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SPACES AND NON-UNIVERSALITY
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Abstract. These notes are dedicated to the study of the complexity of several classes
of separable Banach spaces. We compute the complexity of the Banach-Saks property,
the alternating Banach-Saks property, the complete continuous property, and the LUST
property. We also show that the weak Banach-Saks property, the Schur property, the
Dunford-Pettis property, the analytic Radon-Nikodym property, the set of Banach spaces
whose set of unconditionally converging operators is complemented in its bounded operators,
the set of Banach spaces whose set of weakly compact operators is complemented in its
bounded operators, and the set of Banach spaces whose set of Banach-Saks operators is
complemented in its bounded operators, are all non Borel in SB. At last, we give several
applications of those results to non-universality results.
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1. Introduction

Our goal for these notes is to study the complexity of certain classes of Banach

spaces, hence, these notes lie in the intersection of descriptive set theory and the

theory of Banach spaces.

First, we study two problems related to special classes of operators on separable

Banach spaces being complemented in the space of its bounded operators or not.

Specifically, we will show that both the set of Banach spaces with its unconditionally

converging operators complemented in its bounded operators, and the set of Banach

spaces with its weakly compact operators complemented in its bounded operators,

are non Borel. The first is actually complete coanalytic. In both of these problems,
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we will be using results of [4] concerning the complementability of those ideals in its

space of bounded operators and the fact that the space itself contains c0.

Next, we study the complexity of other classes of Banach spaces, namely, Banach

spaces with the so called Banach-Saks property, alternating Banach-Saks property,

and weak Banach-Saks property. We show that the first two of them are complete

coanalytic sets in the class of separable Banach spaces, and that the third is at least

non Borel (it is also shown that the weak Banach-Saks property is at most Π1
2). In

order to show some of these results we use the geometric sequential characterizations

of Banach spaces with the Banach-Saks property and the alternating Banach-Saks

property given by B.Beauzamy (see [5]). The stability under ℓ2-sums of the Banach-

Saks property shown by J.R. Partington [23] will also be of great importance in our

proofs.

It is also shown that the set of Banach spaces whose set of Banach-Saks operators

is complemented in its bounded operators is non Borel. For this, a result by J.Diestel

and C. J. Seifert [11] that says that weakly compact operators T : C(K) → X , where

K is a compact Hausdorff space, are Banach-Saks operators, will be essential.

In order to show that the class of Banach spaces with the Schur property is non

Borel we will rely on the stability of this property under ℓ1-sums shown by B.Tanbay

[30], and, when dealing with the Dunford-Pettis property, the same will be shown

using one of its characterizations (see [28], and [13]) and Tanbay’s result. It is also

shown that the Schur property is at least Π1
2.

Next, we show that the set of separable Banach spaces with the complete contin-

uous property CCP is complete coanalytic. For this we use a characterization of this

property in terms of the existence of a special kind of bush on the space (see [15]).

Also, we show that the analytic Radon-Nikodym property is non Borel.

We also deal with the local structure of separable Banach spaces by showing that

the set of Banach spaces with local unconditional structure is Borel.

At last, we give several applications of the theorems obtained in these notes to non-

universality like results. In all the results proved in these notes we will be applying

techniques related to descriptive set theory and its applications to the geometry

of Banach spaces that can be found in [12], and [29]. Also, this work was highly

motivated by D. Puglisi’s paper on the position of K (X,Y ) in L (X,Y ), in which

Puglisi shows that the set of pairs of separable Banach spaces (X,Y ) such that the

ideal of compact operators from X to Y is complemented in the bounded operators

from X to Y is non Borel (see [26]).
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2. Background

A separable metric space is said to be a Polish space if there exists an equiv-

alent metric in which it is complete. A continuous image of a Polish space into

another Polish space is called an analytic set and a set whose complement is an-

alytic is called coanalytic. A measure space (X,A ), where X is a set and A is

a σ-algebra of subsets of X , is called a standard Borel space if there exists a Pol-

ish topology on this set whose Borel σ-algebra coincides with A . We define Borel,

analytic and coanalytic sets in standard Borel spaces by saying that these are the

sets that, by considering a compatible Polish topology, are Borel, analytic, and co-

analytic, respectively. Observe that this is well defined, i.e., this definition does

not depend on the Polish topology itself but on its Borel structure. A function

between two standard Borel spaces is called Borel measurable if the inverse image

of each Borel subset of its codomain is Borel in its domain. We usually refer to

Borel measurable functions just as Borel functions. Notice that, if you consider

a Borel function between two standard Borel spaces, its inverse image of analytic

or coanalytic sets is analytic or coanalytic, respectively, (see [29], Proposition 1.3,

page 50).

Given a Polish space X the set of analytic or coanalytic subsets of X is denoted

by Σ1
1(X) or Π1

1(X), respectively. Hence, the terminology Σ1
1-set or Π

1
1-set is used

to refer to analytic sets or coanalytic sets, respectively.

Let X be a standard Borel space. An analytic or coanalytic subset A ⊂ X is said

to be complete analytic or complete coanalytic if for each standard Borel space Y

and each B ⊂ Y analytic or coanalytic, respectively, there exists a Borel function

f : Y → X such that f−1(A) = B. This function is called a Borel reduction from B

to A, and B is said to be Borel reducible to A.

Let X be a standard Borel space. We call a subset A ⊂ X Σ1
1-hard (Π

1
1-hard) if

for each standard Borel space Y and each B ⊂ Y analytic (coanalytic) there exists

a Borel reduction from B to A. Therefore, to say that a set A ⊂ X is Σ1
1-hard

(Π1
1-hard) means that A is at least as complex as Σ

1
1-sets (Π

1
1-sets) in the projective

hierarchy. With this terminology we have that A ⊂ X is complete analytic (complete

coanalytic) if and only if A is Σ1
1-hard (Π

1
1-hard) and analytic (coanalytic).

As there exist analytic non Borel and coanalytic non Borel sets we have that Σ1
1-

hard and Π1
1-hard sets are non Borel. Also, if X is a standard Borel space, A ⊂ X ,

and there exists a Borel reduction from a Σ1
1-hard or Π

1
1-hard subset B of a standard

Borel space Y to A, then A is Σ1
1-hard or Π

1
1-hard, respectively. We refer to [29],

page 56, and [21], Section 26, for more on complete analytic and coanalytic sets.

Complete analytic sets or complete coanalytic sets are also called Σ1
1-complete sets

or Π1
1-complete, respectively.
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Consider a Polish space X and let F (X) be the set of all its non empty closed

sets. We endow F (X) with the Effros-Borel structure, i.e., the σ-algebra generated

by

{F ⊂ X ; F ∩ U 6= ∅},

where U varies among the open sets of X . It can be shown that F (X) with the

Effros-Borel structure is a standard Borel space ([21], Theorem 12.6). The following

well-known lemma (see [21], Theorem 12.13) will be crucial in some of our proofs.

Lemma 1 (Kuratowski-Ryll-Nardzewski selection principle). Let X be a Polish

space. There exists a sequence of Borel functions (Sn)n∈N : F (X) → X such that

{Sn(F )}n∈N is dense in F for all closed F ⊂ X .

In these notes we will only work with separable Banach spaces. We denote the

closed unit ball of a Banach space X and its unit sphere by BX and SX , re-

spectively. It is well known that every separable Banach space is isometrically

isomorphic to a closed linear subspace of C(∆) (see [21], page 79), where ∆ de-

notes the Cantor set. Therefore, C(∆) is called universal for the class of sep-

arable Banach spaces and we can code the class of separable Banach spaces by

SB = {X ⊂ C(∆); X is a closed linear subspace of C(∆)}. As C(∆) is clearly

a Polish space we can endow F (C(∆)) with the Effros-Borel structure. It can be

shown that SB is a Borel set in F (C(∆)) and hence it is also a standard Borel space

(see [12], Theorem 2.2). It now makes sense to wonder if specific sets of separable

Banach spaces are Borel or not.

Throughout these notes we will denote by {Sn}n∈N the sequence of Borel functions

Sn : SB → C(∆) given by Lemma 1 (more precisely, the restriction of those functions

to SB). Hence, for all X ∈ SB, {Sn(X)}n∈N is dense in X . By taking rational linear

combinations of the functions {Sn}, we can (and will) assume that, for allX ∈ SB, all

n, k ∈ N, and all p, q ∈ Q, there exists m ∈ N such that qSn(X)+ pSk(X) = Sm(X).

Denote by N<N the set of all finite tuples of natural numbers plus the empty set.

Given s = (s0, . . . , sn−1), t = (t0, . . . , tm−1) ∈ N<N we say that the length of s is

|s| = n, s|i = (s0, . . . , si−1) for all i ∈ {1, . . . , n}, s0 = ∅, s 6 t iff n 6 m and si = ti
for all i ∈ {0, . . . , n− 1}, i.e., if t is an extension of s. We define s < t analogously.

Define the concatenation of s and t as sat = (s0, . . . , sn−1, t0, . . . , tm−1). A subset T

of N<N is called a tree if t ∈ T implies t|i ∈ T for all i ∈ {0, . . . , |t|}. We denote the

set of trees on N by Tr. A subset I of a tree T is called a segment if I is completely

ordered and if s, t ∈ I with s 6 t, then l ∈ I for all l ∈ T such that s 6 l 6 t. Two

segments I1, I2 are called completely incomparable if neither s 6 t nor t 6 s hold if

s ∈ I1 and t ∈ I2.
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As N<N is countable, 2N
<N

(the power set of N<N) is Polish with its standard

product topology. If we think about Tr as a subset of 2N
<N

it is easy to see that Tr

is a closed set in 2N
<N

, so it is a standard Borel space. A β ∈ NN is called a branch

of a tree T if β|i ∈ T for all i ∈ N, where β|i is defined analogously as above. We

call a tree T well-founded if T has no branches and ill-founded otherwise, we denote

the set of well-founded and ill-founded trees by WF and IF, respectively. It is well

known thatWF is a complete coanalytic set of Tr, hence IF is complete analytic (see

[21], Theorem 27.1).

There is a really important index that can be defined on the set of trees called the

order index of a tree. For a given tree T ∈ Tr we define the derived tree of T as

T ′ = {s ∈ T ; ∃t ∈ T, s < t}.

By transfinite induction we define (Tξ)ξ∈ON, where ON denotes the ordinal num-

bers, as follows:

T 0 = T,

Tα = (T β)′, if α = β + 1 for some β ∈ ON,

Tα =
⋂

β<α

T β, if α is a limit ordinal.

We now define the order index on Tr. If there exists an ordinal number α < ω1,

where ω1 denotes the smallest uncountable ordinal such that T
α = ∅ we say the

order index of T is o(T ) = min{α < ω1 ; Tα = ∅}. If there is no such countable

ordinal we set o(T ) = ω1. The reason why we introduce this index is because of the

way it interacts with the notion of well-founded and ill-founded trees. We have the

following easy proposition (see [29], Chapter 3, Section 2).

Proposition 2. A tree T ∈ Tr on the natural numbers is well-founded if and only

if its order index is countable, i.e., if and only if o(T ) < ω1.

For a tree T ∈ Tr and k ∈ N, let T (k) = {s ∈ N<N ; (k)as ∈ T } and Tk = {s ∈

T ; (k) 6 s}. We have another useful application of the order index to well-founded

trees (see [29], Chapter 3, Section 2).

Proposition 3. Let T ∈ WF with o(T ) > 1, then o(T (k)) < o(T ) for all k ∈ N.

Now that we have seen all the descriptive set theoretical background we need in

order to understand our results and their proofs let us start with the real math.
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3. ℓp-Baire sums

We now treat ℓp-Baire sums of basic sequences; this tool will be crucial in many of

our results in these notes. For each p ∈ [1,∞) and each basic sequence E = (en)n∈N,

we define a Borel function ϕE ,p : Tr → SB in the following manner. For each θ ∈ Tr,

and x = (x(s))s∈θ ∈ c00(θ) we define

‖x‖E ,p,θ = sup

{( n∑

i=1

∥∥∥∥
∑

s∈Ii

x(s)e|s|

∥∥∥∥
p

E

)1/p

;

n ∈ N, I1, . . . , In incomparable segments of θ

}
,

where ‖·‖E is the norm of span{E }. We define ϕE ,p(θ) as the completion of c00(θ)

under the norm ‖·‖E ,p,θ. The space ϕE ,p(θ) is known as the ℓp-Baire sum of span{E }

(index by θ). Pick Y ⊂ C(∆) such that ϕE ,p(N
<N) is isometric to Y . If we consider

the natural isometries of ϕE ,p(θ) into ϕE ,p(N
<N), we can see ϕE ,p as a Borel function

from Tr into SB. With this in mind, we have (see [29], Proposition 3.1, page 79):

Proposition 4. Let ϕE ,p : Tr → SB be the function defined above. Then ϕE ,p is

a Borel function. The same is true if we define ‖·‖E ,0,θ as

‖x‖E ,0,θ = sup

{∥∥∥∥
∑

s∈I

x(s)e|s|

∥∥∥∥
E

; I segment of θ

}
,

and let ϕE ,0(θ) to be the completion of (c00(θ), ‖·‖E ,0,θ).

Let θ ∈ Tr, p ∈ [1,∞), and let E = (en)n∈N be a basic sequence. We denote by

E ∗ the same sequence as E but with the first term deleted. We clearly have that

ϕE ,p(θ) is isomorphic to

R⊕

(⊕

λ∈Λ

ϕE ∗,p(θ(λ))

)

ℓp

,

where Λ = {λ ∈ N ; (λ) ∈ θ}, and the term R appears because of the empty co-

ordinate of θ. The following lemma is of great importance for understanding the

geometry of ϕE ,p(θ).

Lemma 5. The Borel function ϕE ,p : Tr → SB defined above has the following

properties:

(i) If θ ∈ IF, then ϕE ,p(θ) contains span{E }.

(ii) If θ ∈ WF, then ϕE ,p(θ) is ℓp-saturated, i.e., every infinite dimensional subspace

of ϕE ,p(θ) contains a copy of ℓp.
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The analogous is true for ϕE ,0 : Tr → SB, i.e.:

(i) If θ ∈ IF, then ϕE ,0(θ) contains span{E }.

(ii) If θ ∈ WF, then ϕE ,0(θ) is c0-saturated, i.e., every infinite dimensional subspace

of ϕE ,0(θ) contains a copy of c0.

Before we prove this lemma, let us show a simple lemma that will be important

in our proof.

Lemma 6. A finite sum of ℓp-saturated or c0-saturated spaces is ℓp-saturated or

c0-saturated, respectively.

P r o o f. Say (X1, ‖·‖1), . . . , (Xn, ‖·‖n) are ℓp-saturated. Let (X, ‖·‖X) be the

sum of those spaces. As this is a finite sum, we can assume X =
( n⊕
j=1

Xj

)

ℓ1
, i.e.,

if (x1, . . . , xn) ∈ X , then ‖x‖X =
∑

j ‖xj‖j. Denote by Pj : X → Xj the standard

projection on the j-th coordinate. Let E ⊂ X be an infinite dimensional subspace.

Claim: Pj0 : E → Xj0 is not strictly singular, for some j0 ∈ {1, . . . , n}.

Once the claim is proved, the result trivially follows. Assume Pj is strictly singular

for all j ∈ {1, . . . , n}. By a classical property of strictly singular operators (see [12],

Proposition B.5), we know that for every ε > 0 there exists an infinite dimensional

subspace A ⊂ E such that ‖Pj|A‖ < ε, for all j ∈ {1, . . . , n}. Pick x ∈ A of norm

one. Then, as x = (P1(x), . . . , Pn(x)), we have ‖x‖X 6 nε. By choosing ε < 1/n we

get a contradiction. �

P r o o f of Lemma 5. If θ ∈ IF, clearly ϕE ,p(θ) contains span{E }. Indeed, let β

be a branch of θ, then span{E } ∼= ϕE ,p(β) →֒ ϕE ,p(θ), where by ϕE ,p(β) we mean

ϕE ,p applied to the tree {s ∈ N<N ; s < β}.

Say θ ∈ WF. Let us proceed by transfinite induction on the order of θ. If

o(θ) = 1 the result is clear. Indeed, if o(θ) = 1, ϕE ,p(θ) is finite dimensional, so it

has no infinite dimensional subspaces. Assume ϕE ,p(θ) is ℓp-saturated for all basic

sequences E , and all θ ∈ WF with o(θ) < α for some α < ω1. Fix θ ∈ WF with

o(θ) = α.

Let Λ = {λ ∈ N ; (λ) ∈ θ}, and enumerate Λ, say Λ = {λi ; i ∈ N}. For each

λ ∈ Λ, let θλ = {s ∈ θ ; (λ) 6 s}. As θ ∈ WF, Proposition 3 gives us

o(θ(λj)) < o(θ) = α, ∀j ∈ N.

Consider now the projections

Pλn
: ϕE ,p(θ) → ϕE ,p

( n⋃

j=1

θλj

)
,

(as)s∈θ → (as)s∈
⋃

n
j=1 θλj

.
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As ϕE ,p

( n⋃
j=1

θλj

)
is the direct sum of

n⊕
j=1

ϕE ∗,p(θ(λj)) with a finite dimensional

space, our inductive hypothesis holds for it as well. Indeed, it is clear that

ϕE ,p

( n⋃

j=1

θλj

)
∼= R⊕

( n⊕

j=1

ϕE ∗,p(θ(λj))

)
.

Hence, the inductive hypothesis and Lemma 6, give us that ϕE ,p

( n⋃
j=1

θλj

)
is ℓp-

saturated as well.

Say E ⊂ ϕE ,p(θ) is an infinite dimensional subspace.

Case 1 : There exists j ∈ N such that Pλj
: E → ϕE ,p

( j⋃
i=1

θλi

)
is not strictly

singular.

Then there exists an infinite dimensional subspace Ẽ ⊂ E such that Pλj |Ẽ
is

an isomorphism onto its image. By our inductive hypothesis, ϕE ,p

( j⋃
i=1

θλi

)
is ℓp-

saturated, so we are done.

Case 2 : Pλj
: E → ϕE ,p

( j⋃
i=1

θλi

)
is strictly singular for all j ∈ N.

Claim: There exists (xn)n∈N a normalized sequence in E such that Pλj
(xn) → 0

as n → ∞, for all j ∈ N.

Indeed, by a well-known consequence of the definition of strictly singular operators

for all j ∈ N there exists a normalized sequence (xj
n)n∈N such that ‖Pλj

(xj
n)‖ < 1/n

for all n ∈ N. Let (xn)n∈N be the diagonal sequence of the sequences (x
j
n)n∈N, i.e.,

xn = xn
n for all n ∈ N. As i 6 j implies ‖Pλi

(x)‖ 6 ‖Pλj
(x)‖ for all x ∈ E, (xn)n∈N

has the required property.

Say (εi)i∈N is a sequence of positive numbers converging to zero. Using the claim

above and the fact that Pλj
(x) → x as n → N, for all x ∈ ϕE ,p(θ), we can pick

increasing sequences of natural numbers (nk)k∈N and (lk)k∈N such that

i) ‖Pλlk
(xnk

)− xnk
‖θ < εk for all k ∈ N, and

ii) ‖Pλlk
(xnk+1

)‖θ < εk for all k ∈ N.

For all k ∈ N, let yk = Pλlk
(xnk

) − Pλlk−1
(xnk

). Choosing εk small enough we

can assume ‖yk‖
p
θ ∈ (1/2, 2). It is easy to see that (yk)k∈N is equivalent to (ẽk)k∈N,

where (ẽk)k∈N is the standard ℓp-basis. Indeed, picking a1, . . . , aN ∈ R, then

1

2

N∑

i=1

|ai|
p
6

N∑

i=1

‖aiyi‖
p
θ =

∥∥∥∥
N∑

i=1

aiyi

∥∥∥∥
p

θ

=

N∑

i=1

‖aiyi‖
p
θ 6 2

N∑

i=1

|ai|
p,

where the equalities above only hold because the supports of (yk)k∈N are completely

incomparable. Therefore, by choosing (εk)k∈N converging to zero fast enough, the

1130



principle of small perturbations (see [1], Theorem 1.3.9) gives us that (xnk
)k∈N is

equivalent to (yk)k∈N ∼ (ẽk)k∈N. So E contains a copy of ℓp.

The proof that ϕE ,0(θ) is c0-saturated of θ ∈ WF is analogous. �

By letting E be a basis for the universal space C(∆) we get the following corollary.

Corollary 7. The set of universal spaces cannot be separated by a Borel set from

the set of ℓp-saturated spaces, for all p ∈ [1,∞), i.e., there is no Borel subset U ⊂ SB

such that all the universal spaces (of SB) are in U and all the ℓp-saturated spaces

(of SB) are not in U .

4. Complementability of ideals of L (X), Part I

4.1. Unconditionally converging operators. We say that an operator T :

X → Y is unconditionally converging (see [25]) if it maps weakly unconditionally

Cauchy series into unconditionally converging series. LetX and Y be Banach spaces.

We let U (X) be the set of unconditionally converging operators from X to itself.

We write Y
⊥
−֒→ X if Y is isomorphic to a complemented subspace of X .

Theorem 8. Let U = {X ∈ SB; U (X)
⊥
−֒→ L (X)}. Then U is complete

coanalytic.

P r o o f. In order to show this we only need to use that U (X) is complemented

in L (X) if and only if c0 does not embed in X (see [4], page 452). Therefore,

U = NCc0 (where NCX = {Y ∈ SB; X 6 →֒ Y } for X ∈ SB). Applying Lemma 5 to

p = 2, and letting E be the standard basis of c0, we obtain that ϕ
−1
E ,p(U ) = WF. As

NCX is well known to be coanalytic for all X ∈ SB, we are done. We would like to

point out that NCX was shown to be complete coanalytic, for all infinite dimensional

X ∈ SB, in [6], so this result is actually just a corollary of [6] and [4]. �

4.2. Weakly compact operators. We say that an operator T : X → Y is weakly

compact if it maps bounded sets into relatively weakly compact sets. For X ∈ SB

we let W (X) be the set of weakly compact operators on X to itself.

Theorem 9. Let W = {X ∈ SB; W (X)
⊥
−֒→ L (X)}. Then W is Π1

1-hard. In

particular, W is non Borel.

This result is a simple consequence of the following lemma (whose statement and

part of its proof can be found in [29], Proposition 2.2, page 78).
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Lemma 10. Let E = (en)n∈N be a basic sequence, and p ∈ (1,∞). Then ϕE ,p(θ)

is reflexive for all θ ∈ WF.

P r o o f of Theorem 9. In order to show this we will use another result of [4],

page 450. In that paper it is shown that if c0 →֒ X , then W (X) is not comple-

mented in L (X). Let ϕE ,2 : Tr → SB, where E is the standard basis of c0. Let us

observe that ϕ−1
E ,2(W ) = WF. Indeed, if θ ∈ IF we saw that c0 →֒ ϕE ,2(θ), hence

ϕE ,2(θ) /∈ W . If θ ∈ WF, then Lemma 10 implies that ϕE ,2(θ) is reflexive, which

implies ϕE ,2(θ) ∈ W . Indeed, a Banach space is reflexive if and only if its unit ball

is weakly compact, therefore W (X) = L (X). �

Problem 11. Is W coanalytic? If yes, we had shown that W is complete coana-

lytic.

5. Geometry of Banach spaces

5.1. Banach-Saks property. A Banach spaceX is said to have the Banach-Saks

property if every bounded sequence (xn)n∈N in X has a subsequence (xnk
)k∈N such

that its Cesàro mean n−1
n∑

k=1

xnk
is norm convergent. We denote the subset of SB

coding the separable Banach spaces with the Banach-Saks property by BS.

In [5], page 373, B.Beauzamy characterized not having the Banach-Saks prop-

erty in terms of the existence of a sequence satisfying some geometrical inequality.

Precisely:

Theorem 12. An X ∈ SB does not have the Banach-Saks property if and only

if there exist ε > 0 and a sequence (xn)n∈N in BX such that, for all subsequences

(xnk
)k∈N for all m ∈ N, and for all l ∈ {1, . . . ,m}, the following holds:

∥∥∥∥
1

m

( l∑

k=1

xnk
−

m∑

k=l+1

xnk

)∥∥∥∥ > ε.

Theorem 13. BS is coanalytic in SB.

P r o o f. This is just a matter of applying Theorem 12 and counting quantifiers.

Indeed,

X ∈ BS ⇔ ∀(nk)k∈N ∈ N
N, ∀ε ∈ Q+,

∃m ∈ N, ∃l ∈ {1, . . . ,m}, ∃k1 < . . . < km ∈ N,

such that

∥∥∥∥
1

m

( l∑

j=1

Snkj
(BX)−

m∑

j=l+1

Snkj
(BX)

)∥∥∥∥ < ε,
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where {Sn}n∈N is the sequence of Borel functions in Lemma 1. As X 7→ BX is

a Borel function from SB into F (C(∆)), we are done. �

The previous theorem shows that BS is at least coanalytic in SB, but it does not

say anything about BS being Borel or not. The next theorem takes care of this by

showing that coanalyticity is the most we can get of BS in relation to its complexity.

Theorem 14. BS is Π1
1-hard. Moreover, BS is complete analytic.

P r o o f. Let E be the standard ℓ1 basis, and p = 2. Let us verify that ϕ−1
E ,p(BS) =

WF.

If θ ∈ IF we clearly have ℓ1 →֒ ϕE ,p(θ). Indeed, if β is a branch of θ we have

ϕE ,p(β) ∼= ℓ1. As ℓ1 →֒ ϕE ,p(θ) and ℓ1 is clearly not in BS (taking its standard basis

for example, it clearly does not have a subsequence with norm converging Cesàro

mean) we conclude that ϕE ,p(θ) /∈ BS.

Let us show that if θ ∈ WF, then ϕE ,p(θ) ∈ BS. We proceed by transfinite

induction on the order of θ ∈ WF. Say o(θ) = 1. Then, for all basic sequences Ẽ ,

ϕ
Ẽ ,p(θ) is 1-dimensional and we are clearly done. Assume ϕẼ ,p(θ) ∈ BS for all basic

sequences Ẽ , and all θ ∈ WF with o(θ) < α for some α < ω1. Pick θ ∈ WF with

o(θ) = α, a basic sequence Ẽ , and let us show that ϕ
Ẽ ,p(θ) ∈ BS.

Let Λ = {λ ∈ N; (λ) ∈ θ}. As θ ∈WF, Proposition 3 gives us

o(θ(λ)) < o(θ) = α, ∀λ ∈ Λ.

Our induction hypothesis implies that ϕ
Ẽ ∗,p(θ(λ)) ∈ BS for all λ ∈ Λ. Now, notice

that

ϕ
Ẽ ,p(θ)

∼= R⊕

(⊕

λ∈Λ

ϕ
Ẽ ∗,p(θ(λ))

)

ℓ2

,

where we get the R above because of the coordinate related to s = ∅ ∈ θ. By

J.R. Partington’s result in [23], page 370, we have that the ℓ2-sum of spaces in BS is

also in BS. Hence,
(⊕
λ∈Λ

ϕ
Ẽ ∗,p(θ(λ))

)

ℓ2
is in BS and we conclude that ϕ

Ẽ ,p(θ) ∈ BS.

The transfinite induction is now over, and so is our proof. �

5.2. Alternating Banach-Saks property. A Banach space X is said to have

the alternating Banach-Saks property if every bounded sequence (xn)n∈N in X has

a subsequence (xnk
)k∈N such that its alternating-signs Cesàro mean n

−1
n∑

k=1

(−1)kxnk

is norm convergent. We denote the set coding the separable Banach spaces with the

alternating Banach-Saks property by ABS.

In [5], page 369, B.Beauzamy proves the following:
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Theorem 15. A X ∈ SB does not have the alternating Banach-Saks property if

and only if there exist ε > 0 and a sequence (xn)n∈N in BX such that for all l ∈ N,

if l 6 n(1) < . . . < n(2l), where n(i) ∈ N for all i ∈ {1, . . . , 2l}, then

∥∥∥∥
2l∑

i=1

cixn(i)

∥∥∥∥ > ε

2l∑

i=1

|ci|

for all c1, . . . , c2l ∈ R.

Theorem 16. ABS is coanalytic in SB.

P r o o f. This is just a matter of applying Theorem 15 and counting quantifiers.

Indeed,

X ∈ ABS⇔ ∀(nk)n∈N ∈ N
N, ∀ε ∈ Q+,

∃l ∈ N, ∃l 6 k(1) < . . . < k(2l) ∈ N,

such that ∃c1, . . . , c2l ∈ Q,

∥∥∥∥
2l∑

j=1

ckSnk(j)
(BX)

∥∥∥∥ < ε

2l∑

j=1

|cj |.

�

Now we show that coanalyticity is the most we can get of ABS in relation to its

complexity.

Theorem 17. ABS is Π1
1-hard. Moreover, ABS is complete coanalytic.

P r o o f. Let E be the standard ℓ1 basis, and p = 2. We will show that

ϕ−1
E ,p(ABS) = WF.

If θ ∈ IF, we have ℓ1 →֒ ϕE ,p(θ). As ℓ1 is not in ABS (we can take its standard

basis again, it clearly does not have a subsequence with norm converging alternating-

signs Cesàro mean) we conclude that ϕE ,p(θ) /∈ ABS.

Let us show that if θ ∈ WF, then ϕE ,p(θ) ∈ ABS. We proceed by transfinite

induction on the order of θ ∈ WF. Say o(θ) = 1. Then, for any basic sequence Ẽ ,

ϕ
Ẽ ,p(θ) is 1-dimensional and we are clearly done. Assume ϕ

Ẽ ,p(θ) ∈ ABS for all

basic sequences Ẽ , and all θ ∈ WF with o(θ) < α for some α < ω1. Pick θ ∈ WF

with o(θ) = α.

Using the same notation as in the proof of Theorem 14, we have

ϕ
Ẽ ,p(θ)

∼= R⊕

(⊕

λ∈Λ

ϕ
Ẽ ∗,p(θ(λ))

)

ℓ2

.
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By Lemma 5, ℓ1 6 →֒ ϕ
Ẽ ,p(θ). B. Beauzamy showed in [5], page 368, that a Banach

space not containing ℓ1 has the alternating Banach-Saks property if and only if it

has the weak Banach-Saks property. So, we only need to show that ϕ
Ẽ ,p(θ) is in

WBS. As ϕ
Ẽ ,p

(θ(λ)) ∈ ABS for all λ ∈ Λ, we have ϕ
Ẽ ,p

(θ(λ)) ∈WBS for all λ ∈ Λ.

By a corollary of J.R. Partington (see [23], page 373),
(⊕
λ∈Λ

ϕ
Ẽ ∗,p(θ(λ))

)

ℓ2
is also in

WBS. Thus, we conclude that ϕ
Ẽ ,p(θ) ∈WBS, and we are done. �

5.3. Weak Banach-Saks property. A Banach space is said to have the weak

Banach-Saks property if every weakly null sequence has a subsequence such that its

Cesàro mean is norm convergent to zero. We denote the set coding the separable

Banach spaces with the weak Banach-Saks property byWBS. The weak Banach-Saks

property is often called the Banach-Saks-Rosenthal property.

Theorem 18. WBS is Π1
1-hard. In particular, WBS is non Borel.

P r o o f. First we notice that we cannot use the same E as in Theorem 14 because,

as ℓ1 has the Schur property, ℓ1 is clearly in WBS. Let E be a basis for C(∆), and

p = 2. It is shown in [14] that C(∆) is not in WBS. If we proceed exactly as in the

proof of Theorem 17, and use the stability of the weak Banach-Saks property under

ℓ2-sums (see [23], page 373), we will be done. �

Remark. It is worth noticing that the same ϕE ,p as constructed above could be

used to prove Theorem 14, and Theorem 17.

With that being said, let us try to obtain more information about the complexity

of WBS. For this we use the following lemma.

Lemma 19. Let (xn)n∈N be a bounded sequence in a Banach spaceX . A sequence

(xn)n∈N is weakly null if and only if every subsequence of (xn)n∈N has a convex block

subsequence converging to zero in norm. In particular, if (xn)n∈N is a weakly null

sequence in a Banach space X , and if X embeds into another Banach space Y , then

(xn)n∈N is weakly null in Y .

P r o o f. Say every subsequence of (xn)n∈N has a convex block subsequence con-

verging to zero in norm. First we show that (xn)n∈N has a weakly null subsequence.

As (xn)n∈N is bounded, Rosenthal’s ℓ1-theorem (see [27]) says that we can find a sub-

sequence that is either weak-Cauchy or equivalent to the usual ℓ1-basis. As ℓ1’s usual

basis has no subsequence with a convex block sequence converging to zero in norm,

we conclude that (xn)n∈N must have a weak-Cauchy subsequence. By hypothesis,
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this sequence must have a convex block subsequence converging to zero in norm, say
(
yk =

lk+1∑
i=lk+1

aixni

)

k∈N

, for some subsequence (nk) of natural numbers.

Say (xnk
)k∈N is not weakly null. Then pick f ∈ X∗ such that f(xnk

) 6→ 0. As

(xnk
)k∈N is weak-Cauchy, there exists δ 6= 0 such that f(xnk

) → δ. Hence, f(yk) → δ,

absurd, because (yk)k∈N is norm convergent to zero.

Now assume (xn)n∈N is not weakly null. Then we can pick f ∈ X∗, a subsequence

(nk)k∈N, and δ 6= 0, such that f(xnk
) → δ. As the subsequence (xnk

)k∈N has the

same property as (xn)n∈N, we can pick a weakly null subsequence, say (xnkl
)l∈N.

Hence f(xnkl
) → 0, absurd.

For the converse we only need to apply Mazur’s theorem. �

For every X ∈ SB, let

E(X) =

{
((xk)k∈N, (nk)k∈N) ∈ XN × [N] ; ∃r ∈ N, ∀j ∈ N, ‖xj‖ < r ∀ε ∈ Q+,

∀n ∈ N, ∃an, . . . , an+l ∈ Q+

(n+l∑

i=n

ai = 1

)
,

∥∥∥∥
n+l∑

i=n

aixni

∥∥∥∥ < ε

}
,

where [N] stands for the subset of NN consisting of all increasing sequences of natural

numbers. As [N] is easily seen to be Borel, we have that E(X) is Borel in XN × [N].

Define F (X) by

F (X)c = π(E(X)c),

where π denotes the projection into the first coordinate. Notice that F (X) is coan-

alytic and that F (X) consists of all the bounded sequences in XN with the property

that all of its subsequences have a convex block subsequence converging to zero in

norm. By Lemma 19, F (X) is the set of all weakly null sequences of X .

Theorem 20. The set of weakly null sequences F (X) ⊂ XN of X is coanalytic,

for all X ∈ SB.

Say F = F (C(∆)). Let A = {(X, (xn)n∈N) ∈ SB× F ; ∀n ∈ N, xn ∈ X}, and

G = π

({
(X, (xn)n∈N) ∈ A ; ∃ε ∈ Q+, ∀n1 < . . . < nm, ∀l ∈ {1, . . . ,m},

∥∥∥∥
1

m

( l∑

k=1

xnk
−

m∑

k=l+1

xnk

)∥∥∥∥ > ε

})
,

where π denotes the projection into SB. B. Beauzamy’s paper (see [5]) implies that

WBS = Gc. We have just shown that WBS is the complement of a Borel image of
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a coanalytic set. If a subset of a standard Borel space X has this property we say

that it belongs to Π1
2(X), see [21] or [29] for more details on the projective hierarchy

(Σ1
n,Π

1
n)n∈N.

Theorem 21. WBS ∈ Π1
2(SB).

Problem 22. Is WBS coanalytic? If yes, we have shown that WBS is complete

coanalytic.

Remark. We have just seen that the set of weakly null subsequences F (X) ⊂ XN

of a separable Banach space X is coanalytic in XN. It is easy to see that F (X) is

actually Borel if X∗ is separable. Indeed, if {fn}n∈N is dense in X∗, we have

F (X) =
⋂

n∈N

⋂

ε∈Q+

⋃

k∈N

⋂

m>k

{(xj)j∈N ∈ XN ; |fn(xm)| < ε}.

Also, as ℓ1 is a Schur space, F (ℓ1) consists of the set of norm null sequences in ℓ1,

and it is easily seen to be Borel. Which means, X∗ does not need to be separable in

order to F (X) to be Borel.

On the other hand, if E is the ℓ1-basis and p = 2, we have that the standard basis

of ϕE ,p(θ) is weakly null if and only if θ ∈ WF. Therefore, F (ϕE ,p(N
<N)) is complete

coanalytic. For the same reason, F (C(∆)) is complete coanalytic.

Problem 23. Under what conditions is F (X) (coanalytic) non Borel?

6. Complementability of ideals of L (X), Part II

6.1. Banach-Saks operators. In the same spirit as Sections 3 and 4, we now

take a look at operator ideals of L (X). Let X be a Banach space, we say T ∈ L (X)

is a emphBanach-Saks operator if for each bounded sequence (xn)n∈N there is a sub-

sequence (xnk
)k∈N such that the Cesàro mean n−1

n∑
k=1

T (xnk
) is norm convergent.

We denote the space of Banach-Saks operators from X to itself by BS (X).

Theorem 24. The set BS = {X ∈ SB; BS (X)
⊥
−֒→ L (X)} is Π1

1-hard. In

particular, BS is non Borel.

P r o o f. Let E be a basis for C(∆), and p = 2. If θ ∈ WF, then ϕE ,p(θ) ∈ BS.

Hence, BS (ϕE ,p(θ)) = L (ϕE ,p(θ)), and we have ϕE ,p(θ) ∈ BS for all θ ∈ WF.

Let us show that the same cannot be true if θ ∈ IF.

Say θ ∈ IF. Then ϕE ,p(θ) ∼= C(∆) ⊕ Y for some Y ∈ SB. Let P1 : C(∆) ⊕

Y → C(∆) be the standard projection. Suppose there exists a bounded projection
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P : L (C(∆) ⊕ Y ) → BS (C(∆) ⊕ Y ). Define P0 : L (C(∆)) → BS (C(∆)) as, for

all T ∈ L (C(∆)),

P0(T ) = P1(P (T̃ ))|C(∆),

where T̃ : C(∆)⊕Y → C(∆)⊕Y is the natural extension, i.e., T̃ (x, y) = (T (x), 0) for

all (x, y) ∈ C(∆)⊕ Y . Notice that P0(T ) ∈ BS (C(∆)), so P0 is well defined. Also,

if T ∈ BS (C(∆)), then T̃ ∈ BS (C(∆) ⊕ Y ), which implies P (T̃ ) = T̃ (because P

is a projection). Therefore, P0 is a projection from L (C(∆)) onto BS (C(∆)). Let

us observe that this gives us a contradiction.

It is known that T : C(∆) → C(∆) has the Banach-Saks property if and only if

T is weakly compact (see [11], page 112). Hence, BS (C(∆)) = W (C(∆)) and, as

c0 →֒ C(∆), we have thatBS (C(∆)) is not complemented inL (C(∆)) [4]. Absurd.

�

Problem 25. IsBS coanalytic? If yes, our previous proof would show thatBS

is complete coanalytic.

We have studied three classes of ideals ofL (X) (U (X), W (X), andBS (X)) and

whether those ideals are complemented in L (X) or not. Another natural question

would be to study the complexity of pairs (X,Y ) ∈ SB2 such that their respective

ideals (U (X,Y ), W (X,Y ), and BS (X,Y )) are complemented in L (X,Y ). As

mentioned in the introduction, this problem had been solved for the ideal of compact

operators K (X,Y ) by D. Puglisi in [26].

Let ϕE ,p : Tr → SB be as defined above and define ϕ(θ) = (ϕE ,p(θ), ϕE ,p(θ)) ∈

SB2 for all θ ∈ Tr. Clearly, we have that ϕ−1({(X,Y ) ∈ SB2 ; BS (X,Y )
⊥
−֒→

L (X,Y )}) = WF. Conclusion:

Theorem 26. The following sets are Π1
1-hard (hence, non Borel) in the product

SB2 : {(X,Y ) ∈ SB2 ; BS (X,Y )
⊥
−֒→ L (X,Y )}, {(X,Y ) ∈ SB2 ; U (X,Y )

⊥
−֒→

L (X,Y )}, and {(X,Y ) ∈ SB2 ; W (X,Y )
⊥
−֒→ L (X,Y )}.

7. Geometry of Banach spaces, Part II

7.1. Schur property. We say that a Banach space X has the Schur property if

every weakly convergent sequence of X is norm convergent.
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Theorem 27. Let S = {X ∈ SB; X has the Schur property}, then S is Π1
1-hard.

In particular, S is non Borel.

P r o o f. Let E be the standard basis for c0, and p = 1. As c0 →֒ ϕE ,p(θ) if

θ ∈ IF, we have ϕE ,p(θ) 6∈ S for all θ ∈ IF. Mimicking the proof of Theorem 14 we

have that

ϕE ,p(θ) ∼= R⊕

(⊕

λ∈Λ

ϕE ∗,p(θ(λ))

)

ℓ1

,

where Λ = {λ ∈ N; (λ) ∈ θ}. Proceeding by transfinite induction and using

B.Tanbay’s result about the stability of the Schur property under ℓ1-sums (see [30],

page 350), we conclude that ϕE ,p(θ) ∈ S for all θ ∈ WF. �

Let us try to obtain more information about the complexity of S. For this, notice

that a Banach space X does not have the Schur property if and only if it has a weakly

null sequence (xn)n∈N in SX .

Let F = F (C(∆)) be defined as in Section 5, i.e., F is the set of all weakly null

subsequences of C(∆). Let E = F ∩ SN

C(∆), so E is coanalytic in SN

C(∆), and define

G = π({(X, (xn)n∈N) ∈ SB× E ; ∀n ∈ N, xn ∈ X}),

where π denotes the projection into SB. We can easily see that S = Gc. We have

just shown that S is the complement of a Borel image of a coanalytic set.

Theorem 28. S ∈ Π1
2(SB).

Remark. Notice that, if F = F (C(∆)) is Borel, then we have actually shown

that S is coanalytic.

Problem 29. Is S coanalytic? If yes, our previous proof would show that S is

complete coanalytic.

7.2. Dunford-Pettis property. A Banach space X is said to have the Dunford-

Pettis property if every weakly compact operator T : X → Y from X into another

Banach space Y takes weakly compact sets into norm-compact sets. In other words,

X has the Dunford-Pettis property if every weakly compact operator from X into

another Banach space Y is completely continuous. We have the following (see [28],

and [13]):

Theorem 30. X∗ has the Schur property if and only if X has the Dunford-Pettis

property and X does not contain ℓ1.
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Theorem 31. Let DP = {X ∈ SB; X has the Dunford-Pettis property}. DP is

Π1
1-hard. In particular, DP is non Borel.

P r o o f. Let E be the standard basis for ℓ2, and p = 0. We show that ϕ−1
E ,0(DP) =

WF.

If θ ∈ IF we have ϕE ,0(θ) ∼= ℓ2 ⊕ Y for some Banach space Y . Hence, as ℓ2 is

reflexive, it is clear that T (x, y) = (x, 0) is a weakly compact operator from ℓ2 ⊕ Y

to itself which is not completely continuous. Therefore, ϕE ,0(θ) 6∈ DP for all θ ∈ IF.

Say θ ∈ WF. By Theorem 30, in order to show that ϕE ,0(θ) ∈ DP it is enough to

show that ϕE ,0(θ)
∗ has the Schur property. With the same notation as in the proofs

of the previous theorems, we have

ϕE ,0(θ) ∼= R⊕

(⊕

λ∈Λ

ϕE ∗,0(θ(λ))

)

c0

,

where Λ = {λ ∈ N ; (λ) ∈ θ}. Hence, we have

ϕE ,0(θ)
∗ ∼= R⊕

(⊕

λ∈Λ

ϕE ∗,0(θ(λ))
∗

)

ℓ1

.

Therefore, if we proceed by transfinite induction and use the stability of the Schur

property under ℓ1-sums (exactly as we did in the proof of Theorem 27), we will be

done. �

Problem 32. Is DP coanalytic? If yes, our previous proof would show that DP

is complete coanalytic.

An operator T : X → Y is said to be completely continuous if T maps weakly

compact sets into norm-compact sets. For a given X ∈ SB, let CC (X) be the set of

completely continuous operators from X to itself.

Problem 33. Let C C = {X ∈ SB; CC (X)
⊥
−֒→ L (X)}. Is CC non Borel? If

yes, is it coanalytic?

7.3. Complete continuous property. A Banach space X is said to have the

complete continuous property (or just to have the CCP) if every operator from

L1[0, 1] to X is completely continuous (i.e., if it carries weakly compact sets into

norm-compact sets). It is well known that L1[0, 1] does not have this property.
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Theorem 34. Let CCP = {X ∈ SB; X has the CCP}. CCP is Π1
1-hard. In

particular, CCP is non Borel.

P r o o f. Let E be a basis of L1[0, 1], and p = 2.

By Lemma 10, if θ ∈ WF, then ϕ(θ) is reflexive, which implies ϕ(θ) = ϕ(θ)∗∗ is

a separable dual. As separable duals have the Radon-Nikodym property (Dunford-

Pettis theorem, see [10]) and RNP implies CCP (see [15], page 61), we conclude that

ϕ(θ) ∈ CCP, for all θ ∈ WF.

On the other hand, if θ ∈ IF we have that L1[0, 1] →֒ ϕE ,p(θ). As L1[0, 1] does

not have CCP, this clearly implies ϕE ,p(θ) 6∈ CCP for all θ ∈ IF. �

M.Girardi had shown (see [15], page 70) that a Banach space X has the CCP if

and only if X has no bounded δ-Rademacher bush on it (the original terminology

used by M.Girardi was δ-Rademacher tree, but in order to be coherent with our

terminology we chose to call it a bush). A δ-Rademacher bush on X is a set of the

form {xl
k ∈ X ; k ∈ N, l ∈ {1, . . . , 2k}} satisfying

(i) xl
k−1 = 1

2 (x
2l−1
k + x2l

k ) for all k ∈ N, and l ∈ {1, . . . , 2k−1};

(ii)
∥∥∥
2k−1∑
l=1

(x2l−1
k − x2l

k )
∥∥∥ > 2kδ for all k ∈ N.

Theorem 35. A Banach space X has the CCP if and only if there exists no

bounded δ-Rademacher bush on X .

Theorem 36. CCP is coanalytic. Moreover, CCP is complete coanalytic.

P r o o f. We use M.Girardi’s characterization of the complete continuous prop-

erty to show that CCP is coanalytic. To simplify the notation below we denote by

(nl
k)k∈N,l∈{1,...,2k} ∈ NN the sequence n1

1, n
2
1, n

1
2, . . . , n

4
2, n

1
3, . . ., etc.

X ∈ CCP ⇔ ∀(nl
k) ∈ N

N(∃M ∈ N, ∀k ∈ N, ∀l ∈ {1, . . . , 2k}, ‖Snl
k
(X)‖ < M)

∧
(
Snl

k−1
(X) =

Sn2l−1
k

(X) + Sn2l
k
(X)

2
, ∀k ∈ N, ∀l ∈ {1, . . . , 2k−1}

)

⇒

(
∀δ ∈ Q+, ∃k ∈ N,

∥∥∥∥
2k−1∑

l=1

(Sn2l−1
k

(X)− Sn2l
k
(X))

∥∥∥∥ 6 2kδ

)
.

The statement above holds because we assume {Sn}n∈N to be closed under rational

linear combinations. �

7.4. Analytic Radon-Nikodym property. It was shown in [6] that RNP =

{X ∈ SB; X has the Radon Nikodym property} is complete coanalytic. Here we
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deal with the analytic Radon Nikodym property and find a lower bound for its

complexity.

A complex Banach space X has the analytic Radon-Nikodym property if every

X-valued measure of bounded variation, defined on the Borel subsets of T = {z ∈ C ;

|z| = 1} whose negative Fourier coefficients vanish, has a Radon-Nikodym derivative

with respect to the Lebesgue measure on T.

So far, we have only been working with real Banach spaces. But, as CC(∆) (the

space of the complexed valued continuous functions endowed with the supremum

norm) is universal for the class of serapable complex Banach spaces, we can code

the class of separable complex Banach spaces in an analogous way. Precisely, we

let SBC = {X ⊂ CC(∆); X is a closed linear subspace}. Analogously as before,

SBC endowed with the Effros-Borel structure is a Polish space and it makes sense to

wonder whether classes of separable complex Banach spaces with specific properties

are Borel or not in this coding. With this in mind we, have:

Theorem 37. Let a-RNP = {X ∈ SBC ; X has the analytic Radon-Nikodym

property}. Then a-RNP is Π1
1-hard. In particular, a-RNP is non Borel.

For the proof of this result two well known theorems will do the work (see [16]).

Theorem 38. If X has the Radon-Nikodym property, then X has the analytic

Radon-Nikodym property.

Theorem 39. If X has the analytic Radon-Nikodym property, then X does not

contain c0.

P r o o f of Theorem 37. Let ϕ : Tr → SBC be defined as in the proof of Theo-

rem 8. Say θ ∈ WF. Then ϕ(θ) is reflexive, hence ϕ(θ) = ϕ(θ)∗∗ is a separable dual,

therefore it has the RNP. By Theorem 38, ϕ(θ) ∈ a-RNP for all θ ∈ WF.

On the other hand, if θ ∈ IF, then c0 →֒ ϕ(θ), hence, by Theorem 39, ϕ(θ) /∈

a-RNP. �

8. Local structure of Banach spaces

8.1. Local unconditional structure. A Banach space X is said to have local

unconditional structure (or l.u.st.) if there exists λ > 0 such that for each finite

dimensional Banach space E ⊂ X there exists a finite dimensional space F with an

unconditional basis and operators u : E → F and w : F → X such that w◦u = Id|E ,

and ub(F )‖u‖‖w‖ 6 λ, where ub(F ) is an unconditional constant for F .
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Theorem 40. Let LUST = {X ∈ SB; X has l.u.st.}. LUST is Borel.

P r o o f. In order to make the idea behind the notation below clear, let us

remember some simple facts about linear algebra. Let X be a Banach space and

x1, . . . , xl ∈ X\{0}. Then span{x1, . . . , xl} has dimension l if and only if there exists

K ∈ Q+ such that
∥∥∥

k∑
i=1

aixi

∥∥∥ 6 K
∥∥∥

l∑
i=1

aixl

∥∥∥ for all k 6 l, and all a1, . . . , al ∈ Q.

Also, if x1, . . . , xl ∈ X are linear independent, then x1, . . . , xl are M -unconditional

if and only if
∥∥∥

l∑
i=1

aixi

∥∥∥ 6 M
∥∥∥

l∑
i=1

bixi

∥∥∥ for all a1, . . . , al, b1, . . . , bl ∈ Q such that

|ai| 6 |bi| for all i ∈ {1, . . . , l}.

Remember the functions {Sn}n∈N were chosen to be linearly closed under ra-

tional linear combinations. Say X,Y ∈ SB, n1, . . . , nk ∈ N, and n′
1, . . . , n

′
k ∈ N.

If (Sni
(X))ki=1 is linearly independent, we denote by P (X,Y, (ni), (n

′
i)) the linear

function from span{Sn1(X), . . . , Snk
(X)} to span{Sn′

1
(Y ), . . . , Sn′

k
(Y )} such that

Sni
(X) 7→ Sn′

i
(Y ) for all i ∈ {1, . . . , k}. Now notice that

LUST =
⋃

λ∈Q+

⋂

k∈N
n1,...,nk∈N

⋃

n′

1,...,n
′

k∈N

l>k, M∈Q+

n′′

1 ,...,n
′′

l ∈N

n′′′

1 ,...,n′′′

l ∈N

⋂

a1,...,al∈Q+

b1,...,bl∈Q+

(|ai|6|bi|, ∀i)
d1,...,dk∈Q

⋃

e1,...,el∈Q

A,B∈Q+

MAB<λ

⋂

w1,...,wl∈Q+

{
X ∈ SB;

(
∃K ∈ N such that ∀m 6 k, ∀c1, . . . , ck ∈ Q,

∥∥∥∥
m∑

i=1

ciSni
(X)

∥∥∥∥ 6 K

∥∥∥∥
k∑

i=1

ciSni
(X)

∥∥∥∥
)

⇒

( k∑

i=1

diSn′

i
(C(∆)) =

l∑

i=1

eiSn′′

i
(C(∆))

&

∥∥∥∥
l∑

i=1

aiSn′′

i
(C(∆))

∥∥∥∥ 6 M

∥∥∥∥
l∑

i=1

biSn′′

i
(C(∆))

∥∥∥∥

&

∥∥∥∥
k∑

i=1

wiSn′

i
(C(∆))

∥∥∥∥ 6 A

∥∥∥∥
k∑

i=1

wiSni
(X)

∥∥∥∥

&

∥∥∥∥
l∑

i=1

wiSn′′′

i
(X)

∥∥∥∥ 6 B

∥∥∥∥
l∑

i=1

wiSn′′

i
(C(∆))

∥∥∥∥

& P (C(∆), X, (n′′
i ), (n

′′′
i ))(Sn′

i
(C(∆))) = Sni

(X)

)}
.

There are a couple of comments about the equality above that should be

made. First, notice that the restrictions
k∑

i=1

diSn′

i
(C(∆)) =

l∑
i=1

eiSn′′

i
(C(∆)) and
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∥∥∥
l∑

i=1

aiSn′′

i
(C(∆))

∥∥∥ 6 M
∥∥∥

l∑
i=1

biSn′′

i
(C(∆))

∥∥∥ do not depend on X , i.e., these restric-

tions should actually be incorporated in the unions and intersections preceding the

set. We believe this would only make the notation harder, so we take the liberty of

writing it as above. Also, the only thing in the equality above that is not clearly

Borel is X 7→ P (C(∆), X, (n′′
i ), (n

′′′
i ))(Sn′

i
(C(∆))). But P (C(∆), X, (n′′

i ), (n
′′′
i )) is

nothing more than a matrix with coordinates depending on the Borel functions

X 7→ Sn′′′

i
(X). So we are done. �

9. Non-universality results

In this section we use ideas that can be found in [29] (Chapter 6) to show the non

existence of universal spaces for some specific classes of Banach spaces. Precisely,

say P is a property of separable Banach spaces, i.e., P ⊂ SB and Y ∼= X ∈ P

implies Y ∈ P, can we find a Banach space X with propertyP such that all Banach

spaces with property P can be isomorphically embedded in X? If yes, we say X is

a P-universal element of P. Analogously, we say that X ∈ P is a complementedly

P-universal element of P ⊂ SB if every element of P can be complementedly

isomorphically embedded in X . We say a propertyP is pure if Y →֒ X ∈ P implies

Y ∈ P and complementedly pure if Y
⊥
→֒ X ∈ P implies Y ∈ P. We have the

following easy lemma.

Lemma 41. Let P ⊂ SB be a pure property and assume P is non analytic.

Then P has no P-universal element. If P is assumed to be complementedly pure

then we have that P has no complementedly P-universal element.

P r o o f. Say X ∈ P is P-universal. Let A = {Y ∈ SB; Y →֒ X}. It is well

known that A is analytic, for all X ∈ SB (see [29], Theorem 3.5, page 80). Clearly

P = A, contradicting our hypothesis that P is not analytic. For the complement-

edly universal case we let A = {Y ∈ SB; Y
⊥
−֒→ X} and, as A is also well known to

be analytic, we are done. �

This lemma together with our previous results easily give us some interesting

corollaries.

Corollary 42. Let U and W be as in the previous sections. There is no comple-

mentedly universal space X ∈ U for the class U . The same is true for W .

P r o o f. First notice that we have actually shown that both these classes are

not only non Borel but non analytic. Now, we only need to notice that if X ∼=
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X1 ⊕X2 and P : L (X) → U (X) is a projection then P̃ (T ) = P1 ◦ P (T )|X1
, where

P1 : X1⊕X2 → X1 is the standard projection, is a projection fromL (X1) to U (X1)

(the same works for the class W ). �

Corollary 43. There is no X ∈ BS universal for the class BS. The same holds

for ABS and WBS.

P r o o f. One way of noticing WBS is pure is Lemma 19. �

Corollary 44. There is no X ∈ BS complementedly universal for the classBS .

Corollary 45. There is no X ∈ S universal for the class S.

Corollary 46. There is no X ∈ DP complementedly universal for the class DP.

Corollary 47. There is no X ∈ RNP universal for the class RNP. The same

holds for CCP and a-RNP.

The first claim of the corollary above can be obtained by results in [6] or by letting

ϕE ,p be as in the proof of Theorem 37. After getting this corollary, we discovered that

its first claim had already been discovered by M. Talagrand by completely different

methods. Talagrand’s proof remains unpublished though.

Let us take a look at other easy (but profitable) lemma.

Lemma 48. Say P1,P2 ⊂ SB. Assume there exists a Borel ϕ : Tr → SB such

that ϕ(WF) ⊂ P1 and ϕ(IF) ⊂ P2. Let A ⊂ SB be an analytic subset contain-

ingP1. Then A∩P2 6= ∅. In particular, ifP2 ⊂ {X ∈ SB; X is universal for SB},

we have that if X is universal for P1, then X is universal for SB.

P r o o f. As WF ⊂ ϕ−1(A) and WF is non analytic we cannot have equality.

Hence, there exists θ ∈ IF such that ϕ(θ) ∈ A. As ϕ(θ) ∈ P2 we are done. For the

second claim, let X be universal for P1, define A = {Y ∈ SB; Y →֒ X}, and apply

the first claim. �

The proofs of the following corollaries are either contained in the previous sections

or are just slight modifications of them.

Corollary 49. If X ∈ SB is universal for either U or W , then X is universal for

SB. In particular, these classes admit no element universal for themselves.

Corollary 50. If X ∈ SB is universal for the class BS, then X is universal for

SB. The same holds for ABS and WBS.
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Corollary 51. If X ∈ SB is universal for the class S, then X is universal for SB.

Corollary 52. If X ∈ SB is universal for the class RNP, then X is universal for

SB. The same holds for CCP and a-RNP.
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