
Mathematica Bohemica

Blanka Baculíková; Jozef Džurina
Oscillation of the third order Euler differential equation with delay

Mathematica Bohemica, Vol. 139 (2014), No. 4, 649–655

Persistent URL: http://dml.cz/dmlcz/144141

Terms of use:
© Institute of Mathematics AS CR, 2014

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/144141
http://dml.cz


139 (2014) MATHEMATICA BOHEMICA No. 4, 649–655

OSCILLATION OF THE THIRD ORDER EULER

DIFFERENTIAL EQUATION WITH DELAY

Blanka Baculíková, Jozef Džurina, Košice

(Received September 30, 2013)

Abstract. In the paper we offer criteria for oscillation of the third order Euler differential
equation with delay

y
′′′(t) +

k2

t3
y(ct) = 0.

We provide detail analysis of the properties of this equation, we fill the gap in the oscillation
theory and provide necessary and sufficient conditions for oscillation of equation considered.
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1. Introduction

The object of this paper is to present sufficient conditions for the oscillation of the

third-order functional differential equation

(ED) y′′′(t) +
k2

t3
y(ct) = 0, t > t0 > 0,

where 0 < c < 1 and k 6= 0. By a solution of (ED) we mean a function defined

on the initial interval [ct0, t0] which satisfies (ED) for every t > t0. A solution

of (ED) is said to be oscillatory if it has arbitrarily large zeros, and otherwise it is

called nonoscillatory. Equation (ED) is said to be oscillatory if all its solutions are

oscillatory.

This work was supported by the Slovak Research and Development Agency under the
contract No. APVV-0404-12, APVV-0008-10.
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It follows from the familiar lemma of Kiguradze [5], [6], [10] that the set of all

nonoscillatory (say, positive) solutions N of (ED) has the decomposition

N = N0 ∪ N2,

where
y(t) ∈ N0 ⇐⇒ y(t) > 0, y′(t) < 0, y′′(t) > 0, y′′′(t) < 0,

y(t) ∈ N2 ⇐⇒ y(t) > 0, y′(t) > 0, y′′(t) > 0, y′′′(t) < 0.

Equation (ED) is a natural generalization of the well-known Euler differential

equation

(E) y′′′(t) +
k2

t3
y(t) = 0

and will be called the Euler differential equation with delay. Following [3], [8], [9],

we say that equation (ED) has property (A) if N = N0. Property (A) of various

third order differential equations has been studied by many authors [5], [6], [8]–[10].

Both the equations (E) and (ED) play a very important role in the oscillation

theory, especially in the comparison theory, where these equations serve as com-

parative equations from which we deduce properties of more general equations, see

e.g. [1]–[10]. Therefore it is desirable to have strong criteria for oscillation and/or

property (A) of (ED). It is well known, see [4] and [6], that

equation (E) has property (A) ⇐⇒ k >
2

3
√
3
.

Applying the existing comparison theorems, see [4] and [8], we can extend this result

to equation (ED), as follows:

k2 >
2

c23
√
3

=⇒ equation (ED) has property (A),

k2 6
2

3
√
3

=⇒ equtaion (ED) has not property (A).

However, these results do not apply to the remaining case 2/(3
√
3)<k262/(c23

√
3).

On the other hand, these criteria say nothing about oscillation of (ED). In this

paper, we will fill this gap and get an efficient necessary and sufficient condition

for oscillation of (ED), and what is more, we provide also an interesting connection

between oscillation of (ED) and the classes N0 and N2.
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2. Main results

First we transform equation (ED) into the form of a delay differential equation

with constant coefficients and constant delay. We set

(2.1) t = es, y(t) = x(s), r = − ln c,

with r > 0. Then as usual

t
dy

dt
=

dx

ds
, t2

d2y

dt2
=

d2x

ds2
− dx

ds
, t3

d3y

dt3
=

d3x

ds3
− 3

d2x

ds2
+ 2

dx

ds

and (ED) becomes

(EC)
d3x

ds3
− 3

d2x

ds2
+ 2

dx

ds
+ k2x(s− r) = 0.

Obviously equation (ED) oscillates if and only if equation (EC) does. With equa-

tion (ED) we associate the characteristic equation

(CH) λ(λ − 1)(λ− 2) + k2cλ ≡ λ(λ− 1)(λ− 2) + k2e−rλ = 0

which is obtained by assuming the solution of (ED) of the form y(t) = tλ or looking

for the solution of (EC) of the type x(s) = eλs.

In the next lemma which is due to Arino and Győri [1] we connect the properties

of (EC) and (CH).

Lemma 2.1. Equation (EC) oscillates if and only if (CH) has no real roots.

Now we will explore the properties of the characteristic equation (CH). Let us

denote f(λ) = −λ(λ− 1)(λ− 2)c−λ, then the characteristic equation can be written

in the form

(CH) f(λ) = k2.

It is easy to verify that for any c ∈ (0, 1) the function f(λ) has three zero points and

moreover
f(λ) → −∞
f(λ) → 0

for λ → ∞,

for λ → −∞.
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Consequently, we can conclude that there exists the maximum fmax of f(λ), λ ∈ R.

The information obtained permits us to sketch the graph of the function f(λ) (see

Figures 1 and 2).

M0

M2

Figure 1. Graph of f(λ) with c = 0.35.

M0

M2

Figure 2. Graph of f(λ) with c = 0.27.

Obviously, the characteristic equation (CH) has no real root if and only if holds

k2 > fmax. Let us denote

M0(c) = max
λ∈(−∞,0)

f(λ), M2(c) = max
λ∈(1,2)

f(λ),

then in view of our previous observation the next result is obvious.

Theorem 2.1. Equation (ED) is oscillatory iff k
2 > max{M0(c),M2(c)}.

R em a r k 2.1. Evidently M = max{M0(c),M2(c)} ∈ (2/(3
√
3), 2/(c23

√
3)) and

due to Theorem 2.1 if k2 > M equation (ED) is oscillatory, while for k2 < M

equation (ED) possesses a nonoscillatory solution. Therefore there is no gap for

oscillation of equation (ED).
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Now we explore which of the local maxima M0(c) and M2(c) will be dominated

and becomes maximum fmax and how this process depends on value of parameter c.

We consider M0(c) and M2(c) as functions defined on (0, 1).

Lemma 2.2. Function M0(c) is increasing on (0, 1) and moreover,

M0(0) = lim
c→0+

M0(c) = 0, M0(1) = lim
c→1−

M0(c) = ∞.

Lemma 2.3. Function M2(c) is decreasing on (0, 1) and moreover,

M2(0) = lim
c→0+

M2(c) = ∞, M2(1) = lim
c→1−

M2(c) =
2

3
√
3
.

P r o o f. The proofs of both lemmas follow immediately from the definition of the

functions M0(c) and M2(c) and so they can be omitted. �

Combining the last two results, we obtain the following theoretical result dealing

with the relationship between the dominance of M0(c) and M2(c).

Theorem 2.2. There exists a unique c∗ ∈ (0, 1) such that

⊲ for c ∈ (0, c∗), the maximum is fmax = M2(c) > M0(c),

⊲ for c ∈ (c∗, 1), the maximum is fmax = M0(c) > M2(c).

Now, we reformulate the previous results in terms of oscillation of equation (ED).

Theorem 2.3. Let c∗ ∈ (0, 1) be such as in Theorem 2.2.

⊲ If c ∈ (0, c∗) and k2 > M2(c), then equation (ED) is oscillatory.

⊲ If c ∈ (c∗, 1) and k2 > M0(c), then equation (ED) is oscillatory.

⊲ If k2 6 M2(c), then the class N2 is nonempty for equation (ED).

⊲ If k2 6 M0(c), then the class N0 is nonempty for equation (ED).

P r o o f. The first two assertions are obvious. We shall prove the third. If k2 6

M2(c) 6 fmax, then there exists a root λ∗ of the characteristic equation such that

λ∗ ∈ (1, 2). Then y∗(t) = tλ∗ is the corresponding solution of equation (ED) and it

is easy to verify that y∗ ∈ N2. The last assertion can be verified similarly. �

It is desirable to evaluate the value of c∗. However, actual computation leads to

a cubic equation whose roots are formalized as the third root of a complex number.

Instead of this, using Matlab, we find out that c∗ = 0.32049 with the corresponding

fmax = M0(c
∗) = M2(c

∗) = 2.4735.

We illustrate all our results in the following examples.
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Figure 3. Graph of f(λ) with c∗ = 0.32049.

E x am p l e 2.1. Consider the third order Euler delay equation

(2.2) y′′′(t) +
k2

t3
y(0.4t) = 0, t > t0 > 0.

Since 0.4 > c∗ = 0.32049, then (using e.g. Matlab) we evaluate the corresponding

values M0 = 3.9849 and M2 = 1.7056. Theorem 2.3 implies that

⊲ equation (2.2) is oscillatory if and only if k2 > 3.9849;

⊲ if k2 6 3.9849, then the class N0 is nonempty for equation (2.2);

⊲ if k2 6 1.7056, then the class N2 is nonempty for equation (2.2).

Note that for k2 = 3.84 the solution y(t) = t−2 belongs to the class N0 of equa-

tion (2.2).

E x am p l e 2.2. Consider the third order Euler delay equation

(2.3) y′′′(t) +
k2

t3
y(0.2t) = 0, t > t0 > 0.

Since 0.2 < c∗ = 0.32049, then we find out the corresponding values M2 = 5.5239

and M0 = 1.2246 and it follows from Theorem 2.3 that

⊲ equation (2.3) is oscillatory if and only if k2 > 5.5239;

⊲ if k2 6 5.5239, then the class N2 is nonempty for equation (2.3);

⊲ if k2 6 1.2246, then the class N0 is nonempty for equation (2.3).

Note that for k2 = 4.1926 we have the solution y(t) = t1.5 which belongs to the

class N2 of equation (2.3), while for k
2 = 1.2 we have the solution y1(t) = t−1

which belongs to the class N0. Moreover, there are additional three nonoscillatory

solutions. One solution y2(t) ≈ t−1.4009839 from the class N0 and two solutions

y3(t) ≈ t1.1846025, y4(t) ≈ t1.973965 that belong to the class N2.
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3. Summary

In this paper we have presented a new necessary and sufficient condition for os-

cillation of the third order Euler differential equation with delay. Since the Euler

differential equation is often used in comparison results as a reference equation, the

results obtained in this paper are useful and important for future investigation of

asymptotic properties of differential equations.
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