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Abstract. In a letter written to Landau in 1935, Schur stated that for any integer t > 2,
there are primes p1 < p2 < . . . < pt such that p1 + p2 > pt. In this note, we use the Prime
Number Theorem and extend Schur’s result to show that for any integers t > k > 1 and
real ε > 0, there exist primes p1 < p2 < . . . < pt such that

p1 + p2 + . . .+ pk > (k − ε)pt.
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1. Introduction

In a letter written to Landau in 1935, Schur [1] stated the following fact.

Proposition 1.1. For any integer t > 2, there exist primes p1 < p2 < . . . < pt

such that p1 + p2 > pt.

In 1936, E. Lehmer [1] used Proposition 1.1 to prove a theorem concerning the

size of the coefficients of the cyclotomic polynomials. She did not, however, include

a proof of Proposition 1.1, but merely referenced Schur’s letter. The first publication

of a proof of Proposition 1.1 occurred in an article written by Jiro Suzuki [2], in which

he used Proposition 1.1 to prove that every integer appears as a coefficient in some

cyclotomic polynomial. In this brief note, we use the Prime Number Theorem to

present a generalization of Schur’s original result.
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2. The generalization

In this section we present the generalization of Proposition 1.1, but first we need

a lemma.

Lemma 2.1. Let t > 1 be an integer. Then, for any real number ε > 0, there

exist primes p1 < p2 < . . . < pt such that

p1 + p2 + . . .+ pt > (t− ε)pt.

P r o o f. By way of contradiction, assume there exists some ε > 0 and some

integer t > 1 such that, for any set of t primes p1 < p2 < . . . < pt, we have

p1 + p2 + . . .+ pt 6 (t− ε)pt.

Then, clearly t > 2, ε < t, and

(2.1)
tp1
t− ε

< pt.

Now, if for some real number n there exist primes p1 < p2 < . . . < pt such that

( t

t− ε

)n−1

6 p1 < p2 < . . . < pt 6
( t

t− ε

)n

,

then

p1

( t

t− ε

)

>

( t

t− ε

)n

> pt,

contradicting (2.1). Hence, for any real number n, there are fewer than t primes

between (t/(t− ε))n−1 and (t/(t− ε))n. It follows that π((t/(t− ε))n) < nt for all

real numbers n, where π(x) is the number of primes less than or equal to x. Therefore,

(2.2)

π
(( t

t− ε

)n)

log
(( t

t− ε

)n)

( t

t− ε

)n
<

nt log
(( t

t− ε

)n)

( t

t− ε

)n

for all real numbers n. As n approaches infinity, the right-hand side of (2.2) ap-

proaches 0, but the Prime Number Theorem implies that the limit of the left-hand

side of (2.2) is 1. This contradiction completes the proof. �
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Theorem 2.2. For any integers t > k > 1 and real ε > 0, there exist primes

p1 < p2 < . . . < pt such that

p1 + p2 + . . .+ pk > (k − ε)pt.

P r o o f. By Lemma 2.1, we have that there exist primes p1 < p2 < . . . < pt such

that

(2.3) p1 + p2 + . . .+ pt > (t− ε)pt.

The case k = t is Lemma 2.1, so assume that k < t. Then, since

(2.4) pk+1 + pk+2 + . . .+ pt 6 (t− k)pt,

we can subtract the left and right-hand sides of (2.4) from the left and right-hand

sides of (2.3) respectively, preserving the inequality in (2.3), and the theorem is

established. �

Remark 2.3. Note that the special case of Theorem 2.2 with t > k = 2 and ε = 1

is simply Proposition 1.1.
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