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Abstract. Based upon an observation that it is too restrictive to assume a definite corre-
lation of the underlying asset price and its volatility, we use a hybrid model of the constant
elasticity of variance and stochastic volatility to study a portfolio optimization problem for
pension plans. By using asymptotic analysis, we derive a correction to the optimal strat-
egy for the constant elasticity of variance model and subsequently the fine structure of the
corrected optimal strategy is revealed. The result is a generalization of Merton’s strategy
in terms of the stochastic volatility and the elasticity of variance.

Keywords: pension plan; portfolio optimization; constant elasticity of variance; stochastic
volatility; asymptotic analysis

MSC 2010 : 90C39, 90C59, 90C90, 91G10

1. Introduction

As the prospects of elderly society become real in the world, there is a strong trend

toward much interest in the retirement plan. Among many types of the retirement

plan, we focus on the defined contribution (DC) pension plan in this paper. In the

DC pension plan, benefits vary depending on the return from the investments, while

the contribution is fixed based upon a percentage of the salary. So, whereas the

payout of a defined benefit (DB) pension plan is fixed, a DC pension plan depends

on portfolio performance. Therefore, it is important to choose the optimal strategy

for DC pension plans. We consider a portfolio optimization problem for DC pension

plans with a power utility function (CRRA), when the stock is assumed to follow

a hybrid stochastic and local volatility model.

Our goal is to find the optimal strategy to maximize the expected value of a termi-

nal utility function. Two important initial works on portfolio optimization are given

by Merton [24] using the dynamic programming method, and by Cox and Huang [8]
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using the martingale method. The interest of this paper belongs to the first type.

On the other hand, there is much literature about DC pension plans. See Boulier

et al. [3], Haberman and Vigna [19], Devolder et al. [12] and Deelstra et al. [11]

to name a few. But these studies have assumed to take the geometric Brownian

motion with constant volatility (the Black-Scholes model) for an underlying asset

price model. This is not an appropriate model in many practical senses. In par-

ticular, the constant volatility assumption has been proved to be too restrictive to

reflect the real financial phenomena characterized by smile or skew of the implied

volatilities of the risky asset prices as shown by, for example, Rubinstein [28] and

Jackwerth and Rubinstein [21]. One alternative model in this point of view is a local

volatility model, where volatility is a function of underlying asset price and time.

Jump-diffusion and Levy models are other alternative ones. The most well-known

local volatility model is the constant elasticity variance (in brief, CEV) model in-

troduced by Cox and Ross [9], which captures the implied volatility skew to some

extent. The CEV model has been successfully applied to many option pricing prob-

lems. See for example Beckers [2], Cox [7], Boyle and Tian [4], Yuen et al. [30], and

Davydov and Linetsky [10]. For retirement plan problems, Xiao et al. [29] examined

the optimal portfolio for DC pension plans under the CEV model using a Legendre

transform and dual theory. Moreover, Gao [17] used a power transform and the

variable change technique to find an explicit solution for the utility function. In the

CEV model, however, volatility is perfectly correlated either positively or negatively

with the underlying asset price. There is no clear evidence that there is a perfect

definite correlation all the time. In fact, there are empirical studies showing the

random nature of the correlation. See Harvey [20] and Ghysels et al. [18].

Based on the observation above, it is necessary to incorporate stochastic volatility

driven by a hidden process into the CEV model. In this paper, we choose a model

introduced by Choi et al. [6], in which the volatility of underlying risky asset is given

by the product of a function of a stochastic process and a constant power of the

underlying asset price. So, this model is thought of as a hybrid stochastic volatility

and constant elasticity of variance model. We call it the SVCEV model. We assume

that the hidden process driving the stochastic volatility is given by a fast mean-

reverting Ornstein-Uhlenbeck (OU) process. As shown in Fouque et al. [14], the

choice of the fast mean-revering OU process provides us with an analytic advantage

since it is related to the averaging principle and ergodic theorem or, more directly,

asymptotic diffusion limit theory of stochastic differential equations with a small

parameter. This theory has been initiated by Khas’minskii [22] and developed by

Papanicolaou et al. [27], Asch et al. [1], Kim [23] and Cerrai [5]. See, for example,

Noh and Kim [25] for an application to optimization problem.

The results of overcoming the shortfalls of either local or stochastic volatility
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models may produce an issue of practical application. In practice, the hybrid volatil-

ity structure of the model makes calibration of its parameters more difficult. One

possible solution for this type of problem would be to find a proxy by which the

hybrid volatility could be estimated, as the stochastic volatility can be estimated by

GARCH volatility in practice. Or, as chosen in this paper, the exact strategy can by

approximated by a strategy with the unobservable stochastic volatility component

averaged out.

The structure of this paper is as follows. In Section 2, a stochastic portfolio

optimization problem is formulated based upon the SVCEV model. In Section 3,

the Hamilton-Jacobi-Bellman equation for the optimization problem is derived by

using the dynamic programming method and subsequently the value function is

obtained in a split form of variables. Section 4 achieves an asymptotic result on the

optimal strategy and compares it with the ones corresponding to the Black-Scholes

(Merton’s strategy) and CEV models. In Section 5, a practical solution is obtained

in the sense that the strategy does not depend upon the unobservable (stochastic

volatility) variable. Section 6 presents numerical results to illustrate the correction

effect produced by the hybrid model. Section 7 provides concluding remarks.

2. Model formulation

In this section, we present a financial market setup and formulate a stochastic

optimization problem. We consider a market structure that consists of a risk-free

asset (treasury bond or bank account) whose price dynamics is given by the ordinary

differential equation (ODE)

(2.1) dBt = rBt dt,

and a risky asset (stock) whose price evolves according to the stochastic differential

equations (SDEs)

dSt

St
= µ dt+ σ(Yt)S

θ
t dW

s
t ,(2.2)

dYt = α(m− Yt) dt+ β dW y
t ,(2.3)

where W s and W y are one-dimensional Brownian motions whose correlation struc-

ture is given by d〈W s,W y〉t = ̺ dt. Here, r is a constant interest rate, µ is the

instantaneous mean return rate of the risky asset, and θ is the elasticity parameter.

The SDE (2.3) is a mean-reverting Ornstein-Uhlenbeck equation, where α denotes

the rate of the mean-reversion and β is the volatility of the Ornstein-Uhlenbeck
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process Yt. The volatility σ(y) is assumed to be a smooth, bounded and positive

function. Let Ft denote the filtration generated by W
s and W y.

We consider a DC pension plan with the assumption of the constant contribution

rate and the unit wage. Let Xt be the pension wealth function, and πt and 1−πt be

the proportion of the pension wealth invested in the risky asset and risk-free asset,

respectively, at time t ∈ [0, T ]. Assume that πt is Ft-measurable and adapted such

that
∫ T

0 π2
t dt <∞ almost surely for all T > 0. Then the dynamics of Xt is given by

the SDE

dXt = πtXt
dSt

St
+ (1− πt)Xt

dBt

Bt
+ c dt, 0 < t < T,

with contribution rate c, which, from (2.1)–(2.3), leads to the SDE

dXt = [(r + (µ− r)πt)Xt + c] dt+ πtσ(Yt)S
θ
tXt dW

s
t , 0 < t < T.

The interest of investors is to find a strategy π∗

t which maximizes the expectation

of the utility function given by E[U(XT )|St = s,Xt = x, Yt = y]. Here, the joint

process (St, Xt, Yt) is a Markov process and U(·) is required to be strictly concave.
In this paper, we consider the well-known utility function, namely, the power utility

function (CRRA) given by

(2.4) U(x) =
xp

p
, p 6= 0, p < 1.

Here, p is called the CRRA coefficient.

3. Hamilton-Jacobi-Bellman equation

In this section, we derive the Hamilton-Jacobi-Bellman (HJB) equation for the

optimization problem for E[U(XT )|St = s,Xt = x, Yt = y] in terms of the utility

function given by (2.4).

We define the value function by

(3.1) V (t, s, x, y) := sup
π
E[U(XT )|St = s,Xt = x, Yt = y], 0 < t < T.

Then the Hamilton-Jacobi-Bellman equation associated with the optimization prob-

lem is given by the partial differential equation (PDE)

(3.2) Vt + (rx + c)Vx + α(m− y)Vy +
1

2
β2Vyy + µsVs

+
1

2
σ2(y)s2(θ+1)Vss + ̺σ(y)βsθ+1Vsy

+ sup
π

[1

2
π2σ2(y)s2θx2Vxx + π((µ− r)xVx

+ σ2(y)s2θ+1xVsx + ̺βσ(y)sθxVxy)
]

= 0
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with the final condition V (T, s, x, y) = U(x). Here, each V with a subscript denotes

the partial derivative with respect to the corresponding variable. See Øksendal [26]

or Fleming and Soner [13] for general reference on the derivation of the HJB equation.

From (3.2) it is immediately observed that the first order maximizing condition

for the optimal strategy π∗ is given by

(3.3) π∗ = − (µ− r)Vx + σ2(y)s2θ+1Vsx + ̺βσ(y)sθVxy
xσ2(y)s2θVxx

.

Putting (3.3) into (3.2), we obtain the PDE

(3.4) Vt + (rx + c)Vx + α(m− y)Vy +
1

2
β2Vyy + µsVs

+
1

2
σ2(y)s2(θ+1)Vss + ̺σ(y)βsθ+1Vsy

− [(µ− r)Vx + σ2(y)s2θ+1Vsx + ̺βσ(y)sθVxy]
2

2σ2(y)s2θVxx
= 0.

Now, we need to solve the nonlinear PDE (3.4) for the value function V and plug

the result into (3.3) to obtain the optimal strategy.

For the power utility function (2.4) we conjecture a solution to the PDE (3.4) with

the following form:

(3.5) V (t, s, x, y) = g(t, s, y)
(x− a(t))p

p

for some a(t), which will be chosen later, and g(t, s, y) which satisfy the final condi-

tions a(T ) = 0 and g(T, s, y) = 1. Then the PDE (3.4) becomes a PDE for g in the

form

(3.6)
[

gt + µsgs + α(m− y)gy +
1

2
σ2(y)s2(θ+1)gss +

1

2
β2gyy + rpg

+ ̺σ(y)βsθ+1gsy +
p(µ− r)2g

2σ2(y)s2θ(1− p)
+
pσ2(y)s2(θ+1)g2s

2g(1− p)
+

p̺2β2g2y
2g(1− p)

+
p(µ− r)sgs

1− p
+
pσ(y)̺βsθ+1gsgy

g(1− p)
+
p(µ− r)̺βgy
σ(y)sθ(1− p)

]

(x− a)p

+ pg[c+ ra− at](x − a)p−1 = 0.

Now, we choose the function a(t) in (3.5) such that

(3.7) c+ ra− at = 0
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is satisfied. Then from the PDE (3.6) we observe that the PDE for the function g is

separated to take the form

(3.8) gt + µsgs + α(m− y)gy +
1

2
σ2(y)s2(θ+1)gss +

1

2
β2gyy + rpg

+ ̺σ(y)βsθ+1gsy +
p(µ− r)2

2σ2(y)s2θ(1 − p)
g +

pσ2(y)s2(θ+1)

2g(1− p)
g2s +

p̺2β2

2g(1− p)
g2y

+
p(µ− r)s

1− p
gs +

pσ(y)̺βsθ+1

g(1− p)
gsgy +

p(µ− r)̺β

σ(y)sθ(1− p)
gy = 0.

Therefore, we have split the PDE for the value function V into two equations for

a(t) and g(t, s, y) given by (3.7) and (3.8), respectively. Once these equations with

the final conditions a(T ) = 0 and g(T, s, y) = 1 are solved, the value function V

can be determined by (3.5). Note that a(t) solving (3.7) with a(T ) = 0 is given by

a(t) = −c(1− e−r(T−t))/r.

4. Corrected Merton strategies

Equation (3.8) is a nonlinear PDE for which it is hard to obtain the full exact

solution. So, we approximate the solution as an expansion starting from the classical

Merton solution based on the asymptotic analysis developed by Fouque et al. [14],

[15]. Basically, the solution of the nonlinear PDE is approximated by the Merton

value function plus some correction terms which are given by solutions of an ODE

or a linear PDE. Of course, the ODE and linear PDE are much better to deal with

than the nonlinear PDE in terms of computing.

The pivotal role in this approach is played by the ergodic Markov property of

Yt as the solution of the Ornstein-Uhlenbeck SDE (2.3). It is characterized by the

infinitesimal generator A given by

A = αLY ,

LY := ν2
∂2

∂y2
+ (m− y)

∂

∂y
, ν :=

β√
2α
.

Then the probability density function Φ of the long-run (invariant) distribution of Yt

is given by Φ(y) = (2πν2)−1/2e−(y−m)2/(2ν2). The function Φ is also a solution of

the integral equation
∫

R
Φ(y)Ag(y) dy = 0 for all g in C

2(R) (the space of twice

continuously differentiable functions on R).

From now on, we assume that the parameter α (mean reversion rate) is large while

ν is fixed as a moderate constant in the sense that, in terms of a small parameter ε,

we have α = 1/ε and β = ν
√

2/ε (ν ∼ O(1)). Here, α = 1/ε means fast mean
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reversion or small correlation time of the process Yt while β = ν
√

2/ε (ν ∼ O(1))

implies a fixed magnitude of variance of Yt. By choosing α as a large parameter, Yt
becomes a fast mean-reverting Ornstein-Uhlenbeck process. If α goes to infinity, the

process Yt becomes effectively a constant m, which leads our model to an effective

CEV model in the long run, so that one can take a perturbation approach of Fouque

et al. [15] to the existing CEV model in terms of the scale parameter ε.

In terms of the small parameter ε, the PDE (3.8) now becomes

(4.1) gt +
(

µs+
p(µ− r)s

1− p

)

gs +
1

2
σ2(y)s2(θ+1)gss +

1

ε
LY g

+

√
2ν√
ε
̺σsθ+1gsy +

pσ2(y)s2(θ+1)

2g(1− p)
g2s + p

(

r +
(µ− r)2

2σ2(y)s2θ(1− p)

)

g

+
1

ε

p̺2ν2

g(1− p)
g2y +

√
2ν√
ε

pσ(y)̺sθ+1

g(1− p)
gsgy +

√
2ν√
ε

p(µ− r)̺

σ(y)sθ(1− p)
gy = 0.

Let us expand g as g = g0 +
√
εg1 + εg2 + ε

√
εg3 + . . . and plug it into (4.1) and

compare powers of ε. First, the term in 1/ε gives

LY g0 +
pν2̺2

(1− p)g0
g20,y = 0,

which is a nonlinear ODE in the y variable but it is equivalent to

(4.2) ν2
g0,yy
g0,y

+ (m− y) +
pν2̺2

1− p

g0,y
g0

= 0.

Integrating the expression (4.2) yields

g1+c̃
0 = c1(t, s)

∫ y

0

e(m−z)2/(2ν2) dz + c2(t, s),(4.3)

c̃ :=
p

1− p
̺2(4.4)

for some functions c1 and c2 of time t and risky asset price s. Since (4.3) says that

g0 grows unreasonably fast with respect to y unless c1 = 0, we assume that c1 = 0.

Consequently, g0 is independent of y and thus it has the form g0 = g0(t, s).

Next, comparing the 1/
√
ε terms in the PDE (4.1) gives LY g1 = 0 due to the fact

that g0 does not depend on y. Again, this implies that g1 is also independent of y,

i.e., g1 = g1(t, s).

The y-independence of g0 and g1 obtained above is a very useful result to obtain

the explicit form of g0, g1, etc. in the following theorems.
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Theorem 1. If g0 takes the form g0(t, s) = A1−pe(1−p)Bz with z = s−2θ for some

functions A(t) and B(t) satisfying the boundary conditions A(T ) = 1 and B(T ) = 0,

then A(t) and B(t) are given by

A(t) = e(λ1θ(2θ+1)+rp/(1−p))(T−t)
( λ2 − λ1
λ2 − λ1e2θ

2(λ1−λ2)(T−t)

)2θ+1/(2θ)

,(4.5)

B(t) = σ−2 1− e2θ
2(λ1−λ2)(T−t)

1/λ1 − (1/λ2)e2θ
2(λ1−λ2)(T−t)

,(4.6)

λ1,2 :=
(µ− rp)±

√

(µ− rp)2 − (σ/σ̆)2p(µ− r)2

2θ(1 − p)
,(4.7)

where σ and σ̆ are defined by

σ := 〈σ2〉1/2,(4.8)

σ̆ :=
〈 1

σ2

〉

−1/2

.(4.9)

P r o o f. From the O(1) terms of (4.1), the y-independence of g0 and g1 yields

(4.10) LY g2 + g0,t +
(

µs+
p(µ− r)s

1− p

)

g0,s +
1

2
σ2(y)s2(θ+1)g0,ss

+
1

2
σ2(y)

ps2(θ+1)

(1− p)g0
g20,s + p

(

r +
(µ− r)2

2σ2(y)s2θ(1 − p)

)

g0 = 0.

We observe that if the two variables t and s are fixed, (4.10) is a Poisson equation of

the type LY g2(t, s, y)+f(t, s, y) = 0 for some function f . From the Fredholm alterna-

tive theorem (cf. Fredholm [16]), the necessary condition for the Poisson equation to

have a solution is the solvability (centering) condition 〈f〉 =
∫

R
f(t, s, y)Φ(y) dy = 0.

Thus we obtain

(4.11) g0,t +
(

µs+
p(µ− r)s

1− p

)

g0,s +
1

2
σ2s2(θ+1)g0,ss

+
1

2
σ2 ps

2(θ+1)

(1 − p)g0
g20,s + p

(

r +
1

2σ̆2

(µ− r)2

s2θ(1− p)

)

g0 = 0,

where σ and σ̆ are defined by (4.8) and (4.9), respectively. Finally, by applying the

variable change and power transformation g0(t, s) = f(t, z)1−p and z = s−2θ to the

PDE (4.11), we obtain the result of Theorem 4.1. �

Next, we obtain a linear PDE for the first correction term g1. The y-independence

of g1 and the centering condition for a Poisson equation are the main tools to derive

the equation.
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Theorem 2. Given the explicit solution g0 from Theorem 1, g1 is given by the

solution of the linear PDE

(4.12) g1,t +
(

µs+
p(µ− r)s

1− p
+ S(t, s)

)

g1,s +
1

2
σ2s2(θ+1)g1,ss

+ p
(

r +
1

2σ̆2

(µ− r)2

(1 − p)s2θ
+ J (t, s)

)

g1 = H(t, s),

where

S(t, s) = pσ2s2(θ+1)

1− p

g0,s
g0

,

J (t, s) = − σ2s2(θ+1)

2(1− p)

(g0,s
g0

)2

,

H(t, s) =

√
2ν̺sθ+1p

(1− p)g0
g0,sH1(t, s) +

√
2νp(µ− r)̺

sθ(1− p)
H2(t, s)−

√
2ν̺sθ+1H3(t, s),

H1(t, s) :=
p(µ− r)2

2(1− p)s2θ
g0〈σψ′〉+ 1

2

(

s2(θ+1)g0,ss +
ps2(θ+1)

(1 − p)g0
g20,s

)

〈σϕ′〉,

H2(t, s) :=
p(µ− r)2

2(1− p)s2θ
g0

〈ψ′

σ

〉

+
1

2

(

s2(θ+1)g0,ss +
ps2(θ+1)

(1− p)g0
g20,s

)〈ϕ′

σ

〉

,

H3(t, s) := − p(µ− r)2〈σψ′〉
2(1− p)

(g0,s
s2θ

− 2θg0
s2θ+1

)

− 1

2
〈σϕ′(y)〉

[

2(θ + 1)s2θ+1g0,ss + s2(θ+1)g0,sss

+
p

1− p

(2(θ + 1)s2θ+1

g0
g20,s −

s2(θ+1)

g20
g30,s +

2s2(θ+1)

g0
g0,sg0,ss

)]

.

Here, ϕ(y) and ψ(y) are defined by the solutions of

LY ϕ = σ2(y)− σ2,(4.13)

LY ψ =
1

σ2(y)
− 1

σ̆2
,(4.14)

respectively.

P r o o f. Subtracting (4.11) from (4.10) leads to g2 which is given by the solution

of the ODE

(4.15) LY g2 = − 1

2
(σ2(y)− σ2)s2(θ+1)g0,ss

− 1

2
(σ(y)2 − σ2)

ps2(θ+1)

(1− p)g0
g20,s −

1

2

( 1

σ(y)2
− 1

σ̆2

) p(µ− r)2

(1− p)s2θ
g0.
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Then in terms of ϕ and ψ defined by the solutions of (4.13) and (4.14), respectively,

the solution g2 of the PDE (4.15) can be expressed as

(4.16) g2 = − p(µ− r)2

2(1− p)s2θ
g0ψ(y)−

1

2

(

s2(θ+1)g0,ss +
ps2(θ+1)

(1− p)g0
g20,s

)

ϕ(y) + k(s, t)

for some constant k(s, t) independent of y.

On the other hand, applying the y-independence of g1 to the order
√
ε terms

of (4.1), one can obtain

(4.17) LY g3 + g1,t +
(

µs+
p(µ− r)s

1− p

)

g1,s +
1

2
σ2(y)s2(θ+1)g1,ss

+
pσ2(y)s2(θ+1)

2(1− p)g0

(

2g0,sg1,s −
g0,s

2

g0
g1

)

+ p
(

r +
(µ− r)2

2σ2(y)s2θ(1 − p)

)

g1

−
(
√
2νpσ(y)̺sθ+1

(1− p)g0
g0,s +

√
2νp(µ− r)̺

σ(y)sθ(1− p)

)

×
(

p(µ− r)2

2(1− p)s2θ
g0ψ

′(y) +
1

2
ϕ′(y)

(

s2(θ+1)g0,ss +
ps2(θ+1)

(1− p)g0
g20,s

)

)

−
√
2ν̺σ(y)sθ+1

{p(µ− r)2ψ′(y)

2(1− p)

(g0,s
s2θ

− 2θg0
s2θ+1

)

+
1

2
ϕ′(y)

[

2(θ + 1)s2θ+1g0,ss + s2(θ+1)g0,sss

+
p

1− p

(2(θ + 1)s2θ+1

g0
g20,s −

s2(θ+1)

g20
g30,s +

2s2(θ+1)

g0
g0,sg0,ss

)]}

= 0.

Then the centering condition for the Poisson equation (4.17) yields the PDE

(4.18)

g1,t +
(

µs+
p(µ− r)s

1− p

)

g1,s +
1

2
σ2s2(θ+1)g1,ss

+
pσ2s2θ+2

2(1− p)g0

(

2g0,sg1,s −
g20,s
g0

g1

)

+ p
(

r +
1

2σ̆2

(µ− r)2

(1− p)s2θ

)

g1

−
√
2νp̺sθ+1

(1 − p)g0
g0,s

( p(µ− r)2

2(1− p)s2θ
g0〈σψ′〉+ 1

2
〈σϕ′〉

(

s2(θ+1)g0,ss +
ps2(θ+1)

(1− p)g0
g20,s

))

+

√
2νp(µ− r)̺

sθ(1− p)

( p(µ− r)2

2(1− p)s2θ
g0

〈 1

σ
ψ′

〉

+
1

2

〈 1

σ
ϕ′

〉(

s2(θ+1)g0,ss +
ps2(θ+1)

(1− p)g0
g20,s

))

+
√
2ν̺sθ+1

{

−p(µ− r)2〈σψ′〉
2(1− p)

(g0,s
s2θ

− 2θg0
s2θ+1

)

− 1

2
〈σϕ′〉

[

2(θ + 1)s2θ+1g0,ss

+ s2(θ+1)g0,sss +
p

1− p

(2(θ + 1)s2θ+1

g0
g20,s −

s2(θ+1)

g20
g30,s +

2s2(θ+1)

g0
g0,sg0,ss

)]}

= 0.

By substituting (4.16) into (4.18), we obtain the result (4.12). �
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Next, we consider the optimal strategy π∗ invested in the stock. By plugging (3.5)

into (3.3), we have

(4.19)

π∗ = − (µ− r)Vx + σ2(y)s2θ+1Vxs + ̺βσ(y)sθVxy
xσ2(y)s2θVxx

=
(µ− r)g(x − a(t))p−1 + σ2(y)s2θ+1gs(x− a(t))p−1 + ̺βσ(y)sθgy(x− a(t))p−1

xσ2(y)s2θg(1− p)(x − a(t))p−2

=
(

1 +
câ(t)

x

) µ− r

(1− p)σ̃2
θ

(

1 +
σ̃2
θsgs + ̺βσ̃θgy

(µ− r)g

)

,

where

â(t) := −a(t)
c

=
1

r
(1− e−r(T−t)),(4.20)

σ̃θ(s, y) := σ(y)sθ .(4.21)

In terms of notation

Mσ̃θ
:=

µ− r

(1 − p)σ̃2
θ(s, y)

,

Cσ̃θ
:=

σ̃2
θ(s, y)sgs + ̺βσ̃θ(s, y)gy

(µ− r)g
,

the optimal strategy π∗ given by (4.19) has the simple expression

(4.22) π∗ =
(

1 +
câ(t)

x

)

Mσ̃θ
(1 + Cσ̃θ

).

Each of the above Mσ̃θ
(Merton strategy) and Cσ̃θ

(correction) is an extension of

the one corresponding to the CEV model, in which the optimal strategy π∗ is given

by (cf. Gao [17])

π∗ =
(

1 +
câ(t)

x

)

Mσθ
(1 + Cσθ

),

Mσθ
:=

µ− r

(1− p)σ2
θ(s)

,(4.23)

Cσθ
:= −2θ(1− p)

µ− r
I(t),

where

σθ(s) := σ0s
θ,(4.24)

I(t) :=
1− e2θ

2(λ1−λ2)(T−t)

1/λ1 − (1/λ2)e2θ
2(λ1−λ2)(T−t)

(4.25)
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for some constant σ0. Here, we note that if the elasticity parameter θ is zero, then σθ

becomes the constant σ0 and (4.23) reduces to the optimal strategy corresponding

to the Black-Scholes model, where risky asset price evolves with a geometric Brow-

nian motion. Indeed, this is given by the classical (original) Merton coefficient (see

Devolder et al. [12]) as follows:

π∗ =
(

1 +
câ(t)

x

)

Mσ0
(1 + Cσ0

),

Mσ0
:=

µ− r

(1− p)σ02
,

Cσ0
:= 0.

At the moment it is not clear, due to the g-dependence of Cσ̃θ
, whether (4.22)

reduces to (4.23) if σ(y) becomes the constant σ0. After Theorem 3 is obtained below,

however, one can notice that this is the case. Table 1 summarizes the comparison of

the optimal strategy among the Black-Scholes, CEV and SVCEV models.

Black-Scholes CEV SVCEV

Merton strategy
µ− r

(1 − p)σ2
0

µ− r

(1− p)σ2
θ(s)

µ− r

(1− p)σ̃2
θ(s, y)

correction 0 −2θ(1− p)I(t)

µ− r

σ̃2
θ(s, y)sgs + ̺βσ̃θ(s, y)gy

(µ− r)g

Table 1: Comparison among the three models.

In the next theorem we obtain an asymptotic form of the optimal strategy π∗

based upon the results of Theorem 1 and 2.

Theorem 3. If π∗ is expanded as π∗ = π∗

0 +
√
επ∗

1 + επ∗

2 + . . ., then the leading

order term π∗

0 and the first correction term π∗

1 are given by

π∗

0 =
(

1 +
câ(t)

x

) µ− r

(1− p)σ̃2
θ

(

1−
(σ

σ

)2 2θ(1− p)

µ− r
I(t)

)

,(4.26)

π∗

1 =
(

1 +
câ(t)

x

) µ− r

(1− p)σ̃2
θ

[

1 +
σ̃2
θs

µ− r

(g1,s
g0

− g0,s
g02

g1

)

− ̺σ̃θ
√
2ν

(µ− r)g0
(4.27)

×
(p(µ− r)2ψ′(y)g0

2(1− p)s2θ
+

1

2
ϕ′(y)

(

s2(θ+1)g0,ss +
ps2(θ+1)g20,s
(1− p)g0

))]

,

where I(t) is given by (4.25) and g0 and g1 are given by Theorem 1 and Theorem 2,

respectively.
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P r o o f. From the expansion g = g0 +
√
εg1 + εg2 + . . ., (4.19) becomes

(4.28)

π∗ =
(

1+
câ(t)

x

) µ− r

(1− p)σ̃2
θ

×
(

1+
σ̃2
θs(g0,s+

√
εg1,s+ εg2,s+ . . .)+

√
2νσ̃θ̺(g0,y/

√
ε+ g1,y+

√
εg2,y + . . .)

(µ− r)(g0 +
√
εg1+ εg2+ . . .)

)

.

By direct computation, the leading order term is then given by

(4.29) π∗

0 =
(

1 +
câ(t)

x

) µ− r

(1 − p)σ̃2
θ

(

1 +
σ̃2
θsg0,s

(µ− r)g0

)

.

Since from Theorem 1 one can deduce g0,s/g0 = (1 − p)B(t)(−2θ)s−2θ−1, where

B(t) = σ−2I(t) holds from (4.6) and (4.25), the above leading order control (4.29)

becomes (4.26). Direct computation yields that the first correction term of (4.28) is

given by (4.27). �

We note here that if the mean reversion of the volatility is extremely fast, then

σ(y) becomes effectively a constant and so the leading order optimal strategy (4.26)

reduces to the one corresponding to the CEV model, which is given by (4.23).

5. Practical optimal strategy

In practice, the stochastic volatility level given by the hidden process Yt is not

directly observable, unlike the local volatility. So, in this section, we consider the

HJB equation given by (3.2) and restrict ourselves to the trading strategy π that

does not depend upon the unobserved level and obtain the leading order strategy and

the first order correction term together with the corresponding value function (the

maximum expected utilities) for the given utility function. For analytic simplicity,

we take the contribution rate c = 0 so that a(t) = 0 in (3.5).

From the y-independence of g0 and g1, the order-1 terms of (3.2) give

(5.1) g0,t + sup
π0

Aσ,π0g0 + LY g2 = 0,

where the operator Aσ,π0 is defined by

Aσ,π0 = µs∂s +
1

2
σ2(y)s2(θ+1)∂2ss + rp

+
1

2
p(p− 1)π0

2σ2(y)s2θ + pπ0((µ− r) + σ2(y)s2θ+1∂s).
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Since (5.1) is a Poisson equation for g2, the centering condition is applied to obtain

(5.2) g0,t + sup
π0

〈Aσ,π0g0〉 = 0.

Here, the supremum is attained at π0 = π∗

0 given by

π∗

0 =
µ− r

(1− p)σ2
θ

+
sg0,s

(1 − p)g0
,

where σθ is given by σθ(s) = σsθ, and subsequently (5.2) becomes

(5.3) g0,t +Aσ,π∗

0 g0 = 0,

which is exactly (4.11) with σ̆ replaced by σ. Consequently, by the same argument

as in the proof of Theorem 1, we obtain

π0
∗ =Mσθ

(1 + Cσθ
),

Mσθ
:=

µ− r

(1− p)σθ
2(s)

,(5.4)

Cσθ
:= −2θ(1− p)

µ− r
I(t),

where I(t) is given by (4.25).

Next, we obtain the first correction π∗

1 to the strategy. From the y-independence

of g0 and g1, the order-
√
ε terms of (3.2) give

(5.5) g1,t + sup
π0,π1

Aσ,π0,π1(g0, g1, g2) + LY g3 = 0,

where Aσ,π0,π1(g0, g1, g2) is given by

(5.6) Aσ,π0,π1(g0, g1, g2) = Aσ,π0,π1

0 g0 +Aσ,π0

1 g1 +Aσ,π0

2 g2,

in terms of the operators Aσ,π0,π1

0 , Aσ,π0

1 and Aσ,π0

2 defined by

Aσ,π0,π1

0 = p(p− 1)σ2(y)s2θπ0π1 + pπ1((µ− r) + σ2(y)s2θ+1∂s),

Aσ,π0

1 = µs∂s +
1

2
σ2(y)s2(θ+1)∂2ss + rp

+
1

2
p(p− 1)π2

0σ
2(y)s2θ + pπ0((µ − r) + σ2(y)s2θ+1∂s),

Aσ,π0

2 = ̺ν
√
2sθ+1∂s(σ(y)∂y) + p̺ν

√
2sθπ0σ(y)∂y .
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Now, the centering condition applied to (5.5) leads to

(5.7) g1,t + sup
π0,π1

〈Aσ,π0,π1(g0, g1, g2)〉 = 0.

Then, by direct computation, one can find that the supremum is attained at π0 = π∗

0 ,

which is the same as (5.4), and π1 = π∗

1 given by

(5.8) π∗

1 =
s

1− p

(g1,s
g0

− g0,sg1
g20

)

+

√
2̺ν

(1− p)σ2
θ(s)

〈σg2,y〉
g0

,

where g0 is given by the explicit solution in Theorem 1, g1 is the solution of the PDE

g1,t +Aσ,π∗

0

1 g1 = K1(t, s),

K1(t, s) := −Aσ,π∗

0
,π∗

1

0 g0 − Āπ∗

0

2 g2,(5.9)

Āπ∗

0

2 g2 := ̺ν
√
2sθ+1∂s〈σg2,y〉+ p̺ν

√
2sθπ∗

0〈σg2,y〉,

and, from (5.1), g2 satisfies the ODE

(5.10) LY g2 = K2(t, s, y),

K2(t, s, y) := −g0,t −Aσ,π∗

0 g0.

6. Numerical results

In this section, we illustrate graphically some properties of the formula derived

for the corrected optimal control in Section 5. The parameters used in the following

figures are S0 = 67, X0 = 100, σ = 0.41, µ = 0.12, r = 0.05, θ = 0.01, p = −1, and

T = 20, whenever they are required to be fixed.

Fig. 1 illustrates the behavior of the leading order optimal strategy π∗

0 for the

CRRA utility function. The leading optimal strategy corresponds to the optimal

strategy corresponding to the CEV model. It is drawn against the excess return

rate µ − r for two different values of the elasticity parameter θ, to compare with

the classical Merton’s strategy, which exactly corresponds to the case θ = 0. The

risk-free interest rate r is fixed and the choices of θ are −0.01, 0 and 0.01. Since

the elasticity parameter is near 0 in many cases, the two values of θ can provide

us with sufficient information about optimal strategies. First, the graphs show that

the leading order optimal strategy π∗

0 increases linearly with respect to the excess

return rate, as it is expected. The investor increases the amount invested in the

risky asset as its price increases. Second, the bigger the elasticity parameter θ is
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chosen, the relatively less investment on the risky asset is employed. This suggests

that the sign of θ can be related to making a difference between risk-aversion and

risk-taking of the investment strategy. In the case of a risky asset with a negative

value of θ, more risk-taking strategy than the Merton’s strategy can produce an

optimal strategy, whereas, in the case of positive θ, more risk-aversive strategy than

the Merton’s strategy is desirable. Also, the graphs in Fig. 1 and Fig. 3 indicate

that the leading optimal strategies converge to the Merton’s strategy smoothly as

the elasticity parameter θ goes to zero.

0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1π∗

0

µ− r

θ = −0.01
θ = −0 (Merton)
θ = 0.01

Figure 1. The leading order optimal strat-
egy against the excess return rate
for different values of θ.

0.05 0.1 0.15 0.2 0.25 0.3
5

10

15

20

25

30

35

40π∗

1

µ− r

θ = −0.01
θ = −0 (Stochastic vol.)
θ = 0.01

Figure 2. The first correction term against
the excess return rate for different
values of θ.

Fig. 2 displays the behavior of the first (stochastic volatility) correction term

π∗

1 (without the multiplication of
√
ε) against the excess return rate µ − r when

θ = −0.01, θ = 0, and θ = 0.01. The case of θ = 0 corresponds to a stochastic

volatility model, while the other cases represent the hybrid SVCEV models with

different elasticities of variance. The graphs indicate that the stochastic volatility

does not change the risk-taking or risk-aversion policy as shown in Fig. 1, but it

tends to accelerate the optimal strategy more than linearly as the excess return rate

µ− r increases.

Fig. 3 and 4 plot the sensitivity of the leading order optimal strategy and the first

correction to the optimal strategy against the elasticity parameter θ. As indicated

by Fig. 1 already, without the stochastic volatility, there is a smooth monotonically

decreasing behavior in the leading order optimal strategy along the elasticity param-

eter θ. However, the stochastic volatility creates a nonmonotonic behavior of the

corrected strategy (a hump type).

Fig. 5 shows the behavior of the first correction to the optimal strategy as a func-

tion of the risk-aversion coefficient p.
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Figure 3. The leading order optimal strat-
egy against the elasticity param-
eter θ.
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Figure 4. The first correction to the optimal
strategy against the elasticity pa-
rameter θ.
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Figure 5. The first correction to the optimal strategy against the risk-aversion coefficient p.

7. Conclusion

As the risk of the financial market increases, a more sophisticated market model

is required in portfolio selection problems. This paper has considered an optimal

portfolio problem with a CRRA utility function under a hybrid market structure of

stochastic and local volatility. The unobservable hidden variable driving the stochas-

tic volatility has been saturated in the value functions by utilizing the ergodic prop-

erty of the Ornstein-Uhlenbeck process. The fine structure of the influence of the

stochastic volatility and the elasticity of variance on the optimal strategy is obtained

with respect to the excess return rate, the elasticity parameter and the risk-aversion

coefficient. The results may enable us to employ more delicate optimal strategy than

the classical Merton’s strategy for many portfolio selection problems.
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