, 1, 2, 3}. Assume to the contrary that Q4 is transitive. This implies that
s0 ≥ δ∗(t0, t1). From ti > t for every i ∈ {0, 1, 2, 3}, it follows using Lemma 3.1 that

s0 ≥ δ∗(t0, t1) > δ∗(t, t) = 0.5 ,

and, due to reciprocity of Q4, that

s2 < 0.5 .

However, δ∗-transitivity of Q4 implies that

s2 ≥ δ∗(t2, t3) > δ∗(t, t) = 0.5 ,

which is a contradiction.
As the minimum cutting level can only be determined by the minimum of the ti’s,

no additional cases need to be considered. Therefore, ᾱ4 = 2 −
√

2 is an upper bound
on the minimum cutting level for Q4. �

Lemma 3.4. An upper bound on the minimum cutting level for a δ∗-transitive recip-
rocal relation Q5 on a set {x0, x1, . . . , x4} is given by ᾱ5 ≈ 0.6057.

P r o o f . We will use the shorthands ti = Q5(xi, x(i+1) mod 5) and si = Q5(xi, x(i+2) mod 5)
for i ∈ {0, 1, . . . , 4}.
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We first assume that t0 = t1 = . . . = t4 = t > 0.5. In order for Q5 to be δ∗-
transitive, it is necessary that s0 ≥ δ∗(t, t) and that 1− s3 ≥ δ∗(s0, t), implying 1− s3 ≥
δ∗(δ∗(t, t), t) as δ∗ is increasing. Moreover, it should hold that s3 ≥ δ∗(t, t), implying
the condition δ∗(δ∗(t, t), t) ≤ 1 − δ∗(t, t). Due to Lemma 3.2, it thus should hold that
γ(γ(t, t), t) ≤ 1− γ(t, t), yielding an upper bound ᾱ5 on t, with ᾱ5 ≈ 0.6057 the root of
γ(γ(t, t), t) = 1− γ(t, t) in the interval [0.5, 1]. Furthermore, it is easily shown that Q5

is δ∗-transitive when t = ᾱ5.
We will now show that Q5 is not δ∗-transitive in the case where ti > t = ᾱ5 for every

i ∈ {0, 1, . . . , 4}. Assume to the contrary that Q5 is δ∗-transitive. This implies that
s0 ≥ δ∗(t0, t1). From ti > t for every i ∈ {0, 1, . . . , 4}, it follows using Lemma 3.1 that

s0 ≥ δ∗(t0, t1) > δ∗(t, t) = δ∗(ᾱ5, ᾱ5) ,

and, again using Lemma 3.1, that

1− s3 ≥ δ∗(s0, t2) > δ∗(δ∗(ᾱ5, ᾱ5), ᾱ5) ,

and, due to the reciprocity of Q5, that

s3 < 1− δ∗(δ∗(ᾱ5, ᾱ5), ᾱ5) .

However, δ∗-transitivity of Q5 implies that

s3 ≥ δ∗(t3, t4) > δ∗(t, t) = δ∗(ᾱ5, ᾱ5) ,

a contradiction as
δ∗(δ∗(ᾱ5, ᾱ5), ᾱ5) = 1− δ∗(ᾱ5, ᾱ5) .

As the minimum cutting level can only be determined by the minimum of the ti’s, no
additional cases need to be considered. Therefore, ᾱ5 ≈ 0.6057 is an upper bound on
the minimum cutting level for Q5. �

The upper bounds ᾱm for the minimum cutting levels αm with m ≥ 6 can be ob-
tained in a similar way. In Table 1 the upper bounds ᾱm are shown for m ∈ {1, 2, . . . , 13}.

Finally, it should be mentioned that it is known from the work of Yu [23] that the
strict ρ-cut of any mutual rank probability relation at the value

ρ =
1 + (

√
2− 1)

√
2
√

2− 1
2

≈ 0.7800

yields a crisp relation that is transitive, and thus is obviously free of m-cycles for any
m > 0. Therefore, it must hold that

lim
m→∞

αm ≤ ρ .
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m ᾱm

3 0.5556
4 0.5858
5 0.6057
6 0.6201
7 0.6312
8 0.6400
9 0.6473
10 0.6535
11 0.6587
12 0.6632
13 0.6672

Tab. 1. The upper bounds ᾱm on the minimum cutting levels αm for

m ∈ {1, 2, . . . , 13}.

4. MINIMUM CUTTING LEVELS FOR POSETS OF SIZE n ≤ 13

Note that the theoretical considerations on the minimum cutting levels from the previous
section concern all δ∗-transitive reciprocal relations, a superset of the set of mutual rank
probability relations MP of all finite posets. It can therefore be expected that the given
bounds are not tight when we restrict to posets of some given size. In this section we
will experimentally compute the exact minimum cutting levels for posets of size n ≤ 13.

The present authors have shown in [8] that the mutual rank probability relation can
be computed using the lattice of ideals representation of a poset, without necessitating
the enumeration of all linear extensions. Although this approach requires additional
memory for storing the lattice of ideals, due to the fact that the size of this lattice for
small posets remains limited, it is ideally suited for obtaining the mutual rank probability
relation of posets of size n ≤ 13 quickly. A combination of the poset generation algorithm
of Brinkmann and McKay [3] and the algorithm to compute the mutual rank probability
relation for a given poset enabled us to obtain exact counts for posets of size n ≤ 13 [7].

We adapted this algorithm to keep track of the minimum cutting levels avoiding m-
cycles in any poset of size n, which we will denote as αn

m. In Table 2 these minimum
cutting levels αn

m are shown. Note that since no posets of size n ≤ 13 exist with 8-cycles,
the minimum cutting level for m = 8 is 0.5.

In order to verify the correctness of the implementation of the algorithms used, for
posets of size n ≤ 9 all mutual rank probability relations were compared with the results
obtained by an independent approach based on enumerating all linear extensions for each
poset by means of the Varol–Rotem algorithm [22]. As an additional verification of the
implementation of the algorithms, the mutual rank probabilities of all posets requiring
the highest cutting levels shown in Table 2 have been verified using an implementation
of an algorithm of Pruesse et al. [21] based on the generation of all linear extensions of
a poset.

Since one can trivially construct a poset of size n + 1 from a poset of size n with an
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n\m 3 4 5 6 7
9 0.5031 0.5 0.5 0.5 0.5
10 0.5040 0.5028 0.5 0.5 0.5
11 0.5062 0.5028 0.5 0.5 0.5
12 0.5074 0.5087 0.5004 0.5024 0.5
13 0.5089 0.5087 0.5029 0.5025 0.5002

Tab. 2. Minimum cutting level αn
m to avoid m-cycles in posets of size

n = 9, . . . , 13 for m = 3, . . . , 7.

equal minimum cutting level by adding an element that is either smaller than, larger than
or incomparable to the given n elements, the minimum cutting levels αn

m are increasing
in n. In Table 2 one can observe that for n = 11 no higher cutting level for avoiding 4-
cycles is found than for n = 10 since α11

4 = α10
4 , and similarly it is found that α13

4 = α12
4 .

Further, note that a cutting level αn
m = 0.5 indicates that no LEM cycles of length m

are possible in n-element posets.
In Figures 6 – 19 the posets requiring the non-trivial minimum cutting levels indicated

in boldface in Table 2 are depicted by their Hasse diagrams. Note that the dual of a
poset has an equal minimum cutting level, and is therefore not shown. However, four
depicted posets are identical to their dual posets (Figures 6, 10, 11 and 19). We also
mention that some posets have multiple LEM cycles with an identical cutting level,
while others have LEM cycles of different lengths. The 9-element poset in Figure 6, for
example, has three 3-cycles with identical probabilities, while for the 12-element poset
in Figure 10, aside from the cycle with length 3, a 4-cycle is present, since it holds that

p(5 > 7) = p(7 > 8) =
6184
12244

.

The 12-element poset in Figure 12 has cycles of length 3, 4, 5 and 6. The poset in
Figure 19 even has cycles of length 3, 4, 5, 6 and 7. Furthermore, the poset in Figure 13

also has a 3-cycle, the poset in Figure 16 has cycles of length 3 and 4, and the posets in
Figures 17 and 18 both have 3-cycles. For some minimum cutting levels multiple posets,
aside from their dual versions, are found. This is the case for the posets of size 13 in
Figures 14 and 15 which attain the minimum cutting level for 3-cycles. The same is true
for 6-cycles in Figures 17 and 18.

One of the aims of this experiment was to find common properties for posets with
LEM cycles or to see a common structure emerging in the posets requiring the minimum
cutting level. Indeed, if some common properties are found it might be possible to
confine the search space to one or more subclasses of posets, or at least to rule out
several hopefully large enough subclasses. By doing so, one could hope to take a step
further and to find all posets with LEM cycles for n = 14 or maybe even n = 15.
However, to our surprise, the posets have little in common. Because there are no common
(sub)structures, even for posets of small size, it is not clear whether a small number of
large subclasses to be ruled out can be identified. However, the symmetric and relatively
simple structure of the 12-element poset in Figure 11 requiring the minimum cutting level
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α4 will inspire us in the next section to generalize it and to find a lower bound for α4 for
increasing poset size. Note that it might be possible to derive even better lower bounds
for α4 from other posets yet to be identified.

5. A LOWER BOUND FOR α4

Consider in Figure 1 a generalization of the poset in Figure 11 requiring the minimum
cutting level α12

4 to avoid cycles of length 4 in posets with 12 elements. Note that the
parameters p and q represent numbers of elements and that setting p = 1 and q = 0
yields the original poset in Figure 11.

We observed that by increasing q, the minimum cutting level to avoid cycles of length
4 increases as well. The same observation was made for increasing p. Moreover, although
we will not prove it here, there is exactly one cycle of length 4, consisting of the elements
ω1, ω2, ω3 and ω4, requiring this cutting level. For the purpose of this paper, a proof
is not needed. A minimum cutting level that avoids this cycle is a lower bound for the
minimum cutting level. Due to symmetry it holds that p(ω2 > ω1) = p(ω4 > ω3) and
p(ω1 > ω4) = p(ω3 > ω2). If we denote the strict order relation of the dual poset as >>,
it holds that p(ω2 > ω1) = p(ω4 >> ω1) and therefore that p(ω2 > ω1) = p(ω1 > ω4).
The probabilities in the cycle are thus identical, i. e. p(ω2 > ω1) = p(ω1 > ω4) = p(ω4 >
ω3) = p(ω3 > ω2). It would be interesting to derive an analytical expression for e. g.
p(ω2 > ω1) as a function of p and q, since it would yield minimum cutting levels for
avoiding cycles of length 4 in a family of posets which seems promising for obtaining a
lower bound.

As a first step, we count the number of linear extensions of the poset, as this number
will be the denominator of the rational value of p(ω2 > ω1). Note that the four indicated
elements a, b, c and d in Figure 1 can appear in four different orders in a linear extension:

a < b < c < d ,

a < b < d < c ,

b < a < c < d ,

b < a < d < c .

Again due to symmetry, the number of linear extensions where a < b is identical
to that where b < a. We can therefore restrict to the orders a < b < c < d and
a < b < d < c and multiply the expression found by 2 in order to obtain the total
number of linear extensions.

Since we will often need the number of linear extensions of the poset consisting of
two disjoint chains with lengths i and j with no comparabilities between them, in what
follows we will denote this number as κ(i, j), i. e. we define

κ(i, j) =
(

i + j

j

)
.

The total number of linear extensions N(p, q) can now be written as the following
summation

q∑
i1=0

κ(i1, q)
2p+1∑
i2=0

κ(q − i1, i2)
[
N cd(p, q, i1, i2) + Ndc(p, q, i1, i2)

]
. (4)



Cycle-free cuts of mutual rank probability relations 823

p

q

q

p

ω2 ω4

ω3 ω1

d c

ab

q

p

p

q

Fig. 1. Generalization of the poset in Figure 11 requiring the

minimum cutting level α12
4 to avoid cycles of length l ≤ 4 in posets

with 12 elements.

Note that the index i1 represents the number of elements below b that are also below
a in the linear extension, and that the index i2 represents the elements of the chain of
length 2p+1 between a and c that are below b in the linear extension. The functions N cd

and Ndc cover the case that c < d and c > d, respectively, and are defined as follows:

N cd(p, q, i1, i2) =
2p+1∑
i3=0

κ(i3, 2p + 1− i2)
q∑

i4=0

ncdκ(2p + 1− i3, i4)κ(q, q − i4) ,

Ndc(p, q, i1, i2) =
2p+1−i2∑

i3=0

κ(2p + 1, i3)
q∑

i4=0

ndcκ(i4, 2p + 1− i2 − i3)κ(q − i4, q) .

The factors ncd and ndc will be defined below and count the number of ways ω1 and
ω3 can be placed in the linear extensions. In the case c < d, i. e. in the function N cd,
the index i3 represents the number of elements from the chain between b and d of length
2p + 1 that are below c in the linear extension. The index i4 represents the number of
elements above c that are below d in the linear extension. In the case d < c, i. e. in
the function Ndc, the index i3 represents the number of elements in the chain of length
2p + 1 between a and c that are above b and below d in the linear extension. The index
i4 represents the number of elements above d that are below c in the linear extension.
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We denote the minimal number of elements in the poset that are smaller than ω3 in
all linear extensions under consideration as ω3. In other words, ω3 is a lower bound for
the position of ω3. Similarly, we denote the upper bound on the position of ω3 when
c < d as ωcd

3 and the upper bound on the position of ω3 when d < c as ωdc
3 . These

bounds are given as follows:

ω3 = q + i1 + 1 ,

ωcd
3 = 4p + 2q + i4 + 5 ,

ωdc
3 = 2p + 2q + i2 + i3 + 3 .

Analogously, we obtain a lower bound ω1 and two upper bounds ωcd
1 and ωdc

1 on the
position of ω1,

ω1 = 2q + i2 + 2 ,

ωcd
1 = 2p + 2q + i3 + 3 ,

ωdc
1 = 4p + 2q + i4 + 5 .

Consider the case c < d. The element ω1 can be freely inserted between positions ω1

and ωcd
1 , and similarly, the element ω3 can be inserted between ω3 and ωcd

3 . However, as
can be seen in Figure 2, between ω1 and ωcd

1 an additional position for ω3 appears due
to the insertion of ω1. In order to account for all possible positions of the two elements
ω1 and ω3 in all linear extensions, we therefore have to add the term ωcd

1 − ω1 + 1 as to
obtain

ncd = (ωcd
1 − ω1 + 1)(ωcd

3 − ω3 + 1) + ωcd
1 − ω1 + 1 . (5)

When d < c a similar argument holds as shown in Figure 3:

ndc = (ωdc
1 − ω1 + 1)(ωdc

3 − ω3 + 1) + ωdc
3 − ω1 + 1 . (6)

ω3 ωcd
3ω3

ω1ω1 ωcd
1

Fig. 2. Lower and upper bounds on the positions of ω1 and ω3 when

c < d.

ω3 ωdc
3ω3

ω1ω1 ωdc
1

Fig. 3. Lower and upper bounds on the positions of ω1 and ω3 when

d < c.
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After simplifying expressions (5) and (6), we obtain

ncd = (2p− i2 + i3 + 2)(4p + q − i1 + i4 + 6) ,

ndc = (4p− i2 + i4 + 4)(2p + q − i1 + i2 + i3 + 3) + (2p + i3 + 2) .

By noting that (
j + i

i

)
= (−1)i

(
−j − 1

i

)
, (7)

it can be easily proven that the equality

q∑
i1=0

κ(q, i1)κ(i2, q − i1) = κ(q + i2 + 1, q) (8)

holds, where we have used the well-known Chu–Vandermonde identity (see e. g. page 44
of [4]), valid for r, s ∈ R and n ∈ N:

n∑
m=0

(
r

m

)(
s

n−m

)
=

(
r + s

n

)
.

Analogously, it can be proven that the following equality holds

q∑
i1=0

(q − i1 + i2 + 1)κ(q, i1)κ(i2, q − i1) = (i2 + 1)κ(q + i2 + 2, q) , (9)

such that if we define t = 2p + 1, it is easily verified that N(p, q) in expression (4) can
be rewritten as

t∑
i2=0

t∑
i3=0

κ(t− i2, i3)
q∑

i4=0

κ(i4, t− i3)κ(q − i4, q)

· [(t− i2 + i3 + 1)(i2 + 1)κ(q + i2 + 2, q)
+ (t− i2 + i3 + 1)(2t− i2 + i4 + 3)κ(q + i2 + 1, q)]

+
t∑

i2=0

t−i2∑
i3=0

κ(t, i3)
q∑

i4=0

κ(i4, t− i2 − i3)κ(q − i4, q)

· [(2t− i2 + i4 + 2)(i2 + 1)κ(q + i2 + 2, q)
+ (2t− i2 + i4 + 3)(t + i3 + 1)κ(q + i2 + 1, q)] . (10)

In analogy to equalities (8) and (9), as q in the first argument of the first function κ
in (8) could have been any arbitrary number, it is found that

q∑
i4=0

κ(i4, t− i3)κ(q − i4, q) =
q∑

i4=0

κ(q − i4, t− i3)κ(i4, q)

= κ(t + q − i3 + 1, q) ,
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and, by replacing i3 with i2 + i3,

q∑
i4=0

κ(i4, t− i2 − i3)κ(q − i4, q) =
q∑

i4=0

κ(q − i4, t− i2 − i3)κ(i4, q)

= κ(t + q − i2 − i3 + 1, q) .

Moreover, by taking i2 = t− i3 in (9) and by reindexing i4 = q − i1,

q∑
i4=0

(t− i3 + i4 + 1)κ(i4, t− i3)κ(q − i4, q)

=
q∑

i4=0

(t + q − i3 − i4 + 1)κ(q − i4, t− i3)κ(i4, q)

= (t− i3 + 1)κ(t + q − i3 + 2, q)

and, by replacing i3 with i2 + i3,

q∑
i4=0

(t− i2 − i3 + i4 + 1)κ(i4, t− i2 − i3)κ(q − i4, q)

=
q∑

i4=0

(t + q − i2 − i3 − i4 + 1)κ(q − i4, t− i2 − i3)κ(i4, q)

= (t− i2 − i3 + 1)κ(t + q − i2 − i3 + 2, q) ,

such that expression (10) simplifies to

t∑
i2=0

t∑
i3=0

κ(t− i2, i3)

· [(t− i2 + i3 + 1)(i2 + 1)κ(t + q − i3 + 1, q)κ(q + i2 + 2, q)
+ (t− i2 + i3 + 1)(t− i3 + 1)κ(t + q − i3 + 2, q)κ(q + i2 + 1, q)
+ (t− i2 + i3 + 1)(t− i2 + i3 + 2)κ(t + q − i3 + 1, q)κ(q + i2 + 1, q)]

+
t∑

i2=0

t−i2∑
i3=0

κ(t, i3)

· [(t− i2 − i3 + 1)(i2 + 1)κ(t + q − i2 − i3 + 2, q)κ(q + i2 + 2, q)
+ (t + i3 + 1)(i2 + 1)κ(t + q − i2 − i3 + 1, q)κ(q + i2 + 2, q)
+ (t + i3 + 1)(t− i2 − i3 + 1)κ(t + q − i2 − i3 + 2, q)κ(q + i2 + 1, q)
+ (t + i3 + 1)(t + i3 + 2)κ(t + q − i2 − i3 + 1, q)κ(q + i2 + 1, q)] . (11)
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As a next step we calculate the number of linear extensions where ω2 < ω1, which
is identical to the number of linear extensions of the poset in Figure 4. We will use an
analogous technique, but since symmetry is lost in this case, it is necessary to consider
both cases a < ω2 and a > ω2.

p

q

q

p

ω2 ω4

d c

b

q

p

p

q

ω1

ω3

a

Fig. 4. Addition of the ordered pair ω2 < ω1 to the poset in Figure 1.

The number of linear extensions where a < ω2, denoted as Maω2(p, q), is given by
q+p+1∑
i1=0

κ(i1, q)
2p+1∑
i2=0

κ(p + q + 1− i1, i2)
[
M cd

aω2
(p, q, i1, i2)+Mdc

aω2
(p, q, i1, i2)

]
. (12)

Note that the index i1 represents the number of elements below ω2 that are below a
in the linear extension. The index i2 represents the number of elements in the chain
of length 2p + 1 between a and c that are below ω2 in the linear extension. The two
functions M cd

aω2
and Mdc

aω2
cover the case that c < d and c > d, respectively:

M cd
aω2

(p, q, i1, i2) =
p∑

i3=0

κ(i3, 2p + 1− i2)
q∑

i4=0

mcd
aω2

κ(p− i3, i4)κ(q, q − i4) ,

Mdc
aω2

(p, q, i1, i2) =
2p+1−i2∑

i3=0

κ(p, i3)
q∑

i4=0

mdc
aω2

κ(i4, 2p + 1− i2 − i3)κ(q − i4, q) .
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The factors mcd
aω2

and mdc
aω2

will be defined below and count the number of ways ω1 and
ω3 can be placed in the linear extension. In the case c < d, i. e. in the function M cd

aω2
,

the index i3 represents the number of elements in the chain of length p between ω2 and d
that are below c in the linear extension. The index i4 represents the number of elements
above c that are below d in the linear extension. In the case c > d, i. e. in the function
Mdc

aω2
, the index i3 represents the number of elements in the chain of length p between

ω4 and c that are below d in a linear extension. The index i4 represents the number of
elements above d that are below c in the linear extension.

The bounds on ω1 and ω3 are as follows

ω3 = q + i1 + 1 ,

ωcd
3 = 4p + 2q + i4 + 5 ,

ωdc
3 = 2p + 2q + i2 + i3 + 3 ,

ω1 = p + 2q + i2 + 3 ,

ωcd
1 = 3p + 2q + i3 + 4 ,

ωdc
1 = 4p + 2q + i4 + 5 ,

while mcd
aω2

= (ωcd
1 − ω1 + 1)(ωcd

3 − ω3 + 1) + ωcd
1 − ω1 + 1 ,

mdc
aω2

= (ωdc
1 − ω1 + 1)(ωdc

3 − ω3 + 1) + ωdc
3 − ω1 + 1 .

After simplification, we obtain Maω2(p, q) =

2p+1∑
i2=0

p∑
i3=0

κ(i3, 2p + 1− i2) [(2p + i3 − i2 + 2)

· {(i2 + 1)κ(p + q − i3 + 1, q)κ(p + q + 1, q + i2 + 2)
+ (2p− i2 + i3 + 3)κ(p + q + 1, q + i2 + 1)κ(p + q − i3 + 1, q)
+ (p− i3 + 1)κ(q + i2 + 1, p + q + 1)κ(p + q − i3 + 2, q)}]

+
2p+1∑
i2=0

2p+1−i2∑
i3=0

κ(i3, p) [(p + i3 + 1)

· {(2p− i2 − i3 + 2)κ(q + i2 + 1, p + q + 1)κ(2p + q − i2 − i3 + 3, q)
+ (p + i3 + 2)κ(q + i2 + 1, p + q + 1)κ(2p + q − i2 − i3 + 2, q)}

+(i2 + 1)
· {(p + i3 + 1)κ(q + i2 + 2, p + q + 1)κ(2p + q − i2 − i3 + 2, q)
+ (2p− i2 − i3 + 2)κ(q + i2 + 2, p + q + 1)κ(2p + q − i2 − i3 + 3, q)}] . (13)

The number of linear extensions where a > ω2, denoted as Mω2a(p, q), is given by

q∑
i1=0

κ(p + q + 1, i1)
p∑

i2=0

κ(i2, q − i1)
[
M cd

ω2a(p, q, i1, i2)+Mdc
ω2a(p, q, i1, i2)

]
. (14)
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Note that the index i1 represents the number of elements below a that are below ω2

in the linear extension. The index i2 represents the number of elements in the chain of
length p between ω2 and d that are below a in the linear extension. The two functions
M cd

ω2a and Mdc
ω2a cover the case that c < d and c > d, respectively:

M cd
ω2a(p, q, i1, i2) =

p−i2∑
i3=0

κ(i3, 2p + 1)
q∑

i4=0

mcd
ω2aκ(p− i2 − i3, i4)κ(q, q − i4) ,

Mdc
ω2a(p, q, i1, i2) =

2p+1∑
i3=0

κ(p− i2, i3)
q∑

i4=0

mdc
ω2aκ(i4, 2p− i3 + 1)κ(q − i4, q) .

The factors mcd
ω2a and mdc

ω2a will be defined below and count the number of ways ω1 and
ω3 can be placed in the linear extension. In the case c < d, i. e. in the function M cd

ω2a,
the index i3 represents the number of elements in the chain between ω2 and d that are
below c in the linear extension. The index i4 represents the number of elements above
c that are below d in the linear extension. In the case c > d, i. e. in the function Mdc

ω2a,
the index i3 represents the number of elements in the chain of length 2p + 1 between
a and c that are below d in a linear extension. The index i4 represents the number of
elements above d that are below c in the linear extension.
The bounds on ω1 and ω3 are as follows

ω1 = p + q + i1 + 2 ,

ωcd
1 = 3p + 2q + i2 + i3 + 4 ,

ωdc
1 = 4p + 2q + i4 + 5 ,

ω3 = p + 2q + i2 + 3 ,

ωcd
3 = 4p + 2q + i4 + 5 ,

ωdc
3 = 2p + 2q + i3 + 3 ,

while mcd
ω2a = (ωcd

1 − ω1 + 1)(ωcd
3 − ω3 + 1) + ωcd

1 − ω1 + 1 ,

mdc
ω2a = (ωdc

1 − ω1 + 1)(ωdc
3 − ω3 + 1) + ωdc

3 − ω1 + 1 .

After simplification, we obtain Mω2a(p, q) =

p∑
i2=0

2p+1∑
i3=0

κ(p− i2, i3) [(p− i2 + i3 + 1)

· {(2p− i3 + 2)κ(p + q + i2 + 2, q)κ(2p + q − i3 + 3, q)
+ (p− i2 + i3 + 2)κ(p + q + i2 + 2, q)κ(2p + q − i3 + 2, q)
+ (i2 + 1)κ(p + q + i2 + 3, q)κ(2p + q − i3 + 2, q)}]

+
p∑

i2=0

p−i2∑
i3=0

κ(2p + 1, i3) [(2p + i3 + 2)

· {(p− i2 − i3 + 1)κ(p + q − i2 − i3 + 2, q)κ(p + q + i2 + 2, q)
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+ (2p + i3 + 3)κ(p + q − i2 − i3 + 1, q)κ(p + q + i2 + 2, q)}
+(i2 + 1)·
{(p− i2 − i3 + 1)κ(p + q − i2 − i3 + 2, q)κ(p + q + i2 + 3, q)
+ (2p + i3 + 2)κ(p + q − i2 − i3 + 1, q)κ(p + q + i2 + 3, q)}] . (15)

It is clear that for arbitrary p and q, the mutual rank probability p(ω2 > ω1) is given
by the expression

p(ω2 > ω1) = 1− Maω2(p, q) + Mω2a(p, q)
2N(p, q)

. (16)

We will now consider the case where q → ∞. We remark that for the functions in
expressions (11), (13) and (15) having the form

κ(q + i, q + j) =
(

2q + i + j

q + j

)
=

(2q + i + j)!
(q + i)! · (q + j)!

Stirling’s approximation can be used, i. e.

f(q)! ≈
√

2π · f(q) · f(q)f(q) · e−f(q) when q →∞ ,

leading to

κ(q + i, q + j) ≈ 22q+i+j

√
π · n

when q →∞ .

Due to the nature of the fraction in expression (16), it is equivalent to substitute

κ(q + i, q + j) by 2i+j . (17)

It is now feasible to compute p(ω2 > ω1) for given p when q → ∞. Some values are
given in Table 3 and a plot is shown in Figure 5.

p p(ω2 > ω1)
1 8/15 ≈ 0.5333
20 419/731 ≈ 0.5732
40 1051/1826 ≈ 0.5756
60 1158/2009 ≈ 0.5764
80 12223/21190 ≈ 0.5768
100 3163/5481 ≈ 0.5771
120 9071/15714 ≈ 0.5773
140 18464/31979 ≈ 0.5774
160 16041/27778 ≈ 0.5775
180 10133/17545 ≈ 0.5775
200 74953/129766 ≈ 0.5776

Tab. 3. The mutual rank probabilities p(ω2 > ω1) for given p when

q →∞.
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Fig. 5. A plot of the mutual rank probabilities p(ω2 > ω1) for

q →∞.

As can be seen, the minimum cutting level quickly increases for increasing values of
p, but soon the rate at which the function increases diminishes to attain values slightly
below 0.58. Recall that the upper bound ᾱ4 on α4 is approximately 0.5858, such that
we obtain a quite narrow interval for the minimum cutting level α4. It comes as no
surprise that we do not attain ᾱ4 since, as already mentioned, this upper bound is
obtained by using δ∗-transitivity exhibited by a more general setting in which mutual
rank probability relations can be embedded. Moreover, it can be expected that posets
with more than 12 elements that do not fall into this family of posets provide tighter
lower bounds. Nevertheless, the narrow interval between lower and upper bound is an
indication that δ∗-transitivity is situated quite closely to the transitivity exhibited by
mutual rank probability relations.

6. APPENDIX: POSETS REQUIRING MINIMUM CUTTING LEVELS αN
M

321

8 97

4 5 6

p(7 > 8) = p(8 > 9) = p(9 > 7) =
720

1431
≈ 0, 5031

p(4 > 5) = p(5 > 6) = p(6 > 4) =
720

1431
≈ 0, 5031

p(1 > 2) = p(2 > 3) = p(3 > 1) =
720

1431
≈ 0, 5031

Fig. 6. 9-element poset with a LEM cycle requiring the minimum

cutting level α9
3.
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4

7

1

9

10

86

3

2

5

p(8 > 6) = p(6 > 9) =
508

1008
≈ 0, 5040

p(9 > 8) =
512

1008

Fig. 7. 10-element poset with a LEM cycle requiring the minimum

cutting level α10
3 .

7

43

9 10

5

2

6

8

1

p(7 > 3) = p(3 > 8) = p(8 > 6) = p(6 > 7) =
1765

3510
≈ 0, 5028

Fig. 8. 10-element poset with a LEM cycle requiring the minimum

cutting level α10
4 .

11

10

98

76

3 4

1

5

2

p(5 > 8) =
1146

2260

p(8 > 6) =
1144

2260
≈ 0, 5062

p(6 > 5) =
1145

2260

Fig. 9. 11-element poset with a LEM cycle requiring the minimum

cutting level α11
3 .
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8

12

5

32

9

10

1

11

4

76 p(8 > 6) = p(6 > 5) =
6214

12244

p(5 > 8) =
6212

12244
≈ 0, 5074

Fig. 10. 12-element poset with a LEM cycle requiring the minimum

cutting level α12
3 .

1211

9 10

5

4

2

7

1

3

8

6

p(5 > 7) = p(7 > 8) = p(8 > 6) = p(6 > 5) =
7396

14540
≈ 0, 5087

Fig. 11. 12-element poset with a LEM cycle requiring the minimum

cutting level α12
4 .

12

76

11

5

21

43

9

8

10

p(5 > 4) = p(4 > 3) =
60400

120640

p(3 > 6) = p(6 > 8) = p(8 > 5) =
60368

120640
≈ 0, 5004

Fig. 12. 12-element poset with a LEM cycle requiring the minimum

cutting level α12
5 .
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7 8

4

12

9

1

32

6

5

1110
p(7 > 4) = p(6 > 5) =

46392

92336
≈ 0, 5024

p(4 > 10) = p(5 > 11) =
46560

92336

p(10 > 6) = p(11 > 7) =
46850

92336

Fig. 13. 12-element poset with a LEM cycle requiring the minimum

cutting level α12
6 .

10

12

8

5

1 2

11

13

9

7

4

6

3

p(6 > 8) =
12240

24022

p(8 > 9) =
12262

24022

p(9 > 6) =
12224

24022
≈ 0, 5089

Fig. 14. First 13-element poset with a LEM cycle requiring the

minimum cutting level α13
3 .

10

12

7

5

2

11

13

9

6

4

1

8

3

p(7 > 8) =
6112

12011
≈ 0, 5089

p(8 > 9) =
6120

12011

p(9 > 7) =
6131

12011

Fig. 15. Second 13-element poset with a LEM cycle requiring the

minimum cutting level α13
3 .
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21

43

6 7

12

8

11

9

5

13

10 p(10 > 9) =
33871

67242

p(9 > 5) =
33916

67242

p(5 > 7) =
33816

67242
≈ 0, 5029

p(7 > 3) =
33834

67242

p(3 > 10) =
34151

67242

Fig. 16. 13-element poset with a LEM cycle requiring the minimum

cutting level α13
5 .

6 7

11

8

2

43

5

109

1

12 13

p(12 > 9) = p(13 > 8) =
66354

131472

p(9 > 6) = p(8 > 5) =
66060

131472
≈ 0, 5025

p(6 > 13) = p(5 > 12) =
66306

131472

Fig. 17. First 13-element poset with a LEM cycle requiring the

minimum cutting level α13
6 .

6 7

11

8

32

5

109

12 13

1

4

p(12 > 9) = p(13 > 8) =
132708

262944

p(9 > 6) = p(8 > 5) =
132120

262944
≈ 0, 5025

p(6 > 13) = p(5 > 12) =
132612

262944

Fig. 18. Second 13-element poset with a LEM cycle requiring the

minimum cutting level α13
6 .
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7 8

321

4 5 6 9

12 1311

p(11 > 6) = p(6 > 8) = p(4 > 11) =
268352

536510
≈ 0, 5002

p(8 > 10) = p(5 > 4) =
268384

536510

p(10 > 12) = p(12 > 5) =
268465

536510

Fig. 19. 13-element poset with a LEM cycle requiring the minimum

cutting level α13
7 .
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