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Abstract. In this paper, we study the macroscopic modeling of a steady fluid flow in an
ε-periodic medium consisting of two interacting systems: fissures and blocks, with perme-
abilities of different order of magnitude and with the presence of flow barrier formulation at
the interfacial contact. The homogenization procedure is performed by means of the two-
scale convergence technique and it is shown that the macroscopic model is a one-pressure
field model in a one-phase flow homogenized medium.
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1. Introduction

The study of fluid flows in porous media is a subject of practical interest in many

engineering areas, such as geomechanics, material sciences, and water resources man-

agement. Some types of naturally porous rocks, like aquifers or petroleum reservoirs,

are usually described as a dual-permeability (or a double porosity) medium, that is

a two-component structure: one related to blocks, and the other related to fractures.

When a porous medium is composed by two or more different constituents, a pre-

cise mathematical modeling is required. Actually, due to the complexity of micro-

structures, any mathematical modeling used to determine fluid flows through het-

erogeneous porous media must take into account the rapid spatial variation of the

phenomenological parameters. Furthermore, numerical modeling of such systems

yields at the local scale a huge number of discretized equations, so computations will

be fastidious and intractable. It is then important to study fluid flows in porous

media at the microscopic scale and to describe their behavior at the macroscopic

scale. Roughly speaking, it consists in the passage from microscopic scale to the
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macroscopic one by tending to zero a small parameter, usually denoted ε, which is

the ratio between the two characteristic scales, see [6], [11]. We remark here that the

fact that homogenization in double-porosity phases can lead to effective fluid flow

behavior was observed by many authors in various problems [1], [2], [5], [9], [10].

For example, in [5], a microscopic model consisting of the usual equations describing

Darcy flow in a reservoir with highly discontinuous porosity and permeability coeffi-

cients, was addressed. It was rigorously proved that the macroscopic (homogenized)

equation is a double porosity model of single phase flow. Also for poroelastic het-

erogeneous media, various effective double porosity models of composites made of

a mixture of two poroelastic solids saturated by a compressible Newtonian fluid have

been derived. In [10], the homogenization of a compact bone poroelasticity model,

describing interactions between deformation of the bone tissue and induced flow, is

addressed. The double-porous structure consists of the Havers-Volkmann channels

(the primary porosity) and the canaliculi (the dual porosity). The macroscopic model

is derived by means of periodic unfolding method and it describes the deformation-

induced Darcy flow in the primary porosities whereas the micro-flow in the double

porosity is responsible for the fading memory effects via the macroscopic poro-visco-

elastic constitutive law. In [1], [2], Barenblatt-Biot consolidation models for flows in

periodic porous elastic media are derived by using the two-scale convergence tech-

nique. The micro-structures consist of fluid flows of slightly compressible viscous

fluids through two-component poro-elastic media separated by periodic interfacial

barriers, described by the Biot model of consolidation with the Deresiewicz-Skalak

interface boundary condition.

In this paper, we shall deal with the homogenization of a steady fluid flow in me-

dia made of two interacting porous systems with a high contrast of permeabilities.

In fact, for such a configuration, it is well-known that the hydraulic conductivity

in the fractures system is higher at the local scale than the hydraulic conductivity

in the block matrix [5], [7]. The family of the corresponding micro-models that we

shall study is described by an elliptic system of two partial differential equations

in a two-medium description, with Darcy’s law in each phase and with contrasting

permeabilities, plus exchange terms representing the interfacial coupling that results

from the interaction, at the micro-scale, between the two phases, see (2.1a)–(2.1e) be-

low. The macro-model is derived by means of the two-scale convergence method [3].

It is shown that the overall behavior of fluid flow in such media behaves as a single

porosity model with an average permeability and obeys a single equation of elliptic

type, meaning that no dual-permeability effects occur at the macro-scale descrip-

tion, see (2.15) below. Besides that, the derived model presents an extra source

surface density on the exterior boundary, which essentially arises from the fact that

(1) blocks have low permeability when compared to the fissures, (2) non null and
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regular source density on the blocks and (3) the interface contact between the two

constituents is assumed imperfect.

The paper is organized as follows: Section 2 is devoted to the problem setting of the

micro-model and the statement of the main result. In Section 3, we shall be concerned

with the derivation of the homogenized model via the two scale convergence method.

2. Setting of the problem and the main result

We consider Ω a bounded and smooth domain of RN (N > 2) and Y = ]0, 1[N

the generic cell of periodicity. Let Y1, Y2 ⊂ Y be two open disjoint subsets of Y such

that Y = Y1 ∪ Y2 ∪ Γ, where Γ = ∂Y1 ∩ ∂Y2, assumed to be a smooth submanifold.

We denote ν the unit normal of Γ, outward to Y1. For i = 1, 2, let χi denote the

characteristic function of Yi, extended by Y -periodicity to R
N . For ε > 0, we set

Ωε
i =

{
x ∈ Ω: χi

(x
ε

)
= 1

}
and Γε = ∂Ωε

1 ∩ ∂Ω
ε
2.

To avoid some unnecessary technical computations, we assume that the dual porosi-

ties do not meet the boundary ∂Ω, that is Ωε
2 ⊂ Ω so that Γε = ∂Ωε

2 and ∂Ω
ε
1 =

∂Ω ∪ Γε (see Figure 1 below). Let Zi =
⋃

k∈ZN

(Yi + k). As in [3], we also assume

that Z1 is smooth and a connected open subset of R
N . Note that Z2 may not be

connected. Also, Z1 and Z2 are the primary and dual porosities, respectively.

Ω
ε

1

Ω
ε

2

Γ
ε

The domain Ω

Y1

Y2

Γ

The unit cell Y

Figure 1. An example of a periodic two-component medium considered in this paper.

Let A (resp. B) denote the permeability of the medium Z1 (resp. Z2). Let fi be a

measurable function representing the internal source density of the fluid flow in Ωε
i .

Finally, let ϑ be the non-rescaled hydraulic permeability of the thin layer Γε. We

shall assume the followings:
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(H1) A (resp. B) is continuous on RN , Y -periodic and satisfies the ellipticity condi-

tion:

Aξ · ξ > C|ξ|2 (resp. Bξ · ξ > C|ξ|2) ∀ ξ ∈ R
N ,

where, here and in what follows, C denotes various positive constants which

are independent of ε;

(H2) f1, f2 ∈ L2(Ω);

(H3) ϑ is a continuous function on R
N , Y -periodic and bounded from below:

ϑ(y) > C > 0, y ∈ R
N .

R em a r k 2.1. It should be noticed that in the hypothesis (H1), the continuity

is not necessary. Indeed, one can take A,B ∈ L∞(RN ) and the main result of this

paper remains unchanged.

To deal with periodic homogenization with micro-structures, we shall denote for

x ∈ R
N ,

χε
i (x) = χi

(x
ε

)
, Aε(x) = A

(x
ε

)
, Bε(x) = B

(x
ε

)
, and ϑε(x) = εϑ

(x
ε

)
.

The micro-model that we shall study in this paper is given by the following set of

equations:

−div(Aε∇uε) = f1 in Ωε
1,(2.1a)

−ε2div(Bε∇vε) = f2 in Ωε
2,(2.1b)

Aε∇uε · νε = −ϑε(uε − vε) on Γε,(2.1c)

ε2Bε∇vε · nε = −ϑε(vε − uε) on Γε,(2.1d)

uε = 0 on ∂Ω,(2.1e)

where νε and nε stand for the unit normal of Γε outward to Ωε
1 and Ω

ε
2, respectively.

Here, Ωε
1 represents the fissured region with permeability A

ε and Ωε
2 the block region

with permeability ε2Bε. The physical quantities uε and vε are respectively the fluid

flow pressures in Ωε
1 and Ωε

2. As in Arbogast, Douglas, and Hornung [5], we have

chosen a particular scaling of the permeability coefficients in (2.1b). This means

that both terms
∫
Ωε

1

|∇uε|2 and ε2
∫
Ωε

2

|∇vε|2 have the same order of magnitude

and thus lead to a balance in dissipation potential. Equations (2.1a) and (2.1b)

express the conservation of mass of fluid with Darcy’s law in Ωε
1 and Ω

ε
2, respectively.

Conditions (2.1c) and (2.1d) express flux continuity across Γε and the imperfect

contact between the block and the fissures along Γε with permeability given by ϑε,

see [8]. Transmission condition (2.1d) is known in the literature as Deresiewicz-Skalak
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condition. Finally, (2.1e) is the homogeneous Dirichlet condition on the exterior

boundary of Ω.

Let Hε = (H1(Ωε
1)∩H

1
0 (Ω))×H1(Ωε

2). The space H
ε is equipped with the norm:

‖(ϕ, ψ)‖2Hε = ‖∇ϕ‖2L2(Ωε

1
) + ε2‖∇ψ‖2L2(Ωε

2
) + ε‖ϕ− ψ‖2L2(Γε).

The weak formulation of (2.1a)–(2.1e) is as follows: find (uε, vε) ∈ Hε, such that for

all (ϕ, ψ) ∈ Hε, we have

(2.2)

∫

Ωε

1

A
(x
ε

)
∇uε∇ϕdx+ ε2

∫

Ωε

2

B
(x
ε

)
∇vε∇ψ dx

+ ε

∫

Γε

ϑ
(x
ε

)
(uε − vε)(ϕ− ψ) dsε =

∫

Ωε

1

f1ϕdx+

∫

Ωε

2

f2ψ dx,

where dx and dsε denote, respectively, the Lebesgue measure on RN and the Haus-

dorff measure on Γε. Next, we state the existence and uniqueness result of the weak

formulation (2.2).

Theorem 2.1. Let the assumptions (H1)–(H3) be fulfilled. Then, for any suffi-

ciently small ε > 0, there exists a unique couple (uε, vε) ∈ Hε, solution of the weak

problem (2.2), such that

(2.3) ‖(uε, vε)‖Hε 6 C.

P r o o f. We shall use the Lax-Milgram lemma. Let us denote

aε((ϕ, ψ), (η, ς)) =

∫

Ωε

1

Aε∇ϕ∇η dx+ ε2
∫

Ωε

2

Bε∇ψ∇ς dx

+ ε

∫

Γε

ϑ
(x
ε

)
(ϕ− ψ)(η − ς) dsε,

Lε((ϕ, ψ)) =

∫

Ωε

1

f1ϕdx+

∫

Ωε

2

f2ψ dx,

where (ϕ, ψ), (η, ς) ∈ Hε. Therefore, the weak formulation (2.2) is equivalent to:

find (uε, vε) ∈ Hε such that for all (ϕ, ψ) ∈ Hε we have

(2.4) aε((uε, vε), (ϕ, ψ)) = Lε((ϕ, ψ)).

The coerciveness and the continuity of the form aε(·, ·) follow immediately from (H1)

and (H3). It remains to prove the continuity of Lε. First, from (H2), we easily see

that for all (ϕ, ψ) ∈ Hε,

(2.5) |Lε((ϕ, ψ))| 6M(f1, f2)

((∫

Ωε

1

|ϕ|2 dx

)1/2

+

(∫

Ωε

2

|ψ|2 dx

)1/2)
,
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where

M(f1, f2) = max

((∫

Ω

|f1|
2 dx

)1/2

,

(∫

Ω

|f2|
2 dx

)1/2)

is a constant independent of ε. Next, following an idea of H. Ene and D.Polisevski [9],

we know that there exists C > 0 such that for all ϕ = (ϕ, ψ) ∈ Hε

∫

Ωε

1

|ϕ|2 dx 6 C

∫

Ωε

1

|∇ϕ|2 dx,(2.6)

∫

Ωε

2

|ψ|2 dx 6 C

(
ε2

∫

Ωε

2

|∇ψ|2 dx+ ε

∫

Γε

|ψ|2 dsε
)
,(2.7)

ε

∫

Γε

|ϕ|2 dsε 6 C

(
ε2

∫

Ωε

1

|∇ϕ|2 dx+

∫

Ωε

1

|ϕ|2 dx

)
.(2.8)

The inequalities (2.6) and (2.7) are Poincaré’s inequality and (2.8) is the trace

inequality. These are obtained by the change of variable: x = ε(k + y), k ∈

{k ∈ Z
N : ε(k + y) ⊂ Ωε

i }, y ∈ Zi, i = 1, 2, and using Poincaré’s inequality and

the trace theorem on the reference cell Yi. As ε is sufficiently small, say ε < 1, we

have from (2.8)

(2.9) ε

∫

Γε

|ϕ|2 dsε 6 C

(∫

Ωε

1

|∇ϕ|2 dx+

∫

Ωε

1

|ϕ|2 dx

)
.

Using (2.6) in (2.9), we get

(2.10) ε

∫

Γε

|ϕ|2 dsε 6 C

(∫

Ωε

1

|∇ϕ|2 dx

)
.

Next, from (2.7), we have

(2.11)

∫

Ωε

2

|ψ|2 dx 6 C

(
ε2

∫

Ωε

2

|∇ψ|2 dx+ ε

∫

Γε

|ϕ− ψ|2 dsε + ε

∫

Γε

|ϕ|2 dsε
)
.

Now, combining (2.10) and (2.11) gives

∫

Ωε

2

|ψ|2 dx 6 C

(∫

Ωε

1

|∇ϕ|2 dx+ ε2
∫

Ωε

2

|∇ψ|2 dx+ ε

∫

Γε

|ϕ− ψ|2 dsε
)
,

which means that

(2.12)

∫

Ωε

2

|ψ|2 dx 6 C‖(ϕ, ψ)‖2Hε .
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Observe that (2.6) yields

(2.13)

∫

Ωε

1

|ϕ|2 dx 6 C‖(ϕ, ψ)‖2Hε .

Using (2.5), (2.12), and (2.13) we deduce that

(2.14) |Lε((ϕ, ψ))| 6 C‖(ϕ, ψ)‖Hε .

Thus, Lε is continuous on Hε. Note that the constant C appearing in (2.5) is

independent of ε.

By Lax-Milgram’s lemma, we conclude that there exists a unique solution

(uε, vε) ∈ Hε to the weak formulation (2.4). Finally, putting (ϕ, ψ) = (uε, vε)

in (2.4), using the uniform coerciveness of aε(·, ·) and the continuity of Lε yields the

uniform estimate

‖(ϕ, ψ)‖Hε 6 C,

where again C is independent of ε. This concludes the proof of the theorem. �

Now, we are ready to state the main result of the paper:

Theorem 2.2. Let (uε, vε) ∈ Hε be the solution of the weak system (2.2). As-

sume that f2 ∈ H1(Ω). Let Uε = χ1(x/ε)u
ε+χ2(x/ε)v

ε denote the overall pressure.

Then, up to a subsequence, there exists a unique U ∈ H1(Ω), such that Uε converges

weakly in H1(Ω) to U . Furthermore, U is the unique solution to the homogenized

model:

(2.15)

{
−div(Ã∇U) = F in Ω,

U = G on ∂Ω,

where Ã, F and G are given in (3.17)–(3.18).

R em a r k 2.2. Observe that we need more regularity on f2. Namely, we require

that f2 ∈ H1(Ω) so that the function G defined by (3.18) is in H1(Ω) and which

gives F ∈ H−1(Ω). See also Remark 3.1 below.

The remainder of this paper is devoted to the proof of this theorem. To this aim,

we shall apply in the next section the two-scale convergence technique.
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3. Proof of Theorem 2.2

In this section, we shall derive the homogenized system (2.15). To do so, we shall

first begin with some notations. We define C#(Y ) to be the space of all continuous

functions on R
N which are Y -periodic. Let C∞

# (Y ) = C∞(RN ) ∩ C#(Y ) and let

L2
#(Y ) (resp. L2

#(Yi), i = 1, 2) to be the space of all functions belonging to L2
loc(R

N )

(resp. L2
loc(Zi)) which are Y -periodic, and H

1
#(Y ) (resp. H1

#(Yi)) to be the space of

those functions together with their derivatives belonging to L2
#(Y ) (resp. L2

#(Zi)).

Next, we recall the definition of the two-scale convergence [3].

Definition 3.1. A sequence (wε) in L2(Ω) two-scale converges to w ∈ L2(Ω×Y )

(we write wε 2−s
⇀ w) if, for any admissible test function ϕ ∈ L2(Ω; C#(Y )),

lim
ε→0

∫

Ω

wε(x)ϕ
(
x,
x

ε

)
dx =

∫

Ω×Y

w(x, y)ϕ(x, y) dxdy.

The following result will be of use, see [3], [4].

Theorem 3.1.

(1) Let (wε) be a uniformly bounded sequence in H1(Ω) (resp. H1
0 (Ω)). Then there

exists w ∈ H1(Ω) (resp. H1
0 (Ω)) and w1 ∈ L2(Ω;H1

#(Y )/R) such that, up to

a subsequence, wε 2−s
⇀ w and ∇wε 2−s

⇀ ∇w +∇yw1.

(2) Let (wε) be a sequence of functions in H1(Ω) such that

‖wε‖L2(Ω) + ε‖∇wε‖L2(Ω)N 6 C.

Then, there exist a subsequence of (wε), still denoted by (wε), and w0(x, y) ∈

L2(Ω;H1
#(Y )) such that wε 2−s

⇀ w0 and ε∇wε 2−s
⇀ ∇yw0 and for every ϕ ∈

D(Ω; C∞

# (Y )) we have

lim
ε→0

ε

∫

Γε

wεϕε dsε =

∫

Ω×Γ

w0ϕdxds, ϕε(x) = ϕ
(
x,
x

ε

)
,

where ds is the Hausdorff measure on Γ.

Now, we turn our attention to determining the limiting problem (2.15). Thanks

to the a priori estimates (2.3) and using Theorem 3.1, there exists a subsequence of

(uε, vε), solution of (2.2), still denoted (uε, vε), and there exist

u ∈ H1
0 (Ω), u1 ∈ L2(Ω;H1

#(Y )/R) and v0 ∈ L2(Ω;H1
#(Y2))
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such that

χε
1u

ε 2−s
⇀ χ1u, χε

2v
ε 2−s
⇀ χ2v0,(3.1)

χε
1∇u

ε 2−s
⇀ χ1(∇u+∇yu1), εχε

2∇v
ε 2−s
⇀ χ2∇yv0,

and for any ψ ∈ D(Ω; C#(Y ))

(3.2) lim
ε→0

∫

Γε

ε(uε − vε)ψε dsε =

∫

Ω×Γ

(u− v0)ψ dxds, ψε(x) = ψ(x, x/ε).

For more details, we refer the reader to [3], Proposition 1.14 i) and ii) and [4],

Proposition 2.6.

Now, let ϕ ∈ D(Ω) and ϕ1, ψ ∈ D(Ω; C∞

# (Y )). Set ϕε(x) = ϕ(x) + εϕ1(x, x/ε)

and ψε(x) = ψ(x, x/ε). Taking ϕ = ϕε and ψ = ψε in (2.2), we obtain

(3.3)

∫

Ωε

1

Aε∇uε
(
∇ϕ+∇yϕ1

(
x,
x

ε

))
dx+

∫

Ωε

2

εBε∇vε∇yψ
(
x,
x

ε

)
dx

+

∫

Γε

ϑε(uε − vε)(ϕ− ψε) dsε + εRε =

∫

Ωε

1

f1ϕdx+

∫

Ωε

2

f2ψ dx,

where

Rε =

∫

Ωε

1

Aε∇uε∇xϕ1

(
x,
x

ε

)
dx+ ε

∫

Ωε

2

Bε∇vε∇xψ
(
x,
x

ε

)
dx

+

∫

Γε

ϑε(uε − vε)ϕ1

(
x,
x

ε

)
dsε.

According to the assumptions (H1)–(H3), tA∇ϕ, tA∇yϕ1,
tB∇xψ, and

tB∇yψ are

admissible test functions. Therefore, in view of (3.1)–(3.2), there hold the following

limits:
∫

Ωε

1

Aε∇vε(∇ϕ+ (∇yϕ1)
ε) dx −→

ε→0

∫

Ω×Y1

A(∇u +∇yu1)(∇ϕ+∇yϕ1) dxdy,(3.4)

∫

Ωε

2

εBε∇vε∇yψ
(
x,
x

ε

)
dx −→

ε→0

∫

Ω×Y2

B∇v0∇yψ dxdy,(3.5)

∫

Γε

ϑε(uε − vε)(ϕ − ψε) dsε −→
ε→0

∫

Ω×Γ

ϑ(u − v0)(ϕ − ψ) dxds,(3.6)

where we have denoted (∇yϕ1)
ε(x) = (∇yϕ1)(x, x/ε). Moreover, using (2.3), it is

easy to see that Rε = O(1). Thus, by (3.4)–(3.6) and passing to the limit in (2.2),

we get the two-scale variational formulation:

(3.7)

∫

Ω×Y1

A(∇u +∇yu1)(∇ϕ+∇yϕ1) dxdy +

∫

Ω×Y2

B(y)∇yv0∇yψ dxdy

+

∫

Ω×Γ

ϑ(y)(u − v0)(ϕ − ψ) dxds =

∫

Ω×Y1

f1ϕdx+

∫

Ω×Y2

f2ψ dx.
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By a density argument, the equation (3.7) still holds true for any (ϕ, ϕ1, ϕ2) ∈

H1
0 (Ω) × L2(Ω;H1

#(Y1)/R) × L2(Ω;H1
#(Y2)). Now, integrating by parts in (3.7)

yields the following two-scale homogenized system:

−divy(A(∇u +∇yu1)) = 0 a.e. in Ω× Y1,(3.8)

−divy(B∇yv0) = f2 a.e. in Ω× Y2,(3.9)

−div

(∫

Y1

A(∇u +∇yu1) dy

)
+

∫

Γ

ϑ(y)[u − v0] ds = f1 a.e. in Ω,(3.10)

(A(∇u +∇yu1)) · ν = 0 a.e. on Ω× Γ,(3.11)

B∇yv0 · v = −ϑ(u− v0) a.e. on Ω× Γ,(3.12)

u = 0 on ∂Ω.(3.13)

Let us first note that equations (3.8) and (3.11) lead to the following relation:

(3.14) u1(x, y) =
N∑

j=1

∂u

∂xj
(x)ωj(y) + u∗(x),

where, for 1 6 j 6 N , ωj ∈ H1
#(Y1)/R is the unique solution to the following cell

problem:

{
−divy(A(∇yωj + ej)) = 0 a.e. in Y1, (ej) is the canonical basis of R

N ,

A(∇yωj + ej) · ν = 0 a.e. on Γ,

and u∗(x) is any additive function independent of y. Similarly, from (3.9) and (3.12)

we see that v0 can be written as

(3.15) v0(x, y)− u(x) = α(y)f2(x), (x, y) ∈ Ω× Y2,

where α ∈ H1
#(Y2) is the unique solution of the following problem:

(3.16)

{
−divy(B∇yα) = 1 in Y2,

B∇yα · ν + ϑα = 0 on Γ.

In the sequel, we shall denote for convenience

Ã = (ãij)16i,j6N , ãij =

∫

Y1

A(∇yωi + ei) · (∇yωj + ej) dy,(3.17)

f∗ = |Y1|f1 + |Y2|f2, G =

(∫

Y2

α

)
f2, F = f∗ + div(Ã∇G).(3.18)
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Let us mention that, in view of (H1), Ã is symmetric and positive definite, see [6].

Observe also that f∗ lies in L2(Ω) and since f2 ∈ H1(Ω), G is in H1(Ω). Therefore,

F ∈ H−1(Ω). Inserting (3.14)–(3.15) into (3.10) yields the elliptic equation:

(3.19) −div(Ã∇u) = f∗.

Now, with (3.15) in mind, the overall pressure Uε = χ1(x/ε)u
ε+χ2(x/ε)v

ε two scale

converges to u+ χ2αf2. Consequently, U
ε converges weakly in L2(Ω) to U = u+G

which is the unique solution of the homogenized model:

(3.20)

{
−div(Ã∇U) = F in Ω, U ∈ H1(Ω),

U = G on ∂Ω.

The proof of Theorem 2.2 is then achieved.

R em a r k 3.1. If f2 ∈ H1(Ω) is no longer satisfied, say f2 is only in L
2(Ω),

then as already mentioned by G.Allaire in [3], Remark 4.5, the solution U does not

satisfy the required Dirichlet boundary condition. It is then preferable to write U as

a sum of two terms: u and
∫
Y2

v0 dy. Thus, the homogenized problem consists of two

equations: (3.15), (3.19) with the homogeneous boundary condition u = 0 on ∂Ω.

R em a r k 3.2. In view of (H2), we see that we simply choose the source densi-

ties f1 and f2 independent of ε and defined a.e. on the whole domain Ω whereas,

throughout this paper, f1 and f2 are only used on the subregions Ω
ε
1 and Ω

ε
2 respec-

tively. In fact, we can consider the case, where source densities are defined on their

respective regions as well, without modifying substantially the homogenized model

(3.20) except for the averaged source density f∗ defined in (3.18). More precisely,

if fi = f ε
i a.e. in Ωε

i (i = 1, 2), where f ε
i ∈ L2(Ωε

i ) with ‖f ε
i ‖L2(Ωε

i
) 6 C, then us-

ing the extension by zero to Ω of f ε
i , we see that ‖χi(x/ε)f

ε
i ‖L2(Ω) 6 C. Denoting

by f0
i the two scale limit of χi(x/ε)f

ε
i , the weak limit of χi(x/ε)f

ε
i is then given

by Fi(x) =
∫
Yi

f0
i (x, y) dy instead of |Yi|fi(x) (see the r.h.s. of two-scale variational

formulation (3.7)) and f∗ should be given by F1 + F2 instead of |Y1|f1 + |Y2|f2.

A c k n ow l e d gm e n t s. The author is very grateful to the anonymous referee

for carefully reading the paper and for valuable suggestions which enabled him to

improve considerably the paper. The author acknowledges the support of the Alge-

rian ministry of higher education and scientific research through the C.N.E.P.R.U.

project “Techniques de modélisation en milieux hétérogènes et couches minces”
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