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Abstract. A sufficient condition for the nonexistence of blowing-up solutions to evolution
functional-differential equations in Banach spaces with the Riemann-Liouville integrals in
their right-hand sides is proved. The linear part of such type of equations is an infinitesimal
generator of a strongly continuous semigroup of linear bounded operators. The proof of the
main result is based on a desingularization method applied by the author in his papers on
integral inequalities with weakly singular kernels. The result is illustrated on an example
of a scalar equation with one Riemann-Liouville integral.
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1. Introduction

The influence of viscous fluids on vibrating systems is often modeled using the

Riemann-Liouville or Caputo fractional derivative. These derivatives play the role of

a damping force called fractional damping. The well known Bagley-Torvik equation

(see [21])

(1.1) u′′(t) +AcD3/2u(t) = au(t) + ϕ(t),

modelling the motion of a rigid plate immersing in a viscous liquid, is one of the

equations describing the motion with the fractional damping term AcD3/2u(t) with

This work was supported by the Slovak Research and Development Agency under the
contract No. APVV-0134-10 and by the Slovak Grant Agency VEGA No. 1/0507/11 and
No. 1/0071/14.
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the Caputo fractional derivatives. Solutions of the linear fractionally damped oscil-

lator equation with the Caputo derivative are analysed in the paper [12]. Interesting

results concerning boundary value problems for the following generalized Bagley-

Torvik equation

(1.2) u′′(t) +AcDαu(t) = f
(
t, u(t),cDβu(t), u′(t)

)

and for some fractional differential equations are published in the papers [1], [2], [13]

and [17]. We were motivated by the paper [16], where an existence and uniqueness

result for the initial value problem

(1.3) Au′′ +

N∑

k=1

Bc
kD

αku(t) = f(t, u),

u(0) = u0, u′(0) = c1, 0 < αk < 2, k = 1, 2, . . . , N

is proved. This type of equations can be written as systems of differential equations

with the Riemann-Liouville integrals on their right-hand sides (see Section 2). Some

existence results for the initial value problems corresponding to these equations are

proved in the papers [5] and [7]. In the papers [18]–[20], several existence results

for fractional differential equations are proved. For basic definitions of fractional

calculus and fundamentals of the theory of fractional differential equations see, e.g.,

the monograph [15].

This paper is concerned with the following initial value problem

ẋ(t) = Ax(t) + f
(
t, x(t), xt, (I

α1 [g1x])(t), . . . , (I
αm [gmx])(t)

)
, t > 0,(1.4)

x(t) = Φ(t), t ∈ [−r, 0],(1.5)

where r > 0, Φ ∈ Cr := C([−r, 0], X), X is a Banach space with the norm ‖v‖,
v ∈ X , x(t) ∈ X , xt ∈ C, xt(Θ) := x(t+Θ), t > 0, Θ ∈ [−r, 0], A is the infinitesimal

generator of a strongly continuous semigroup {S(t)}t>0, S(t) := eAt, f : R+ ×X ×
Cr ×Xm → X , Xm := X × . . . ×X (m times) is a continuous map, R+ = [0,∞),

gi : R+ ×X → X , (t, x) 7→ gi(t, x), i = 1, 2, . . . ,m are continuous maps,

(1.6) (Iαi [gix])(t) :=
1

Γ(αi)

∫ t

0

(t− s)αi−1gi(s, x(s)) ds, 0 < αi < 1

are the Riemann-Liouville fractional integrals of the function [gix](t) := gi(t, x(t)) of

order αi.

Definition 1.1. A semigroup {S(t)}t>0, S(t) := eAt of bounded linear operators

on X is called a strongly continuous semigroup of bounded linear operators if

(1.7) lim
t→0+

S(t)x = x for every x ∈ X.
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Theorem 1.1 ([14], Theorem 2.2). If {S(t)}t>0 is a strongly continuous semi-

group of bounded linear operators, then there exist constants ω > 0 andM > 1 such

that

‖S(t)‖ 6 Meωt for all t ∈ [0,∞).

Definition 1.2. By a mild solution of the initial value problem (1.4), (1.5) on an

interval [−r, b), b > 0, we mean a continuous mapping x ∈ C([−r, b), X) satisfying

x(t) = eAtΦ(0) +

∫ t

0

eA(t−s)f
(
s, x(s), xs, (I

α1 [g1x])(s), . . . , (I
αm [gmx])(s)

)
ds,(1.8)

t ∈ (0, b),

x(t) = Φ(t), t ∈ [−r, 0].(1.9)

Definition 1.3. We say that a mild solution y(t) of the initial value prob-

lem (1.4), (1.5) defined on the interval [0, b), 0 < b 6 ∞, blows-up at a finite time
T ∈ (0, b) if lim

t→T−

‖y(t)‖ = ∞.

The main aim of this paper is to prove a sufficient condition for the nonexistence

of blowing-up solutions to the equation (1.4).

E x am p l e 1.1 (for ODEs).

(1.10) u′(t) = u2(t), u(0) = u0.

Solution:

(1.11) u(t) =
u0

tu0 − 1
= − 1

t− 1/u0
, lim

t→T−

|u(t)| = ∞, T =
1

u0
.

E x am p l e 1.2 (for delay equations).

u′(t) = u(t− 2)u(t)2,(1.12)

u(t) = −t+ 1, t ∈ [−2, 0].(1.13)

Solution:

(1.14) u(t) =
2

t2 − 6t+ 2
, lim

t→T−

|u(t)| = ∞, T = 3−
√
7.

Some further examples and results on the existence of blowing-up solutions for

delay differential equations can be found in the paper [4].
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E x am p l e 1.3 (for delay fractional equations).

u′(t) = u(t− 2)u2(t) +

(∫ t

0

(t− s)−1/2u(s− 2) ds

)
u2(t),(1.15)

u(t) = 1, t ∈ [−2, 0].(1.16)

Solution:

(1.17) u(t) = − 3

4t3/2 + 3t− 3
, t ∈ [0, 2], lim

t→T−

|u(t)| = ∞,

where T = x2 ∈ (0, 1.44), x ∈ (0, 1.2) is the unique positive root of the polynomial

P (x) = x3 + x2 − 3 (P (0) = −3, P (1.2) = 3.168).

2. Fractionally damped pendulum

Fractionally damped pendulums or oscillators are studied, e.g., in the papers [12],

and [16], where also some further papers devoted to this type of equations can be

found in the list of references.

The equation

x′′(t) + λc
1D

β1x(t) + . . .+ λc
mDβmx(t) + λx′(t) + ω2x(t) = g(xt), t > 0,

is a fractional perturbation of the ordinary damped pendulum equation

x′′(t) + λx′(t) + ω2x(t) = g(xt), t > 0,

with the damping term λx′(t), where

cDβix(t) =
1

Γ(1− βi)

∫ t

0

(t− s)−βix′(s) ds

is the Caputo derivative of the function x(t) of order βi ∈ (0, 1) and fractional

damping terms

λc
1D

β1x(t), . . . , λc
mDβmx(t).

The external force can be, e.g., the delay feedback g(xt) = h(xt(−r)) = h(x(t−r)),

or the functional feedback of the form g(xt) =
∫ 0

−r
h(xt(Θ)) dΘ =

∫ 0

−r
h(x(t+Θ)) dΘ,

or a more general functional feedback.

We can write this equation as the system

z′(t) = Az(t)− λ1BIα1 [z](t)− . . .− λmBIαm [z](t)

− λBz(t) + F (zt), αi = 1− βi, i = 1, 2, . . . ,m,
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where

A =

(
0 1

−ω2 0

)
, B =

(
0 0

0 1

)
, z(t) =

(
x(t)

x′(t)

)
, F (zt) =

(
0

g(xt)

)
.

This equation is of the form (1.4).

3. Main result

A sufficient condition for the nonexistence of blowing-up solutions of the initial

value problem

u′(t) = Ax(t) + f
(
t, u(t), ut, (I

βg(·, u(·), u·))(t)
)
, t > 0,(3.1)

u(t) = Φ(t), t ∈ [−r, 0],(3.2)

where

(3.3)
(
Iβg(·, u(·), u·)

)
(t) :=

∫ t

0

(t− s)β−1g(s, x(s), xs) ds, β ∈ (0, 1),

is proved in the paper [6]. The equation (3.1) contains one fractional integral only.

In the papers [5] and [7], existence results for some abstract evolution equations with

fractional derivatives in the nonlinearities are proved.

We will study the problem for the fractional equation with several fractional inte-

grals.

We assume that the mapping f(t, u, v, v1, . . . , vm) satisfies the following condition:

(H1) There exist continuous nonnegative functions F1(t), F2(t), F3(t), . . . , Fm+2(t),

t > 0 and continuous nonnegative nondecreasing functions ω1(x), ω2(x), x > 0,

positive for t > 0, such that

‖f(t, u, v, v1, . . . , vm)‖ 6 F1(t)ω1(‖u‖) + F2(t)ω2(‖v‖C)
+ F3(t)‖v1‖+ . . .+ Fm+2(t)‖vm‖

for all t > 0, u, v1, . . . , vm ∈ X , v ∈ Cr, ‖·‖ is the norm on X and ‖v‖Cr
:=

sup−r6Θ ‖v(Θ)‖ is the norm on Cr.

We assume the condition:

(H2) There exist continuous nonnegative functions G3(t), G4(t), . . . , Gm+2(t), t>0

and continuous nonnegative and nondecreasing functions ω3(y), ω4(y), . . . ,

ωm+2(y), y > 0, positive for y > 0, such that

‖gj(t, y)‖ 6 Gj(t)ωj(‖y‖) for all t > 0, x ∈ X, j = 3, 4, . . . ,m+ 2.
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Theorem 3.1. Let the conditions (H1) and (H2) be satisfied. Let p1 > 1, p2 >

1, . . ., pm > 1 be such that 1+p1(α1−1) > 0, 1+p2(α2−1) > 0, . . ., 1+pm(αm−1) >

0, αi ∈ (0, 1), i = 1, 2, . . . ,m and let the integral condition

(H3)

∫ ∞

v0

σq−1 dσ

ω1(σ)q + ω2(σ)q + . . .+ ωm+2(σ)q
= ∞,

be satisfied, where q = q1q2 . . . qm, qi = pi/(pi − 1), i = 1, 2, . . . ,m. Then the initial

value problem (1.4) and (1.5) does not have blowing-up mild solutions for any initial

value Φ ∈ Cr.

P r o o f. Let x : [0, T ) → X be a mild solution of the initial value problem (1.4),

(1.5) with 0 < T < ∞, limt→T− ‖x(t)‖ = ∞. Using the inequality ‖eAt‖ 6 Meωt,

t > 0 from Theorem 1.1 and the conditions (H1) and (H2) we obtain for t ∈ [0, T )

‖x(t)‖ 6 a(T ) +K(T )

∫ t

0

F1(s)ω2(‖x(s)‖Cr
) ds

+ L(T )

m+2∑

i=3

∫ t

0

∫ s

0

(s− τ)αi−1Gi(τ)ωi(‖x(τ)‖) dτ ds

for some positive constants a(T ), K(T ), L(T ) depending on the fixed T . We may as-

sume without loss of generality that the constant a(T ) is so large thatM‖Φ(0)‖eωT 6

M‖Φ‖Cr
eωT 6 a(T ). Now we apply the following desingularization method sug-

gested in the paper [11] (this method is also applied in the papers [8]–[10]):

∫ s

0

(s− τ)αi−1Gi(τ)ωi(‖x(τ)‖) dτ

6

(∫ s

0

(s− τ)pi(αi−1)epiτ dτ

)1/pi
(∫ s

0

e−qiτGi(τ)
qiωi(‖x(τ)‖)qi dτ

)1/qi

6 Qie
pis

(∫ s

0

e−qiτGi(τ)
qiωi(‖x(τ)‖)qi dτ

)1/qi
,

where

Qi =
Γ(1 + pi(αi − 1))

p1+pi(αi−1)
, i = 1, 2, . . . ,m.

We have used there the inequality

∫ s

0

(s− τ)pi(αi−1)epiτ dτ 6 Qie
pis, s > 0,

proved in the paper [11].
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Therefore we obtain the following estimate:

‖x(t)‖ 6 a(T ) + L1

∫ t

0

ω1(‖x(τ)‖) dτ + L2

∫ t

0

ω2(‖xs‖Cr
) ds

+
m+2∑

i=3

Li

(∫ t

0

Gi(τ)
qiωi(‖x(τ)‖)qi dτ

)1/qi
,

where M = M(T ), Lj = Lj(T ), j = 1, 2, . . . ,m + 2 are some positive constants. If

q = q1q2 . . . qm, then

‖x(t)‖q 6 K̃ + L̃1

(∫ t

0

ω1(‖x(τ)‖) dτ
)q

+ L̃2

(∫ t

0

ω2(‖xs‖Cr
) ds

)q

+

m+2∑

i−3

L̃i

(∫ t

0

Gi(τ)
qiωi(‖x(τ)‖)qi dτ

)̂qi
,

where q̂i = q1q2 . . . qi−1qi+1 . . . qm. Using the integral mean value theorem we obtain

‖x(t)‖q 6 a+ a1

∫ t

0

ω1(‖x(τ)‖)q dτ + a2

∫ t

0

ω2(‖xs‖Cr
)q ds

+

m+2∑

i−3

ai

∫ t

0

ωi(‖x(τ)‖)q dτ

for some constants a, aj , j = 1, 2, . . . ,m+ 2. Let a be so large that ‖Φ‖Cr
6 a.

Let g(t) be the right-hand side of the above inequality. Then

‖xt‖ := max
−r6Θ60

‖x(t+Θ)‖ 6 max
{
‖Φ‖Cr

, sup
06τ6t

‖x(τ)‖
}
6 g(t)1/q.

This yields

‖x(t)‖q 6 g(t) 6 a+A

∫ t

0

ω(g(s)) ds, t > 0,

where

ω(v) =

m+2∑

i=1

ωi(v
1/q)q.

Let

Ω(v) =

∫ v

v0

dη

ω(η)
, v0 > 0.

From the Bihari inequality it follows that

Ω(‖x(t)‖q) 6 Ω(g(t)) 6 Ω(a) +At, t > 0.
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Thus we have

lim
t→T−

Ω(‖x(t)‖q) = lim
t→T−

∫ ‖x(t)‖q

v0

dτ

ω(τ)
=

∫ ∞

v0

dτ

ω(τ)

= q

∫ ∞

w0

σq−1 dσ
∑m+2

i=1 ωi(σ)q
= ∞, w0 = v0

1/q.

However lim
t→T−

[Ω(a) +At] = Ω(a) +AT < ∞ and this is a contradiction. �

E x am p l e 3.1. Let m = 1, q1 = q > 1, α1 = α ∈ (0, 1), p(α − 1) + 1 > 0,

1/p+ 1/q = 1, ω1(v) ≡ (1/2)1/qv, ω2(v) ≡ (1/2)1/qv, ω3(v) = [ln(vq + 2)]1/q. Then

∫ ∞

0

σq−1 dσ

ω1(σ)q + ω2(σ)q + ω3(σ)q
=

∫ ∞

0

σq−1 dσ

σq + ln(σq + 2)

=
1

q

∫ ∞

0

ds

s+ ln(s+ 2)
= ∞.

This equality follows from the following lemma by A.Constantin [3].

Lemma 3.1. If w ∈ C(R+, [0,∞)) is a continuous positive nondecreasing func-

tion and ∫ ∞

0

ds

w(s)
= ∞,

then ∫ ∞

0

ds

s+ w(s)
= ∞.

Therefore the conditions (H1), (H2) and (H3) are satisfied and by Theorem 3.1 the

initial value problem (1.4), (1.5) does not have blowing-up solutions for any Φ ∈ Cr.
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