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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 6 , PAGES 9 1 4 – 9 2 8

STABILITY AND CONTAGION MEASURES FOR SPATIAL
EXTREME VALUE ANALYZES

Cećılia Fonseca, Helena Ferreira, Lúısa Pereira and Ana Paula Martins

As part of global climate change an accelerated hydrologic cycle (including an increase
in heavy precipitation) is anticipated (Trenberth [20, 21]). So, it is of great importance to
be able to quantify high-impact hydrologic relationships, for example, the impact that an
extreme precipitation (or temperature) in a location has on a surrounding region. Building on
the Multivariate Extreme Value Theory we propose a contagion index and a stability index.
The contagion index makes it possible to quantify the effect that an exceedance above a high
threshold can have on a region. The stability index reflects the expected number of crossings of
a high threshold in a region associated to a specific location i, given the occurrence of at least
one crossing at that location. We will find some relations with well-known extremal dependence
measures found in the literature, which will provide immediate estimators. For these estimators
an application to the annual maxima precipitation in Portuguese regions is presented.

Keywords: spatial extremes, max-stable processes, extremal dependence

Classification: 60G70

1. INTRODUCTION

The need to model and predict environmental extreme events such as hurricanes, floods,
droughts, heat waves and other high impact events, which can lead to a devasting im-
pacts, ranging from disturbances in ecosystems to economic impacts on society as well
as loss of life, motivated the modelling of spatial extremes.

A common method of modeling spatial extremes is through max-stable processes.
Max-stable processes are the natural analogues of the generalized extreme value distri-
bution for modeling of extreme events in space and time. Under suitable conditions,
these processes are asymptotically justified models for maxima of independent replica-
tions of random fields, and they are also suitable for the modeling of joint individual
extreme measurements over high thresholds (Davison and Huser [3]).

Max-stable processes can be, for example, good approximations for annual maxima of
daily spatial rainfall (Smith [17], Coles [2], Schlather [12], among others) and therefore
have been widely applied to real data.

Briefly, a max-stable process X = {Xi}i∈IRd is the limit process of maxima of i.i.d.
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random fields
{

Y
(j)
i

}
i∈IRd

, j ≥ 1. Namely, for suitable {an(i) > 0}n≥1 and {bn(i)}n≥1

sequences of real constants,

Xi = lim
n→∞

∨n
j=1 Y

(j)
i − bn(i)
an(i)

, i ∈ IRd,

provided the limit exists.
We shall consider d = 2, that is X = {Xi}i∈IR2 . The distribution of (Xi1 , . . . , Xik) is a

Multivariate Extreme Value (MEV) distribution GA, A = {i1, . . . , ik}, and since one can
transform one max-stable distribution into another one by a monotone transformation
we can assume, without loss of generality, that the margins of X have a unit Fréchet
distribution, F (x) = exp(−x−1), x > 0 (Resnick [11]). The distribution GA can then
be defined by

GA(x1, . . . , xk) = exp(−VA(x1, . . . , xk)), xi ∈ IR+, i = 1, . . . , k, (1)

where VA denotes the exponent function of the MEV distribution GA.
The exponent function summarizes the extremal dependence structure of GA and the

scalar VA(1, . . . , 1) defines the extremal coefficient εA detailed in Schlather and Tawn
[13], which summarizes the extremal dependence between the variables indexed in the
region A. This coefficient takes values between 1 and k, with a value of 1 corresponding
to complete dependence and a value of k corresponding to complete independence. Its
value can be thought of as the number of effectively independent locations among the k
under consideration.

If we consider A = {i, j} we find the extremal coefficient of Tiago de Oliveira [19]
which is related with the bivariate upper tail dependence coefficient λ{i,j} =
= limu↑1 P (F (Xi) > u|F (Xj) > u), introduced in Sibuya [16], as ε{i,j} = 2− λ{i,j}.

Although these measures are very useful to analyze the dependence among extremal
events, there remain important questions to be answered, for example, the influence of
an extreme event on the regional smoothness of X and the contagion effect of an extreme
event at a specific location over the variables of X indexed in a region of IR2.

In Section 2, we propose measures of dependency to reflect the contagion and smooth-
ness of X indexed in a region of IR2, by the occurrence of an extreme event. The first
measure that we propose, called contagion index, enables to quantify the impact that
an exceedance of a high threshold can have on a region and we present its relation with
bivariate extremal coefficients.

Clearly an extreme event could affect the smoothness of a random field over a region
so, we also propose a stability index on a region A associated to a specific location i,
defined as the expected number of crossings of a high threshold u in A associated with
i, given that there is at least one crossing in A associated to i. We also present some
properties of this coefficient.

Based on relations of our indices with well-known dependence measures, for which
estimators and respective properties have already been studied in the literature, in Sec-
tion 3 we present estimators for the stability and contagion indices. The performance
of the proposed estimators is analyzed in Section 4 with a max-stable M4 random field.
Finally, Section 5 illustrates our measures through an application to the annual maxima
precipitation in Portuguese regions. Section 6 is devoted to conclusions.
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2. CONTAGION AND STABILITY INDICES

We first argue why there is a need for measures of dependency to reflect the contagion and
stability of a region by the occurrence of an extreme event and why standard concepts
introduced in Sibuya [16] are less suitable for the question at hand.

Indeed, why hydrologists will be interested in measures for contagion or stability of
a region?

The fact is that the bivariate upper tail dependence coefficient focus on the occurrence
of an extreme event at individual locations of the random field, without much attention
for contagion ramifications.

We develop measures which do not hinge on a particular dependence structure and
which link risks and probabilities directly.

The occurrence of an extreme event at a given location i may spread throughout a
region of locations. In the following we define a measure for assessing the effect of an
exceedance above a high threshold u at a specific location i on a region A of locations.

Definition 2.1. Let X = {Xi}i∈IR2 be a max-stable random field with unit Fréchet
margins, F , and A a region of IR2. The contagion index from the location i to the
region A is defined as

CI(A, i) = lim
u↑1

E

∑
j∈A

1I{F (Xj)>u}

∣∣∣∣∣ F (Xi) > u

 , (2)

provided the limit exists.

The CI(A, i) is the conditional expected number of exceedances above a high thresh-
old u in A, given Xi exceeds u, that is, the CI(A, i) measures the impact that the event
{Xi > u} has on the region A.

We remark that the conditioning location i does not necessarily have to be in the
region A

The following proposition states that CI(A, i) is directly linked with the bivariate
extremal dependence coefficients ε{i,j}, j ∈ A, and the tail dependence coefficients λ{i,j},
j ∈ A.

Proposition 2.2. For any max-stable random field with unit Fréchet margins F , i ∈ IR2

and A ⊂ IR2, we have

CI(A, i) =
∑
j∈A

λ{i,j} = 2 |A| −
∑
j∈A

ε{i,j}.

P r o o f . Observe that

CI(A, i) =
∑
j∈A

lim
u↑1

P (F (Xj) > u |F (Xi) > u )

=
∑
j∈A

λ{i,j} =
∑
j∈A

(
2− ε{i,j}

)
= 2 |A| −

∑
j∈A

ε{i,j}.

�
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An CI(A, i) close to |A| means that i has a high influence on A, while an CI(A, i)
close to zero implies a negligible influence of i on A. In other words, the higher the
index, the higher the contagion effect of the event {Xi > u} on the region A.

Remark 2.3. To gain some intuition for this measure, as a device for measuring de-
pendence, consider two polar cases:

• Case 1. If Xi is independent of Xj, for each j ∈ A, then CI(A, i) = 0.

• Case 2. If, for each j ∈ A, Xj and Xi are totally dependent, then CI(A, i) = |A|.

Remark 2.4. We can extend the CI(A, i) to the contagion index from a region A to
a region B, as follows

CI(A,B) = lim
u↑1

E

∑
j∈A

1I{F (Xj)>u}

∣∣∣∣∣⋃
i∈B

{F (Xi) > u}

 .

This measure is related with the multivariate upper tail dependence coefficient (Schmidt
[14]; Li [10]; Ferreira [5]), defined as

λA,B = lim
u↑1

P

 ⋂
j∈A

{F (Xj) > u}

∣∣∣∣∣⋂
i∈B

{F (Xi) > u}

 ,

in the following way

CI(A,B) =
∑
j∈A

∑
∅6=J⊆B(−1)|J|+1λJ,{j}

εB
.

When we take A = B, we obtain the fragility index (FI) of the region A. The FI was
introduced in Geluk et al. [8] to measure the stability of a stochastic system. The system
is called stable if FI = 1, otherwise it is called fragile.

In order to analyze the regional smoothness of a random field associated to a specific
location we propose the following measure.

Definition 2.5. Let X = {Xi}i∈IR2 be a max-stable random field with unit Fréchet
margins, F , and A a region of IR2. The stability index of the region A associated to a
specific location i ∈ IR2, SI(A, i), is defined as

SI(A, i) = lim
u↑1

E

∑
j∈A

1I{F (Xi)≤u<F (Xj)}

∣∣∣∣∣∣
∑
j∈A

1I{F (Xi)≤u<F (Xj)} > 0

 ,

provided the limit exists.
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The SI(A, i) is the conditional expected number of crossings (above a high threshold
u) in A from a specific location i, given that there is at least one crossing in A from i.

If a max-stable random field X does not vary smoothly over a region A, we will expect
a large number of crossings of a high threshold in A associated to a specific location i.
A higher number of crossings signifies increased instability.

The next results highlight the connections between SI(A, i) and the extremal coeffi-
cients.

Proposition 2.6. For any max-stable random field with unit Fréchet margins F , i ∈ IR2

and A ⊂ IR2, we have

SI(A, i) =
|A| − CI(A, i)

ε{i}∪A − 1
.

P r o o f . Since

E

∑
j∈A

1I{F (Xi)≤u<F (Xj)}

∣∣∣∣∣∣
∑
j∈A

1I{F (Xi)≤u<F (Xj)} > 0


=

∑
j∈A P (F (Xi) ≤ u < F (Xj))

P

F (Xi) ≤ u,
⋃
j∈A

{F (Xj) > u}

 ,

it follows that

SI(A, i) = lim
u↑1

|A|u−
∑

j∈A uε{i,j}

u− uε{i}∪A
=

∑
j∈A ε{i,j} − |A|
ε{i}∪A − 1

.

�

Remark 2.7. If the random variables Xi, Xi1 , . . . , Xik , are totally dependent the sta-
bility index is not defined since, for all j ∈ {i1, . . . , ik},

P (F (Xi) ≤ u < F (Xj)) = P (F (Xj) ≤ u)− P ε(i,j) (F (Xi) ≤ u) = 0.

If the random variables are independent we have SI(A, i) = 1.

Proposition 2.8. Under the conditions of Proposition 2.6, we have∑
j∈A ε{i,j} − |A|

|A|
≤ SI(A, i) ≤

∑
j∈A ε{i,j} − |A|∨
j∈A ε{i,j} − 1

.

P r o o f . Just observe that ε{i}∪A ≤ |A|+ 1 and ε{i}∪A ≥
∨

j∈A ε{i,j}. �

An important point to keep in mind is that conditional probabilities do not necessarily
imply causation. However this set of measures do provide important insights into the
inter-linkages and the likelihood of contagion of an extreme event in a region of locations.

In combination, both the CI and SI provide a valuable tool for analyzing risk factor
from complementary perspectives.

We next focus on the estimation of the stability and contagion indices.
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3. ESTIMATION

As previously stated, the contagion and stability indices relate with the extremal coef-
ficients of Tiago de Oliveira [19] and Schlather and Tawn [13], which can be expressed
by the exponent function given in (1).

There are several references in literature on the estimation of the exponent function.
For a survey we refer to Krajina [9] and Beirlant [1].

It is known that parametric estimation methods are efficient if the distribution model
under consideration is true, but they suffer from biased estimates otherwise. Non para-
metric estimation procedures avoid this type of model error. However, they are usually
based on an arbitrarily chosen parameter k corresponding to the number of top order
statistics to be used on the estimation of a high quantile of F , which relates to the
usual variance-bias problem: if k is too small, then the estimator tends to have a large
variance, where if k is too large, then the bias tends to dominate. Some methods of
choosing an optimal k are discussed in Einmahl et al. [4].

In order to overcome the problem of the optimal choice of k, Ferreira and Ferreira [6]
developed another approach. Based on the following relation

εA = VA(1, 1, . . . , 1) =
E(M(A))

1− E(M(A))
, where M(A) =

∨
i∈A

Fi(Xi),

the estimator of εA proposed in Ferreira and Ferreira [6] is defined as

ε̂A =
M(A)

1−M(A)
,

where M(A) is the sample mean,

M(A) =
1
n

n∑
j=1

∨
i∈A

F̂i(X
(j)
i )

and F̂i, i ∈ A, is the (modified) empirical distribution function of Fi,

F̂i(u) =
1

n + 1

n∑
j=1

1In
X

(j)
i ≤u

o.

With this estimator of the extremal coefficient and the relations established in Propo-
sitions 2.2 and 2.6 we propose, respectively, the following estimators for the contagion
index CI(A, i) and the stability index SI(A, i),

ĈI(A, i) = 2 |A| −
∑
j∈A

ε̂{i,j}

and

ŜI(A, i) =

∑
j∈A ε̂{i,j} − |A|
ε̂{i}∪A − 1

,
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which are consistent given the consistency of the estimators ε̂{i,j} and ε̂{i}∪A already
stated in Ferreira and Ferreira [6].

Estimator efficiency is assessed through an M4 random field which will be introduced
in the following section.

4. AN M4 RANDOM FIELD

It is well known that the class of max-stable processes called maxima of moving maxima
processes or simply M4 processes, introduced by Smith and Weissman [18], is particularly
well adapted to model the extreme behaviour of several time series (Zhang and Smith
[22]). Motivated by this application of M4 processes, we extended the model M4 for the
random fields theory and we expect that they provide future real applications. An M4
random field X = {Xi}i∈IN2 is defined as

Xi = max
l≥1

max
−∞<m<+∞

almiZl,1−m, i ∈ IN2, (3)

where {Zl,n}l≥1,n∈IN is a family of independent unit Fréchet random variables and, for
each i ∈ IN2, {almi}l≥1,m∈IN are non-negative constants such that

∑+∞
l=1

∑+∞
m=−∞ almi = 1.

By considering that the distribution of (Xi1 , . . . , Xik) is characterized by the copula

C(ui1 , . . . , uik) =
+∞∏
l=1

+∞∏
m=−∞

∧
i∈{i1,...,ik}

ualmi

i , uij ∈ [0, 1], j = 1, . . . , k, (4)

it was shown in Fonseca et al. [7] that the random field X = {Xi}i∈IN2 is max-stable
and the exponent function of the distribution of (Xi1 , . . . , Xik) is given by

VA(x1, . . . , xk) =
+∞∑
l=1

+∞∑
m=−∞

k∨
j=1

(
x−1

j almij

)
, xj ∈ IR, j = 1, . . . , k, A = {i1, . . . , ik}.

So

CI(A, i) = 2 |A| −
∑
j∈A

+∞∑
l=1

+∞∑
m=−∞

(almi ∨ almj) (5)

and

SI(A, i) =

∑
j∈A

∑+∞
l=1

∑+∞
m=−∞(almi ∨ almj)− |A|∑+∞

l=1

∑+∞
m=−∞

(∨
j∈A almj ∨ almi

)
− 1

. (6)

To assess the performance of the estimators of the stability and contagion indices
given in Section 3, we shall consider, in what follows, examples with a finite number of
signature patterns (1 ≤ l ≤ L) and a finite range of sequential dependencies (M1 ≤ m ≤
M2).

Example 4.1. Let us consider that for each location i ∈ IN2 with even abscissa we have
a11i = 4

5 , a12i = 1
5 and otherwise a11i = 1

4 = 1 − a12i. The values of (a11i, a12i) deter-
mine the moving pattern or signature pattern of the random field, which in this case
corresponds to one pattern (L = 1).
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Fig. 1. Simulation of the M4 as defined in Example 4.1 (left) and the

contour at x(i,j) = 19.0219, the 95% quantile (right).

Let A(k) = {sk
j (i) : i = (3, 3) ∧ j ∈ {1, 2, . . . , 8}}, where sk

j (i) = (sj ◦ . . . ◦ sj)(i),
k times, k ≥ 1, s0

j (i) = i, and sj(i), j = 1, . . . , 8, denote the neighbors of i defined as
follows:

s1(i) = (i1 + 1, i2), s2(i) = i + 1, s3(i) = (i1, i2 + 1), s4(i) = (i1 − 1, i2 + 1),
s5(i) = (i1 − 1, i2), s6(i) = i− 1, s7(i) = (i1, i2 − 1), s8(i) = (i1 + 1, i2 − 1).

The matrix of the bivariate extremal coefficients, ε{sk
j (i),i}, j = 1, . . . , 8, k ≥ 1, provide

insight into the likelihood of contagion from i = (3, 3) to its neighbors sk
j (i), j = 1, . . . , 8,

although without specifying the size of the impact which is given by CI(A(k), i). We
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obtain  ε{sk
4 (i),i} ε{sk

3 (i),i} ε{sk
2 (i),i}

ε{sk
5 (i),i} ε{i,i} ε{sk

1 (i),i}
ε{sk

6 (i),i} ε{sk
7 (i),i} ε{sk

8 (i),i}

 =

 31
20 1 31

20
31
20 1 31

20
31
20 1 31

20



=



 31/20 1 31/20
31/20 1 31/20
31/20 1 31/20

 , if k is odd

 1 1 1
1 1 1
1 1 1

 , if k is even

and

CI(A(k), i) =
{

4, 7, if k is odd
8, if k is even.

The stability index of the region A(k) associated with i = (3, 3) is given by

SI(A(k), i) = 6,

when k is odd and it is not defined for k even, because the variables are totally dependent.

The results of the application of the estimators ĈI(A, i) and ŜI(A, i) are presented
in Tables 1 and 2.

number of random fields cCI MSE

100 8 1.64e-29
500 8 6.04e-29
1000 8 1.18e-28

Tab. 1. Results with 100 replications of M4 random field defined in

Example 4.1, where CI(A(k), i) = 8, when k is even. cCI denotes the

mean of estimated values of the contagion index and MSE the

estimated mean squared error.

Contagion I. Stability I.
number of random fields cCI MSE cSI MSE

100 4.7848 0.1232 6 3.60e-29
500 4.7449 0.0270 6 1.97e-29
1000 4.7081 0.0126 6 1.97e-29

Tab. 2. Results with 100 replications of M4 random field defined in

Example 4.1, where CI(A(k), i) = 4.7 and SI(A(k), i) = 6 when k is

odd. cCI denotes the mean of estimated values of the contagion index

and MSE the estimated mean squared error.
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Example 4.2. Now, we shall consider one example with four signature patterns
(L = 4). Lets assume that for each location i = (i1, j1) ∈ IN2 with

(1) i1 > j1 ∧ i1 even ∧ j1 odd ,
a11i = a12i = a21i = a22i = 1

8 ,

a31i = a32i = a41i = a42i = 1
8 ,

(2) i1 ≤ j1 ∧ i1 even ∧ j1 odd ,
a11i = a12i = 2

17 , a21i = 5
17 , a22i = 4

17 ,
a31i = a32i = a41i = a42i = 1

17 ,

(3) i1 > j1 ∧ i1 odd ∧ j1 even ,
a11i = 1

20 , a12i = 2
20 , a21i = 3

20 , a22i = 4
20 ,

a31i = 5
20 , a32i = 3

20 , a41i = a42i = 1
20 ,

(4) i1 ≤ j1 ∧ i1 odd ∧ j1 even ,
a11i = 1

36 , a12i = 2
36 , a21i = 3

36 , a22i = 4
36 ,

a31i = 5
36 , a32i = 6

36 , a41i = 7
36 , a42i = 8

36 ,

(5) i1 > j1 ∧ i1 even ∧ j1 even ,
a11i = 1

40 , a12i = 2
40 , a21i = 3

40 , a22i = 4
40 ,

a31i = 5
40 , a32i = 6

40 , a41i = 7
40 , a42i = 12

40 ,

(6) i1 ≤ j1 ∧ i1 even ∧ j1 even ,
a11i = 1

45 , a12i = 2
45 , a21i = 3

45 , a22i = 4
45 ,

a31i = 6
45 , a32i = 8

45 , a41i = 9
45 , a42i = 12

45 ,

(7) i1 > j1 ∧ i1 odd ∧ j1 odd ,
a11i = 1

50 , a12i = 7
50 , a21i = 3

50 , a22i = 4
50 ,

a31i = 6
50 , a32i = 8

50 , a41i = 9
50 , a42i = 12

50 ,

(8) i1 ≤ j1 ∧ i1 odd ∧ j1 odd ,
a11i = 1

60 , a12i = 7
60 , a21i = 3

60 , a22i = 14
60 ,

a31i = 6
60 , a32i = 8

60 , a41i = 9
60 , a42i = 12

60 .

The values of (al1i, al2i) for l = 1, . . . , 4 define the four signature patterns of the
random field.

For A = {(4, 3), (3, 4), (2, 3), (2, 2), (3, 2), (4, 2)} and i = (3, 3) the bivariate extremal
coefficients are

ε{(4,3),i} = 29
24 , ε{(3,4),i} = 71

60 , ε{(2,3),i} = 275
204 ,

ε{(2,2),i} = 73
60 , ε{(3,2),i} = 13

10 , ε{(4,2),i} = 6
5

and from (5) we have CI(A, i) ≈ 4.5353 and by (6) we obtain SI(A, i) ≈ 2.0712.
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Fig. 2. Simulation of the M4 as defined in Example 4.2 (left) and the

contour at x(i,j) = 15.3417, the 95% quantile (right).

The Table 3 shows the results of the application of the estimators ĈI(A, i) and
ŜI(A, i) to the Example 4.2.

As we can see, in both examples, the estimated values are very close to the true values
of the coefficients. These results show that the simple non-parametric estimators ĈI and
ŜI are a promising tool for assessing regional contagion effects and regional smoothness
for these random fields.

5. AN APPLICATION TO PRECIPITATION DATA

Even though Portugal is a small country, it has a wide variety of landforms, climatic
conditions and soils. The major difference is between the mountains regions of the north
and the great rolling plains of the south. The Central Cordillera formed by the mountains
of Sintra, Montejunto and Estrela, divides Portugal into northern and southern regions
and creates a physical barrier for precipitation.
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Contagion I. Stability I.
number of random fields cCI MSE cSI MSE

100 4.5463 0.0202 2.0451 0.0178
500 4.5309 0.0047 2.0606 0.0033
1000 4.5339 0.0021 2.0721 0.0015

Tab. 3. Results with 100 replications of M4 random field defined in

Example 4.2, where CI(A, i) ≈ 4.5353 e SI(A, i) ≈ 2.0712. cCI andcSI denotes the mean of estimated values of the contagion and stability

index, respectively, and MSE the estimated mean squared error.

The spatial distribution of mean annual rainfall in Portugal reveals a sharp contrast
between north and south. The amounts of precipitation is significantly higher in the
north than in the south.

In the following we study the influence of extreme precipitation occuring at Lagoa
Comprida, located in North-West part of ‘Serra da Estrela’, the highest mountain in
Continental Portugal and part of the Central Cordillera, on the north and south regions
{Gouveia, Oliveira do Hospital, Seia} and {Penamacor, Barragem Cabeço Monteiro},
respectively. We used annual maxima values of daily maxima precipitation recorded
over 32 years, in six Portuguese stations (Figure 3), provided by the Portuguese National
System of Water Resources (http://snirh.pt).
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Fig. 3. The locations of the stations where precipitation data were

collected, obtained from Portuguese National System of Water

Resources (left) and their representation in Lambert coordinates

(right).

Since the data are maxima over a long period of time, we assumed that they are
independent over the years in each location. We also assumed that the random field is
max-stable with unknown marginal distributions so data were previously transformed
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at each site so that they have a standard Fréchet distribution.
The estimated values of the contagion and stability indices from Lagoa Comprida to

the regions {Gouveia, Oliveira do Hospital, Seia} and {Penamacor, Barragem Cabeço
Monteiro} are presented in Table 4.

A cCI(A, Lagoa Comprida) cSI(A, Lagoa Comprida)

{Gouveia, Oliveira do Hospital, Seia} 0.9669 1.6017

{Penamacor, Barragem Cabeço Monteiro} 0.0089 1.2224

Tab. 4. Estimates of the contagion and stability indices from Lagoa

Comprida to the regions {Gouveia, Oliveira do Hospital, Seia} and

{Penamacor, Barragem Cabeço Monteiro}.

The results suggest that Lagoa Comprida has a higher influence on the region {Gouveia,
Oliveira do Hospital, Seia} in terms of precipitation amounts and this region is smoother
when compared to region {Penamacor, Barragem Cabeço Monteiro}. This result is con-
sistent with the previously stated that the Central Cordillera creates a physical barrier
for precipitation in Portugal.

6. CONCLUSION

In this work we introduced two new measures the contagion index and the stability
index. The contagion index enables to quantify the impact that an exceedance of a high
threshold can have on a region and the stability index allows us to analyze the regional
smoothness of a random field associated to a specific location. With these indices we are
able to analyze, for instance, the influence that an extreme precipitation (temperature)
at a specific location could have on a neighboring region and its effect on the regional
smoothness.

Besides the theoretical study of these measures, estimators were proposed and a
simulation study was carried out to evaluate their behavior. Applications to precipitation
data from Portuguese regions were also presented. The simulation results show the good
performance of the proposed estimators, when considering an M4 random field.

All the simulations presented in this paper were done in R statistical computing
program (http://cran.rproject.org/).
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