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KYB ERNET IK A — VO LUME 5 0 ( 2 0 1 4 ) , NUMBER 6 , PAGES 1 0 4 9 – 1 0 6 4

SCENARIO GENERATION WITH DISTRIBUTION
FUNCTIONS AND CORRELATIONS

Michal Kaut and Arnt-Gunnar Lium

In this paper, we present a method for generating scenarios for two-stage stochastic pro-
grams, using multivariate distributions specified by their marginal distributions and the cor-
relation matrix. The margins are described by their cumulative distribution functions and we
allow each margin to be of different type. We demonstrate the method on a model from stochas-
tic service network design and show that it improves the stability of the scenario-generation
process, compared to both sampling and a method that matches moments and correlations.

Keywords: stochastic programming, scenario generation, moment matching, distribution
functions, service network design

Classification: 90C15, 62G30, 62H20

INTRODUCTION

Stochastic programming is an area of optimization that deals with problems solved under
uncertainty. In particular, a two-stage stochastic-programming model is an optimization
problem of the form

minimize f(x) + E [g(x,y(ξ), ξ)]
subject to x ∈ X

y(ξ) ∈ Y(x, ξ) ,

where ξ is a random vector, x are the first-stage decisions, done before observing the
value of ξ, and y(ξ) are second-stage decisions, done after we have observed ξ. Interested
readers are referred to Kall and Wallace [12] or Birge and Louveaux [1].

For most practical applications, it is not possible to solve this problem exactly and
the distribution of ξ has to be approximated by a discrete set of samples – usually called
scenarios – ξs, with probabilities Ps:

minimize f(x) +
∑

s

Ps g(x,ys, ξs)

subject to x ∈ X
ys ∈ Y(x, ξs) ∀s .
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Clearly, the quality of the approximation has a significant impact on the quality of
the obtained solutions. For this reason, the discretization – or scenario generation, as
it is usually referred to – has enjoyed an increasing attention of both researchers and
practitioners and established itself as an important part of the stochastic programming
framework. During this time, several different scenario-generation methods have been
presented, each with its strengths and weaknesses; examples include optimal discretiza-
tion [18], property matching [10], or scenario reduction methods [3, 6, 7]. For an overview
of all but the most recent methods, see Dupačová et all. [2].

It should be noted that the presented method could be considered an alternative to
sampling also in other contexts where one needs to approximate a multi-variate integral
with discrete samples. This is, however, out of the scope of this paper.

In this paper, we focus on the property-matching method [10], in particular on the
moment-matching heuristic from Hoyland et all. [11]. There, the scenarios are gener-
ated to match the first four moments of the marginal distributions, plus the correlation
matrix. This method has been successfully applied in many areas, including financial
optimization [5, 22], electricity markets [4], supply chain modelling [19, 20, 23], or service
network design [21].

On the other hand, there are situations where using moments does not provide suf-
ficient control over the marginal distributions, leading to poor quality of the generated
scenarios. We present a method that generalizes the algorithm from Hoyland et al. [11]
in the sense that the margins can now be described directly by their distributions. Both
continuous and discrete distributions are supported, even though the use of discrete
distribution(s) can lead to larger errors in correlations. The different distributions can
be freely mixed, i. e. each margin can have a different distribution, or it can be specified
by its moments.

Throughout the paper, we assume that the target distributions, and the correlation
matrix, are known. In practice, these would be obtained by assuming distribution fam-
ilies for the marginal distributions (possibly different for each margin) and estimating
their parameters using some statistical model and/or data. An alternative approach is
to use the empirical CDFs of the data, possibly interpolated to make them continuous,
as the target CDFs in the method. The latter is appropriate in cases where the data
represent all the information we have about the distribution.

The rest of the paper is organized as follows: we start by summarizing the scenario-
generation algorithm by Hoyland et all. [11] In Section 2, we present our new algorithm,
which is then in Section 3 compared to the original version as well as sampling, using a
model from stochastic service network design.

1. SHORT SUMMARY OF THE MOMENT-MATCHING ALGORITHM

The algorithm generates one-period scenario trees1 from multivariate distributions spec-
ified by their correlation matrix and the first four moments (mean, variance, skewness
and kurtosis) of the marginal distributions. It achieves this by using two transforma-
tions, one correcting the moments and the other correcting the correlations. Since each
transformation distorts the results of the other one, they are repeated iteratively, al-

1Note that we use the word ‘tree’, even if we generate only one-period scenarios.
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ternating between the two. The algorithm stops on convergence, i. e. when the error
of both the moments and correlations is below a given threshold, or when a maximal
number of iterations is reached. The overall structure of the algorithm is thus

Generate initial sample, set i← 0.
do
if error-of-correlations > MaxErrorCorr

Correct correlations.
for j = 1, . . . , n
if error-of-moments (j) > MaxErrorMom

Correct moments of margin j.
set i← i + 1.

while (error-of-correlations > MaxErrorCorr or error-of-moments > MaxErrorMoms)
and (i < MaxNumIters).

Correlations are corrected using a variant of the standard method for generating
correlated normal variates, based on Cholesky decomposition of the correlation matrix.
In short, it uses the fact if we have random vector X̃ with correlation matrix Cp = LpL

T
p

and another correlation matrix C = LLT , then the random vector Ỹ = LL−1
p X̃ has

correlation matrix equal to C. This is true regardless of the distribution of X̃, as long as
Cp is non-singular and the marginal distributions are studentized, i. e. have zero mean
and variance equal to one; we will come back to this in Section 2.3.

Moments of the marginal distributions are corrected one at a time, using a cubic
transformation

y = a + bx + cx2 + dx3 . (1)

Finding the parameters a, b, c, d is the most challenging part of the algorithm, as it
requires solving a system of four implicit nonlinear equations with four unknowns – see
Hoyland et all. [11] for details.

There are several ways of generating the initial sample. The easiest option is sampling,
if one has some data or an estimated distribution to sample from. An alternative is to
sample from, or use fixed discretizations of, some parametric distribution, such as the
standard normal distribution.

1.1. Limitations of using moments

Even though the method works in many practical situations, controlling moments using
only margins has some limitations. Probably the most significant is the lack of control
over the support of the generated scenarios, which causes problems in several different
ways. Firstly, it makes it difficult (if not impossible) to generate scenarios for stochastic
parameters with values in a specific intervals, such as positive values (demand, supply,
etc.) or values that have to be within the (0, 1) interval (c.f. efficiency of some machine or
process). In all these cases, if the distribution is such that there is significant probability
of being close to the boundary, it can be expected that the method will generate values
on the wrong side of the boundary as well.

The lack of control of the support might also create problems in a more subtle way:
consider the situation where the optimization model is sensitive to the minimal and/or
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maximal value of some of the random variables. Without control of the supports, the
extreme points might differ significantly if we run the algorithm several times, leading to
instability of solutions of the optimization model – see Kaut and Wallace [13] or Heitsch
et all. [8] for a definition and discussion of stability of scenario-generation methods.

Finally, if we happen to know the marginal distributions, using only the first four
moments means throwing away a lot of information. In particular, if we have a large
data set that we use to estimate the distribution, we should get better results by using
the empirical distribution functions from the data, instead of using only the first four
moments – assuming that the data set represents all we know about the distribution and
that our method uses this information correctly. This observation serves as a motivation
for the new method, which replaces the moments by cumulative distribution functions.

2. THE NEW ALGORITHM

The important thing to realize is that correcting moments is only one possible way of
improving the marginal distributions – just as correcting correlations is one possible way
of improving the dependence between the margins. In other words, the algorithm from
Section 1 can be re-written as:

Generate initial sample.
set i← 0.
do
if error-of-correlations > MaxErrorCorr

Correct correlations.
for j = 1, . . . , n
if error-of-margin (j) > MaxErrorMarg

Correct distribution of margin j.
set i← i + 1.

while (error-of-correlations > MaxErrorCorr or error-of-margins > MaxErrorMargs)
and (i < MaxNumIters).

In this section, we describe how the margins can be controlled using their cumulative
distributions functions (CDFs), instead of moments. While the method was originally
developed for continuous distributions, we provide also an extension that can deal with
discrete distributions as well – see Section 2.4. Since the corrections of margins are done
independently for each margin, we can combine margins corrected by CDFs, moments,
and possibly other methods, in one set of scenarios. In the rest of the section, however,
we will only discuss the margins corrected using CDFs.

We start with continuous distributions. In other words, we assume that we have, for
each margin j, its continuous CDF Fj and inverse CDF F−1

j – or, if the CDF is not
strictly increasing, the pseudo-inverse F−1(u) = inf{x : F (x) ≥ u}. Since the margins
are treated separately, we describe the correction for one margin only and therefore
drop the j-subscript from all elements. Hence, we use F and F−1 for the CDFs and
x = (x1, . . . , xS) for the sample from one marginal distribution.
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2.1. Correcting CDFs – finding the transformation and error definition

To implement the algorithm, we need a transformation that can change a sample to make
it ‘more similar’ the target distribution and, at the same time, change the correlations
as little as possible, allowing the algorithm to converge. In addition, we need a measure
of the error of a current sample, i. e. its distance from the target distribution. Since we
want to be able to mix margins with different distributions, the scale of the error should
be independent of the type of distribution involved.

To achieve this, we propose a correction based on a fixed ‘optimal’ discretization,
where the points are spread evenly in terms of percentiles. To correct a margin, we
transform its distribution to the optimal discretization, while the error is computed as
a distance from this discretization. The correction of margins then works as follows:
we transform the margins to the standard uniform (U(0, 1)) distribution and spread the
values uniformly on the interval (0, 1). With S values per margin, this means placing
the values into the centers of intervals of length 1/S, i. e. at positions 2s−1

2S , s = 1 . . . S.
This can be also written as

us = F e
x(xs) :=

2 rank(xs,x)− 1
2S

, s = 1 . . . S , (2)

where x is the sample of margin’s values and rank(xs,x) denotes the rank of xs in x
(sometimes denoted ord(xs,x)), with minimum having the rank of one and ties resolved
using the scenario index (so we have ordinal ranking). The function F e

x can be viewed
as a kind of empirical CDF, except that it is only defined on the values xs from x. Note
also that F e

x does not assign zero or one to any value.
Once we have the fixed U(0, 1) vector u = (u1, . . . , uS), we apply the inverse CDF to

get the target distribution,

xs = F−1(us), s = 1, . . . , S . (3)

The whole correction of vector x can be thus written as

xs ← F−1
(
F e

x(xs)
)
, s = 1, . . . , S , (4)

or, in terms of ordered values x(s) ∈ x, x(1) ≤ x(2) ≤ · · · ≤ x(S),

x(s) ← F−1
(

2s−1
2S

)
, s = 1 . . . S .

Obviously, this transformation changes the correlations. On the other hand, both Fe

and F−1 are rank-preserving, so the transformation does not change rank correlations
and all the related measures of concordance. The changes in correlations tend there-
fore to be small, allowing the overall algorithm to converge. Note also that the rank
preservation means that repeating the transformation would not change x, as long as
the rank(·,x) function is unique – for example by adding a requirement that if xs = xt

and s < t, then rank(xs,x) < rank(xt,x).

Evaluating the error of a margin
To evaluate the error (level of mismatch) of each margin, we use a measure closely



1054 M. KAUT AND A.-G. LIUM

related to the margin-correcting procedure: in addition to computing the ‘discretized
CDF’ F e

x(xs), we compute the actual CDF F (xs) and define the error as their mean-
square difference:

error of margin x =

√√√√ 1
S

S∑
s=1

(
F (xs)− F e

x(xs)
)2

. (5)

Note that the error of a margin after correction is equal to zero, as F (xs) = F e
x(xs) = us

for all s. One could ask why we have not used the more standard Kolmogorov distance,

sup
x
|F (x)− F e

x(x)| = max
1≤s≤S

max
{ rank(xs,x)

S
− F (xs), F (xs)−

rank(xs,x)− 1
S

}
. (6)

The reason is that the error in moments is evaluated as a mean-square error and we
wanted to have a similar measure. In addition, if the target distribution is continuous,
the Kolmogorov distance will never be zero – again something we get from our definition.
On the other hand, the following result suggests that it should be possible to use the
Kolmogorov distance as an error measure in our algorithm, possibly with 1

2S subtracted
from it:

Proposition.

(i) Transformation (4) minimizes the Kolmogorov distance from the target CDF,
within a class of discrete distributions with support of cardinality S.

(ii) Kolmogorov distance of vector x from the target CDF after transformation (4) is
equal to 1

2S .

P r o o f . We start with (ii), which follows directly from (3) since F (xs) = us =
2 rank(xs,x)−1

2S and therefore

max
1≤s≤S

max
{ rank(xs,x)

S
−F (xs), F (xs)−

rank(xs,x)− 1
S

}
= max

1≤s≤S
max

{ 1
2S

,
1

2S

}
=

1
2S

.

For (i), observe that sum of the two values in the inner max is 1
S , from which follows

max
{ rank(xs,x)

S
− F (xs), F (xs)−

rank(xs,x)− 1
S

}
≥ 1

2S
.

Alternatively, we could say that the distance is a maximum of 2S values with sum equal
to one, so it can not be smaller than 1

2S . �

Note that, despite the result above, our approach is still very different from a full
minimization of the Kolmogorov distance from Henrion et all. [9]. There, the distance
of the whole multivariate distribution is minimized at once, while our approach works
only on margins. Their approach should therefore provide better results, given that one
has information about the multivariate distribution, i. e. multivariate CDF or historical
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data. Our method, on the other hand, makes it easy to combine margins with different
distributions – we can have margins with distributions of the same type but with different
parameters, margins with different distributions, or even combine margins specified by
CDFs with margin specified by their moments, or other properties. In addition, our
method is easier to implement and much faster to run: the authors report running time
of over an hour for 25 scenarios for n = 2, while our algorithm normally takes a couple
of seconds to run, even for thousands of scenarios and much higher dimensions.

2.2. Improving convergence

Since we use a fixed discretization of the marginal distributions, the scenario-generation
problem becomes much more constrained as the correct correlations can be obtained
only by pairing the fixed values against each other. While this will produce more stable
(less random) results, it may also have a negative impact on convergence of the overall
method, i. e. on the minimal size of the correlation error we are able to obtain. In such
a case, we can improve the convergence by introducing the fixed discretization gradually
by replacing (2) by

u = αF e
x(x) + (1− α)F (x) . (2’)

The complete transformation (4) then becomes

x← F−1
(
αF e

x(x) + (1− α)F (x)
)
, (4’)

where α ∈ [0, 1] is a weight increasing during the algorithm. Note that (4’) defaults to
identity for α = 0 and to (4) for α = 1.

By increasing α slowly from zero to one, the correlations have a better chance to
‘settle down’, before we fix the margins by reaching α = 1. It is, however, possible that
we will not be able to get the full match in correlations with α = 1, especially when the
number of scenarios is small. In such a case, we can trade the stability of the margins
for better correlations and exit the loop with some α < 1. We would thus end up with
values different from the ‘optimal’ discretization – though it does not mean that the
margins would have wrong distributions; at least for reasonably high values of α the
margins would still have the right distribution in the sense that the standard tests (cf.
Kolmogorov–Smirnov) would not reject the null hypothesis.

Note that even with this adjustment, the margin correction (4’) is very easy to imple-
ment, as there are ready-made implementations of both the sorting algorithm (needed to
get the ranks in (2)) and CDFs and their inverses for all the standard distributions. This
is a significant improvement over the moment-matching approach, where implementing
the cubic transformation needed strong programming skills.

2.3. Studentized margins

So far, we have ignored one issue our algorithm shares with the original moment-
matching method. The Cholesky decomposition, used for correcting the correlations
in the algorithm, requires studentized samples, i. e. scenarios with zero means and vari-
ances equal to one. In the case of moments, this is easily done by specifying the first
two moments as zero and one, respectively, and then rescaling the results to the correct
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means and variances at the very end of the algorithm, using a simple linear transforma-
tion ỹ ← µ + σỹ.

We can do the same for distributions like normal, Student’s t, where studentizing
the margins, i. e. replacing ỹ ← ỹ−µ

σ , can be done simply by changing parameters of
the distribution. For uniform distributions and the empirical CDF from a data set, the
same effect is achieved by scaling all the defining points.

For other distributions, however, things are a bit more complicated. It is, for example,
obvious that studentizing an exponential or beta distribution leads to a distribution
outside of the given family, and therefore a distributions for which we might not have a
formula for the CDF and its inverse. (Though for the latter case, we can solve this by
using a generalized beta distribution with four parameters). If we cannot scale the CDF,
we have to scale the values generated during the algorithm to keep them studentized
during the correlations-correcting step, and scaled to the target means and variances
during the margins-correcting step.

2.4. Discrete distributions

Discrete distributions are a special case, as their CDFs are piece-wise constant and
discrete margins typically have many scenarios sharing the same value. This creates a
possibility of major changes in values while correcting the margins, which can have a
negative impact on the overall convergence of the algorithm. In addition, the margin-
correcting transformations may cease to be rank-preserving, damaging the convergence
even further – though this can be avoided by a slight change in the rank(·,x) function,
as mentioned in Section 2.1.

To improve the convergence in the discrete case, we use a smoothed CDF, denoted
by Fs. This is simply a linear interpolation of F , connecting the average of the left and
right limits at each value of the discrete distribution. Below the minimum and above
the maximum it converges to 0 and 1, respectively, so Fs(xs) is always inside (0, 1). See
Figure 1 for an example. Unfortunately, we can not just use the inverse of Fs, since this
is defined only on interval (0, 1) – while values outside this interval are possible in the
early stages of the algorithm. The function is therefore extended to the whole real axis
R, as shown in Figure 1. For the sake of brevity, we denote this function F−1

s even if it
is not an exact inverse of Fs.

The smoothed versions of the distribution functions are then used similarly to the
‘empirical CDF’ above: F (x) is replaced by βF (x) + (1 − β)Fs(x), where β increases
from zero at the beginning of the algorithm to one at the end. Combined with (2’), the
formula for u becomes

u = αF e
x(x) + (1− α)

(
βF (x) + (1− β)Fs(x)

)
. (2’’)

Note that the correction of correlations may cause some xs to be outside the support of
its distribution. In such a case, Fs(xs) will be outside [0, 1] and the same may be true
for us, depending on the values of α and β in (2’’). This is why we have to extend the
definition of F−1

s on the whole R.
The same procedure is applied to the inverse CDF, in which case (3) becomes

x = βF−1(u) + (1− β)F−1
s (u) . (3”)
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Fig. 1. Normal and smoothed version of CDF and inverse CDF for a

discrete variable with values {0, . . . , 5} and probabilities

{0.1, 0.2, 0.3, 0.2, 0.1, 0.1}.

This version of the algorithm has, so far, been tested (successfully) only on small test
instances, so we are unable to provide any general guidelines for controlling the param-
eter β.

Note that the functions Fs and F−1
s can also be useful for smoothing of the empirical

distribution function in the case where we use a data set to specify the target margins.
This makes sense especially if we believe that the underlying distribution is continuous.

2.5. Extensibility

Due to simple structure of the algorithm, it is easy to change and/or extend some of its
functionality. Hence, if we have one or more margins with distributions requiring some
special treatment, they can be handled by adding a new type of correction. For example,
if the only information we have about the marginal distribution is a set of percentile
values, we can use a transformation from Okunev and White [17], which stretches the
margins to match a given set of percentiles.

3. TEST CASE

Quality of a scenario-generation method is judged by the quality of the solutions obtained
using trees generated by the method, see [13, 16]. It follows that we can only test
whether a given method is good for a a specific optimization problem; indeed, a given
scenario-generation method can be very good for one optimization problem, but lead to
poor decisions for another one. In this section, we therefore test the presented method
on a small optimization problem. For this, we have chosen one of the problems that
motivated us to create the presented method in the first place, i. e. a problem where the
moment-based method does not work well.
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Based on the discussion from Section 1.1, the probably most important advantage
of the new model is that it can be used for stochastic parameters with values within a
given interval. It would thus be natural to use such a model as our test case – but it
would be difficult to compare the new method to the moment-matching approach, as
the latter simply would not work in such a case. Instead, we have chosen a test case
where the margins do not have any limits (or, more precisely, have distributions with
the probability concentrated far from the limits), but the model turns out to be sensitive
to the maximal values.

3.1. Test model formulation

The test case is a stochastic service-network design problem for a less-than-truckload
trucking carrier. This is a two-stage stochastic integer program, where the first stage
corresponds to routing of the trucks and the second stage to the flow of freight, under
stochastic demands. The flow of freight is treated as continuous variables, so we have
integrality only in the first stage. In addition, costs are associated only with the first
stage, i. e. they depend only on the number of trucks and the lengths of their routes.
As a result, the objective function is fully determined by the first-stage solution (truck
routing), while the second stage can be seen as a recourse function. Hence, we only need
the first-stage solutions in the following tests, so we refer to them simply as ‘solutions’.

The model formulation uses a space-time network constructed by repeating the set of
nodes (terminals) N in each of the periods t ∈ T = {0, . . . , T − 1}. Each arc (i, j) ∈ N 2

represents either a service, if i 6= j, or a holding activity if i = j; a complete network is
assumed. A cost Cij is associated to each arc (i, j), equal to the cost of driving a truck
from terminal i to j if i 6= j, or to the cost of holding a truck at terminal i if i = j.

Each commodity k ∈ K is defined by its origin o(k) and destination d(k) nodes/termi-
nals, as well as the time periods σ(k) and τ(k) when it becomes available at its origin and
when it must be delivered (at the latest) at its destination, respectively. The demand
for each commodity Ds

k is the only stochastic parameter of the model, described using
the set of equiprobable scenarios s ∈ S.

The model has two sets of decision variables: the first-stage integer variables xt
ij

for the number of tracks driving from node i to node j in period t and second-stage
continuous variables yt,s

ij,k for the amount of commodity k going from terminal i to
terminal j in period t in scenario s. The commodity-flow variables are defined only for t
between σ(k) and τ(k)− 1. The model is formulated in a time-circular fashion to avoid
end-of-horizon issues.

min
∑
i∈N

∑
j∈N

∑
t∈T

Cij xt
ij (7a)

∑
i∈N

xt
ij =

∑
i∈N

xt+1 mod T
ji ∀t ∈ T ,∀j ∈ N (7b)∑

i∈N
yt,s

ij,k =
∑
i∈N

yt+1 mod T,s
ji,k ∀t ∈ T ,∀j ∈ N ,∀k ∈ K,∀s ∈ S (7c)∑

k∈K

yt,s
ij,k ≤Mxt

ij ∀(i, j) ∈ N 2 : i 6= j, ∀t ∈ T ,∀s ∈ S (7d)
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∑
j∈N

y
σ(k),s
o(k)j,k = Ds

k, ∀k ∈ K,∀s ∈ S (7e)

∑
i∈N

y
τ(k)−1 mod T,s
i,d(k);k = Ds

k, ∀k ∈ K,∀s ∈ S (7f)

xt
ij ∈ N0 ∀t ∈ T ,∀(i, j) ∈ N 2 (7g)

yt,s
ij,k ≥ 0 ∀(i, j) ∈ N 2,∀k ∈ K,∀t ∈ T ,∀s ∈ S. (7h)

The objective function (7a) minimizes the cost of moving the vehicles between the
terminals and their holding cost at the terminals (for vehicles parked at the terminals).
Constraints (7b) and (7c) represent conservation of flow for respectively trucks and
commodities, while (7d)) are the usual linking and vehicle capacity constraints. Note
that commodities can be held at nodes without a truck being present there. Constraints
(7e) and (7f) represent the conservation of flow at the origin and destination nodes of a
commodity, respectively. Finally, (7g) and (7h) define the value ranges for the decision
variables.

For the stochastic demands, we use the same distribution of the demands as in [15].
This means that all demands are triangularly distributed and independent on each other.
The triangular distribution is convenient for this kind of models, as it is defined by the
minimal, maximal, and most likely value.

Note that we use hard constraints in the second stage, i. e. we are constructing
routes so that the demands are satisfied in all scenarios. This increases the instability of
the scenario-based solutions and therefore magnifies the differences between the different
scenario-generation techniques. It is also the reason why the model reacts to the maximal
values: a small increase in maximal demand can lead to a need of extra truck, and
therefore a jump in the objective function. Note that the hard constraints also imply
that a solution obtained using one scenario tree will most likely be infeasible in a model
using a different set of scenarios.

3.2. Setup of the test

To test the influence of scenario-generation methods on the quality of the produced
solutions, we use the methodology from Kaut and Wallace [13]. This means that we
first look at in-sample stability : we generate K scenario sets, solve the problem on each
of them and then look at the variation of the reported optimal objective values. Ideally,
the variation should be as small as possible and converge to zero as the sample size
increases to infinity.

Even more important than the stability of the reported performance of the solutions
is the stability of the true performance, referred to as the out-of-sample stability (Kaut
and Wallace [13]). Unlike the in-sample case, the out-of-sample objective values cannot
be computed exactly, as this would mean integrating over a multivariate triangular dis-
tribution. Instead, we approximate the out-of-sample values by evaluating the solutions
on a large scenario tree, which we refer to as the target tree. In our case, we use the
same target tree as in Liem and Kaut [15]; this is a tree with 1000 scenarios, generated
by sampling from the marginal distributions.
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To measure the out-of-sample stability, we would then normally take the K solutions
from the in-sample test and measure the variation of their objective values when evalu-
ated on the target tree. However, this generic approach does not work in our case; as we
have already pointed out, the hard constraints in the second stage will most likely cause
the tested solution to be infeasible on the target tree. Hence, we use a modified version
of the test where we compare the amount of infeasibility instead of the objective value,
i. e. the amount of demand we are not able to satisfy with the selected truck routing.

We compare performance of the following scenario-generation methods:

• Standard sampling from the target tree.

• Moment matching, with moments and correlations estimated from the target tree.

• The new method, using triangular distributions with parameters estimated from
the target tree. This method is initiated by sampling from the standard normal
distribution, just as we do in the moment-matching case.

• The new method, using interpolated empirical distribution functions from the
target tree. This method is initiated by sampling from the target tree, so it can
be seen as a post-process for sampling.

While the first three methods have already been tested in [15] (even though the cdf-based
method has not been described there), the last one is new to this paper.

We consider a case with twelve commodities. For each of the scenario-generation
methods we measure the stability for scenario trees with tree sizes from 13 to 53, with
steps of 8. We solve 20 different problems for each combination of a method and tree
size, which equals to 20×4×6 = 480 problems in total. The solution times per problem
range from a couple of minutes for the smallest ones to a couple of days for the worst
cases, using CPLEX 9 on a 3 GHz PC.

3.3. Results

The in-sample results are presented in Figure 2. We see that for three of the methods, the
optimal objective value increases with the sample size. This is expected, as a model with
only few scenarios tends to overestimate its own performance – see Mak et all. [16] for a
mathematical formulation and proof of the effect. The absence of this effect in the case
of the new method with triangular margins is therefore startling and suggests that the
method either gets the right value already with 13 scenarios, or that it fails to improve
the estimate even with 53 scenarios. In addition, we see that this method, together
with moment-matching, seems to converge to significantly better objective values than
the other two methods. Again, this means that the two methods either produce better
solutions, or that they are much worse in estimating the quality of their solutions.

The other observation is that sampling produces significantly less stable results. Also
this is expected, since the instability is generally the main argument against sampling
methods in the case of small trees. We can thus conclude that, in terms of in-sample
stability, sampling is clearly the worst method, while the new method with triangular
margins is the most stable one.
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Fig. 2. In-sample optimal objective function values for the four

tested methods. The horizontal axes shows the number of scenarios,

the vertical axes the optimal objective function value.

The conclusion, however, changes dramatically when we look at the out-of-sample re-
sults presented in Figure 3. In this case, the moment-matching and the new method with
triangular margins are clearly worse than the other two, both in terms on stability and
convergence. This suggests that the methods do not capture the distribution properly
and fail to improve as the tree size increases. It also shows that their good performance
in the in-sample tests was due to their consistent overestimation of the quality of the
produced solutions.

Sampling and the new method using empirical CDFs, on the other hand, show a
much better performance, with results that clearly improve with the increasing size of
the scenario tree. Out of these two, the new method is significantly better in the case of
13 scenarios and comparable or marginally better in the other cases. This implies that
the new method is, overall, the best of the four tested methods.

To conclude, the new method using empirical CDF from the target tree and initiated
by a sample from the target tree is clearly the best of the four methods, having the
best out-of-sample stability, without exhibiting the strong in-sample instability seen
in the sampled trees. In addition, the test illustrates the importance of using all the
information available: the two methods that throw away some of the information in the
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Fig. 3. Out-of-sample results for the four tested methods. The

horizontal axes shows the number of scenarios, the vertical axes the

slack required to maintain feasibility.

data (the target tree) by approximating the distribution in some way turned out to have
a significantly worse out-of-sample performance, compared to the two methods that use
the data directly.

CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a method for generating scenarios from distributions
specified by their marginal distribution functions and the correlation matrix. This pro-
vides an alternative to the existing moment-based method and has a potential to be
better in cases where we know the marginal distributions, for example from some theo-
retical model, or from historical data.

We have illustrated the method on an example from stochastic service network de-
sign, where the new method proved to be better than both sampling and the moment-
matching approach. While these tests are, by definition, case-dependent, it shows that
there are problems where the new method is better than the other two. We can thus
conclude that the presented method should be considered when choosing a scenario-
generation algorithm for a given problem.
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While the presented method gives the user a significantly better control of the marginal
distributions, the dependence between the margins is still controlled only by a correla-
tion matrix. We thus believe that the next improvement should come there, possibly by
using copula in the way suggested in Kaut and Wall [14] – something we leave for future
research.

(Received August 1, 2013)
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