Commentationes Mathematicae Universitatis Carolinae

Kevin Selker

Ideal independence, free sequences, and the ultrafilter number

Commentationes Mathematicae Universitatis Carolinae, Vol. 56 (2015), No. 1, 117-124

Persistent URL: http://dml.cz/dmlcz/144193

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

Ideal independence, free sequences, and the ultrafilter number

Kevin Selker

Abstract

We make use of a forcing technique for extending Boolean algebras. The same type of forcing was employed in Baumgartner J.E., Komjáth P., Boolean algebras in which every chain and antichain is countable, Fund. Math. 111 (1981), 125-133, Koszmider P., Forcing minimal extensions of Boolean algebras, Trans. Amer. Math. Soc. 351 (1999), no. 8, 3073-3117, and elsewhere. Using and modifying a lemma of Koszmider, and using CH, we obtain an atomless BA, A such that $\mathfrak{f}(A)=\operatorname{simm}^{\mathrm{mm}}(A)<\mathfrak{u}(A)$, answering questions raised by Monk J.D., Maximal irredundance and maximal ideal independence in Boolean algebras, J. Symbolic Logic 73 (2008), no. 1, 261-275, and Monk J.D., Maximal free sequences in a Boolean algebra, Comment. Math. Univ. Carolin. 52 (2011), no. 4, 593-610.

Keywords: free sequences; Boolean algebras; cardinal functions; ultrafilter number

Classification: 06E05, 54A25

This paper is concerned with some "small" cardinal functions defined on Boolean algebras. To describe the results we need the following definition. For notation concerning Boolean algebras, we follow [KMB89].

Definition 1.1. 1. A subset Y of a BA is ideal-independent if $\forall y \in Y$, $y \notin\langle Y \backslash\{y\}\rangle^{\text {id }}$.
2. We define $\mathrm{s}_{\mathrm{mm}}(\mathrm{A})$ to be the minimal size of an ideal-independent family of A that is maximal with respect to inclusion.
3. A free sequence in a BA is a sequence $X=\left\{x_{\alpha}: \alpha<\gamma\right\}$ such that whenever F and G are finite subsets of γ such that $\forall i \in F \forall j \in G[i<j]$, then

$$
\left(\prod_{\alpha \in F} x_{\alpha}\right) \cdot\left(\prod_{\beta \in G}-x_{\beta}\right) \neq 0
$$

Here empty products equal 1 by definition.
4. We define $\mathfrak{f}(A)$ to be the minimal size of a free sequence in A that is maximal with respect to end-extension.
5. We define $\mathfrak{u}(A)$ to be the minimal size of a nonprincipal ultrafilter generating set of A.
6. If A is a Boolean algebra and u is a nonprincipal ultrafilter on A, let $P(A, u)$ be the partial order consisting of pairs $\left(p_{0}, p_{1}\right)$ where $p_{0}, p_{1} \in A \backslash u$, and $p_{0} \cap p_{1}=\emptyset$, ordered by $\left(p_{0}, p_{1}\right) \leq\left(q_{0}, q_{1}\right)$ (" $\left(p_{0}, p_{1}\right)$ is stronger than $\left.\left(q_{0}, q_{1}\right) "\right)$ iff $q_{i} \subseteq p_{i}$ for $i=0,1$.

The main result of this paper is that under CH there is an atomless BA B such that $\omega=\mathfrak{f}(B)=\mathrm{s}_{\mathrm{mm}}(\mathrm{B})<\mathfrak{u}(\mathrm{B})=\omega_{1}$. Theorem 2.10 in [Mon08] asserts the existence of an atomless $B A$ with $s_{m m}(B)<\mathfrak{u}(B)$, but the proof is faulty. The existence of an atomless BA B with $\mathfrak{f}(B)<\mathfrak{u}(B)$ is a problem raised in [Mon11].

From now on, fix a countable, atomless subalgebra A of $\mathscr{P}(\omega)$. Fix some maximal ideal-independent $\mathcal{X} \subseteq A$. Also let $C=\left\langle c_{i}: i<\xi\right\rangle \subseteq A$ be a maximal free sequence such that $c_{i} \subseteq c_{j}$ for each $i>j \in \xi$. We will always use u to denote a nonprincipal ultrafilter on A.

We will now define many subsets of $P(A, u)$ and prove their density.
Definition 1.2. 1. For each $a \notin u$ put

$$
K_{a}=\left\{\left(p_{0}, p_{1}\right) \in P(A, u): a \subseteq\left(p_{0} \cup p_{1}\right), p_{0} \backslash a \neq \emptyset \neq p_{1} \backslash a\right\}
$$

2. For $i \in \omega$, put $F_{i}=\left\{\left(p_{0}, p_{1}\right) \in P(A, u): i \in p_{0} \cup p_{1}\right\}$.

For the next two definitions, we need the following. Fix some $e, f \in A$. For any $p \in P(A, u)$ we define $p^{*}=\left(e \cap p_{0}\right) \cup\left(f \cap p_{1}\right)$, and $a_{p}=\omega \backslash\left(p_{0} \cup p_{1}\right)$.
3. We define $D_{e, f}$ as follows. $p \in D_{e, f}$ iff one of the following conditions holds:
(a) $p_{0} \cup p_{1} \supseteq e \triangle f$,
(b) $\exists n \in \omega \exists x_{0}, \ldots, x_{n} \in \mathcal{X}\left[x_{0} \subseteq p^{*} \cup x_{1} \cup \ldots \cup x_{n}\right]$,
(c) $\exists n \in \omega \exists x_{0}, \ldots, x_{n} \in \mathcal{X}\left[p^{*} \cup a_{p} \subseteq x_{0} \cup \ldots \cup x_{n}\right]$.
4. We define $E_{e, f}$ as follows.
$p \in E_{e, f}$ iff one of the following conditions holds:
(a) $p_{0} \cup p_{1} \supseteq e \triangle f$,
(b) $\exists i<j \in \xi\left[p^{*} \supseteq c_{i} \backslash c_{j}\right]$,
(c) $\exists i \in \xi\left[p^{*} \cup a_{p} \subseteq \omega \backslash c_{i}\right]$,
(d) $\omega \backslash c_{0} \subseteq p^{*}$.

Lemma 1.1. The subsets of $P(A, u)$ defined above are dense.
Proof: 1. (K_{a} is dense.) If $p=\left(p_{0}, p_{1}\right) \in P(A, u)$, then we have that $b:=$ $p_{0} \cup p_{1} \cup a \notin u$. Because A is atomless, there are disjoint $x_{0}, x_{1} \subseteq \omega \backslash b$ such that each $x_{i} \notin u$. Define $q_{0}=p_{0} \cup x_{0}$ and $q_{1}=p_{1} \cup x_{1} \cup\left(a \backslash p_{0}\right)$. We have $q_{0} \backslash a \neq 0$ since $x_{0} \subseteq \omega \backslash a$, hence $x_{0}=x_{0} \backslash a \subseteq q_{0} \backslash a$. Similarly $q_{1} \backslash a \neq 0$. So $\left(q_{0}, q_{1}\right)$ is an extension of p in K_{a}.
2. (F_{i} is dense.) Since u is nonprincipal, $\{i\}$ is not a member of u for any $i \in \omega$. Thus if $p=\left(p_{0}, p_{1}\right) \notin F_{i}$ then $\left(p_{0} \cup\{i\}, p_{1}\right)$ is an extension of p that is a member of F_{i}.
3. ($D_{e, f}$ is dense.) First note the following observation:
$(\otimes) \quad$ If $p \in P(A, u)$ and $x \notin u$, then there is a $q \leq p$ such that $x \subseteq q_{0} \cup q_{1}$.
In fact, (\otimes) follows from the fact that K_{x} is dense. Now, to show density, let $p \in P(A, u)$. Recall that for any $p \in P(A, u)$ we define $p^{*}=\left(e \cap p_{0}\right) \cup\left(f \cap p_{1}\right)$, and $a_{p}=\omega \backslash\left(p_{0} \cup p_{1}\right)$. We also define $e_{p}=a_{p} \cap e$, and $f_{p}=a_{p} \cap f$. One of the following holds:
(i) $e_{p} \cap f_{p} \in u$,
(ii) $\omega \backslash\left(e_{p} \cup f_{p}\right) \in u$,
(iii) $e_{p} \backslash f_{p} \in u$,
(iv) $f_{p} \backslash e_{p} \in u$.

Note that $e_{p} \backslash f_{p}=a_{p} \cap(e \backslash f), f_{p} \backslash e_{p}=a_{p} \cap(f \backslash e)$, and $e_{p} \triangle f_{p}=a_{p} \cap(e \triangle f)$. If (i) or (ii) is the case, then $e_{p} \triangle f_{p} \notin u$, so also $e \triangle f \notin u$ (as $p_{0} \cup p_{1} \notin u$). By (\otimes) there is $q \leq p$ such that $q_{0} \cup q_{1} \supseteq e \triangle f$, so that (a) of the definition of $D_{e, f}$ is satisfied.

Next, suppose that (iii) is the case. Then also $e \backslash f \in u$; by (\otimes) there is $q \leq p$ such that $-(e \backslash f) \subseteq q_{0} \cup q_{1}$, so that $a_{q} \subseteq e \backslash f$. Now by maximality of \mathcal{X} in A we have that for some $n \in \omega$ and some $x_{0}, \ldots, x_{n} \in \mathcal{X}$,
(v) $x_{0} \subseteq q^{*} \cup x_{1} \cup \ldots \cup x_{n}$, or
(vi) $q^{*} \subseteq x_{0} \cup \ldots \cup x_{n}$.

If (v) is the case, then condition (b) in the definition of $D_{e, f}$ is satisfied. So suppose that (vi) is the case. Again, by maximality of \mathcal{X} in A, there is an $m \in \omega$ and some $y_{0}, \ldots, y_{m} \in \mathcal{X}$ such that either:
(vii) $a_{q} \subseteq y_{0} \cup \cdots \cup y_{m}$, or
(viii) $y_{0} \subseteq y_{1} \cup \ldots \cup y_{m} \cup a_{q}$.

If (vii) holds then $q^{*} \cup a_{q} \subseteq x_{0} \cup \ldots \cup x_{n} \cup y_{0} \cup \ldots \cup y_{m}$, so condition (c) of the definition of $D_{e, f}$ is satisfied. Suppose then that (viii) holds.

- Case 1. $a_{q} \cap y_{0} \in u$. Then $a_{q} \backslash y_{0} \notin u$. Let $r_{0}=q_{0}$ and $r_{1}=q_{1} \cup\left(a_{q} \backslash y_{0}\right)$. We claim that $r^{*} \cup a_{r} \subseteq y_{0} \cup x_{0} \cup \ldots \cup x_{n}$, so r satisfies (c) in the definition of $D_{e, f}$. In fact, $a_{r}=a_{q} \cap y_{0} \subseteq y_{0}$. Now recall $r^{*}=\left(e \cap r_{0}\right) \cup\left(f \cap r_{1}\right)$. Note that $r_{0} \backslash q_{0}=\emptyset$ and $r_{1} \backslash q_{1} \subseteq a_{q}$. In particular, since $a_{q} \subseteq e \backslash f, f \cap r_{1}=f \cap q_{1}$. Hence $r^{*}=q^{*}$, and by (vi) $q^{*} \subseteq x_{0} \cup \ldots \cup x_{n}$. So r satisfies condition (c) of $D_{e, f}$.
- Case 2. $a_{q} \cap y_{0} \notin u$. Then let $r_{0}=q_{0} \cup\left(a_{q} \cap y_{0}\right)$ and let $r_{1}=q_{1}$. Now using (viii) we have that $y_{0} \subseteq y_{1} \cup \ldots \cup y_{m} \cup\left(a_{q} \cap y_{0}\right)$. Also $a_{q} \cap y_{0} \subseteq a_{q} \subseteq e$, so $a_{q} \cap y_{0} \subseteq r^{*}$. Thus we have $y_{0} \subseteq y_{1} \cup \ldots \cup y_{m} \cup r^{*}$. So condition (b) in the definition of $D_{e, f}$ is satisfied.

The case when $f_{p} \backslash e_{p} \in u$ is treated similarly. Thus we have proved that the sets $D_{e, f}$ are indeed dense.
4. ($E_{e, f}$ is dense.) We will use the following fact several times:
(*) $\quad \forall a \in A\left(\exists i \in \xi\left[a \subseteq\left(\omega \backslash c_{i}\right)\right]\right.$ or $\exists i<j \in \xi\left[\left(c_{i} \backslash c_{j}\right) \subseteq a\right]$ or $\left.\omega \backslash c_{0} \subseteq a\right)$
To see this, suppose that $a \in A$. Clearly the desired conclusion holds if $a=\emptyset$ or $a=\omega$; so suppose that $a \neq \emptyset, \omega$. By maximality of C we have that either
(A) $\exists F \in[\xi]^{<\omega}$ such that $\left(\bigcap_{i \in F} c_{i}\right) \cap a=\emptyset$, or
(B) $\exists F, G \in[\xi]^{<\omega}$, with $\forall i \in F \forall j \in G[i<j]$ such that $\left(\bigcap_{i \in F} c_{i}\right) \cap\left(\bigcap_{j \in G} \omega \backslash\right.$ $\left.c_{j}\right) \cap(\omega \backslash a)=\emptyset$.
If (A) holds then $F \neq \emptyset$ since $a \neq \emptyset$ and then $c_{\max } F \cap a=\emptyset$ so that $a \subseteq$ $\left(\omega \backslash c_{\max F}\right)$, hence the first part of $(*)$ holds.

If (B) holds then $F \neq \emptyset$ or $G \neq \emptyset$ since $a \neq \omega$. If $F \neq \emptyset \neq G$ then $\left(c_{\max } \backslash\right.$ $\left.c_{\min G}\right) \subseteq a$, giving the second condition of $(*)$. If $F \neq \emptyset=G$ then $c_{\max } F \subseteq a$, giving the second condition of $(*)$ again. Finally if $F=\emptyset \neq G$ then $\left(\omega \backslash c_{\min G}\right) \subseteq a$, giving the second or third condition of $(*)$.

Now we will prove that $E_{e, f}$ is dense. Let $p \in P(A, u)$. Recall that for any $p \in P(A, u)$ we define $p^{*}=\left(e \cap p_{0}\right) \cup\left(f \cap p_{1}\right), a_{p}=\omega \backslash\left(p_{0} \cup p_{1}\right), e_{p}=a_{p} \cap e$, and $f_{p}=a_{p} \cap f$. One of the following holds:
(i) $e_{p} \cap f_{p} \in u$,
(ii) $\omega \backslash\left(e_{p} \cup f_{p}\right) \in u$,
(iii) $e_{p} \backslash f_{p} \in u$,
(iv) $f_{p} \backslash e_{p} \in u$.

If (i) or (ii) is the case, then $e_{p} \triangle f_{p} \notin u$, so also $e \Delta f \notin u$ (as $p_{0} \cup p_{1} \notin u$). Thus we can extend p to a condition q such that $q_{0} \cup q_{1} \supseteq e \Delta f$, so that (a) of the definition of $E_{e, f}$ is satisfied.

Next, suppose that (iii) is the case. Then also $e \backslash f \in u$, so we can first extend p to some condition q so that $a_{q} \subseteq e \backslash f$. Now $q^{*} \in A$, so, by ($*$), either
(v) $\exists i<\xi\left[q^{*} \subseteq \omega \backslash c_{i}\right]$, or
(vi) $\exists i<j \in \xi\left[q^{*} \supseteq c_{i} \backslash c_{j}\right]$, or
(vii) $\omega \backslash c_{0} \subseteq q^{*}$.

If (vi) holds then q is in $E_{e, f}$ by virtue of condition (b). If (vii), then q is in $E_{e, f}$ by virtue of (d). So we assume now that (v) is the case, and fix $i \in \xi$ as guaranteed by (v). Now also $a_{q} \in A$, so either
(viii) $\exists j<\xi\left[a_{q} \subseteq \omega \backslash c_{j}\right]$, or
(ix) $\exists j<k \in \xi\left[a_{q} \supseteq c_{j} \backslash c_{k}\right]$, or
(x) $\omega \backslash c_{0} \subseteq a_{q}$.

First suppose that (viii) holds. Then $a_{q} \cup q^{*} \subseteq\left(\omega \backslash c_{i}\right) \cup\left(\omega \backslash c_{j}\right)=\omega \backslash\left(c_{i} \cap c_{j}\right)=$ $\omega \backslash c_{\max \{i, j\}}$, so $q \in E_{e, f}$ by virtue of condition (c). Next assume that (ix) holds and fix $j<k \in \xi$ as in that case. We consider two cases.

- Case 1. $\left(c_{j} \backslash c_{k}\right) \in u$. Then extend q to a condition r such that $r_{0}=q_{0}$, and $r_{1}=q_{1} \cup\left(-q_{0} \cap-\left(c_{j} \backslash c_{k}\right)\right)$. Then $-\left(c_{j} \backslash c_{k}\right) \subseteq r_{0} \cup r_{1}$, so $a_{r} \subseteq c_{j} \backslash c_{k}$. Note that $r_{1} \backslash q_{1} \subseteq a_{q} \subseteq e \backslash f$, so $\left(r_{1} \backslash q_{1}\right) \cap f=0$. Then $r^{*}=\left(r_{0} \cap e\right) \cup\left(r_{1} \cap f\right)=$ $\left(q_{0} \cap e\right) \cup\left(r_{1} \cap f\right)$, and $\left(r_{1} \backslash q_{1}\right) \cap f=\emptyset$, so in fact $r^{*}=q^{*}$. Recall that $q^{*} \subseteq\left(\omega \backslash c_{i}\right)$ so $r^{*} \cup a_{r} \subseteq\left(\omega \backslash c_{\max }\{i, k\}\right)$. Thus condition (c) holds for r.
- Case 2. $\left(c_{j} \backslash c_{k}\right) \notin u$. Then we extend q to a condition r so that $r_{0}=q_{0} \cup\left(c_{j} \backslash c_{k}\right)$ and $r_{1}=q_{1}$. Recall that $\left(c_{j} \backslash c_{k}\right) \subseteq a_{q} \subseteq e$, so $r^{*} \supseteq\left(r_{0} \cap e\right) \supseteq\left(c_{j} \backslash c_{k}\right) \cap e=c_{j} \backslash c_{k}$. Thus r satisfies condition (b) in the definition of $E_{e, f}$.
Finally suppose that (x) is the case. Again, we consider two cases.
- Case 1. $a_{q} \cap c_{0} \notin u$. Then we extend q to a condition r where $r_{0}=q_{0}$ and $r_{1}=q_{1} \cup\left(a_{q} \cap c_{0}\right)$. Then $a_{r} \subseteq\left(\omega \backslash c_{0}\right)$. Also $r^{*}=q^{*}$ by the same argument as in Case 1 above. So $a_{r} \cup r^{*} \subseteq\left(\omega \backslash c_{i}\right)$, and r satisfies condition (c) of the definition of $E_{e, f}$.
- Case 2. $a_{q} \cap c_{0} \in u$. Then we extend q to a condition r by setting $r_{0}=$ $q_{0} \cup\left(a_{q} \backslash c_{0}\right)$ and $r_{1}=q_{1}$. Then $r^{*} \supseteq r_{0} \cap e \supseteq \omega \backslash c_{0}$, so condition (d) in the definition of $E_{e, f}$ holds.
Thus the sets $E_{e, f}$ are dense.
We will denote by G a filter in $P(A, u)$ that intersects all the sets mentioned above (for the fixed \mathcal{X} and C, but for all parameters e, f, a, and i). Such a G exists as we have only specified countably many dense sets. Given such a G we define a subset g of ω by

$$
g=\bigcup_{\left(p_{0}, p_{1}\right) \in G} p_{0} .
$$

For brevity in what follows, we may not mention the dense sets or G, but will simply say that a g as above is generic for $P(A, u)$. In the following lemmas we prove the crucial facts about extending A by a generic g.

Lemma 1.2. If g is generic for $P(A, u)$, then $g \notin A, u$ does not generate an ultrafilter in $\langle A \cup\{g\}\rangle$, and $\langle A \cup\{g\}\rangle$ is still atomless.
Proof: First, suppose for a contradiction that $g \in A$. Then either $g \in u$ or $-g \in u$. If $-g \in u$ then $K_{g} \cap G \neq \emptyset$, so choose $p=\left(p_{0}, p_{1}\right) \in K_{g} \cap G$. By definition of g we have $p_{0} \subseteq g$. But $p \in K_{g}$, so also $p_{0} \backslash g \neq \emptyset$, a contradiction. We reach a contradiction similarly if $g \in u$. In fact, the same argument works since if $p \in K_{-g} \cap G$ then $p_{1} \subseteq-g$. For, if $q \in G$, choose $r \in G$ with $r \leq p, q$. Then $q_{0} \cap p_{1} \subseteq r_{0} \cap r_{1}=\emptyset$. So $p_{1} \cap q_{0}=\emptyset$. Hence $p_{1} \cap g=\emptyset$.

Next, suppose that u were to generate an ultrafilter in $\langle A \cup\{g\}\rangle$. So there is an $a \in A \backslash u$ such that either $g \leq a$ or $-g \leq a$. If $g \leq a$ then consider $\left(p_{0}, p_{1}\right) \in G \cap K_{a}$. We claim that $g=g \cap a=p_{0} \cap a \in A$, a contradiction. In fact, clearly $g \cap a \supseteq p_{0} \cap a$. For the other inclusion, consider an arbitrary $q \in G$ and let $r \in G$ be such that $r \leq q, p$. Then since $p \in K_{a}$, we get $q_{0} \cap a \subseteq r_{0} \cap\left(p_{0} \cup p_{1}\right) \cap a \subseteq p_{0}$, since $r_{0} \cap r_{1}=0$ and $p_{1} \subseteq r_{1}$. Thus $g \cap a \subseteq p_{0} \cap a$. To carry out a symmetrical
argument in case $-g \leq a$ we just need to see that $-g=\bigcup_{\left(p_{0}, p_{1}\right) \in G} p_{1}$. For (\subseteq), suppose that $i \in-g$. Let $p \in G \cap F_{i}$. So $i \in p_{0} \cup p_{1}$. We must have $i \notin p_{0}$ or else $i \in g$, so $i \in p_{1}$. For the opposite inclusion, suppose that $p \in G$ and $i \in p_{1}$. Letting $q \in G$ be arbitrary, it suffices to show that $i \notin q_{0}$. Find $r \in G$ such that $r \leq p, q$. Then $r_{0} \cap r_{1}=\emptyset$ implies that $r_{0} \cap p_{1}=\emptyset$, so $i \notin r_{0}$. Now, because $r_{0} \supseteq q_{0}$, we see that also $i \notin q_{0}$.

Next, we will check that $\langle A \cup\{g\}\rangle$ is atomless (since A is). Suppose for a contradiction that $g \cap a$ is an atom for some $a \in A$. If $a \notin u$ then $g \cap a=p_{0} \cap a$ for $\left(p_{0}, p_{1}\right) \in K_{a} \cap G$ (as proved and used above). As $p_{0} \cap a \in A$ this contradicts the fact that A is atomless. So $a \in u$. Now, consider $p:=\left(p_{0}, p_{1}\right) \in K_{-a} \cap G$. We have that $p_{0} \backslash(-a)=p_{0} \cap a$ is not empty. Also $p_{0} \cap a \notin u$. So there is a $q \in K_{a \cap p_{0}} \cap G$. Then as above we have $q_{0} \cap\left(a \cap p_{0}\right)=g \cap\left(a \cap p_{0}\right)$. Note that $g \cap p_{0}=p_{0}$, so the set on the right hand side is equal to $p_{0} \cap a$, hence is nonempty, and is in fact equal to the atom $g \cap a$. But the set on the left hand side is in A, a contradiction. If $-g \cap a$ were assumed to be the atom, a symmetric argument yields a contradiction.

Lemma 1.3. Assume that $G \subseteq P(A, u)$ is as above. Let $e, f \in A$ and suppose that for some $p \in G$ we have $e \triangle f \subseteq p_{0} \cup p_{1}$. Then the set $b:=(g \cap e) \cup(f \backslash g)$ is a member of A.

Proof: We observe that whenever $p=\left(p_{0}, p_{1}\right) \in G$ we have $p_{0} \subseteq g$ and $p_{1} \subseteq \omega \backslash g$. So for $p=\left(p_{0}, p_{1}\right) \in G$, and $d \in A$ satisfying $d \subseteq p_{0} \cup p_{1}$ we have $d \cap g=d \cap p_{0}$ and $d \cap(\omega \backslash g)=d \cap p_{1}$. Applying this observation twice with $d=(e \backslash f)$ and $d=(f \backslash e)$ together with trivial $(g \cap e) \cup((\omega \backslash g) \cap f) \supseteq e \cap f$ we get that

$$
b=(g \cap e) \cup(f \backslash g)=(e \cap f) \cup\left[p_{0} \cap(e \backslash f)\right] \cup\left[p_{1} \cap(f \backslash e)\right]
$$

so $b \in A$.
Next, we prove a version of Proposition 3.6 from [Kos99].
Lemma 1.4. With the above notation, \mathcal{X} is still maximal ideal-independent in the algebra $\langle A \cup\{g\}\rangle$.

Proof: Suppose that $b \in\langle A \cup\{g\}\rangle$, we will show that $\mathcal{X} \cup\{b\}$ is not idealindependent. Write $b=(e \cap g) \cup(f \cap(-g))$ for some $e, f \in A$. Now let $p \in D_{e, f}$ be such that $p \in G$. Note that $p_{0} \subseteq g$. Also $p_{1} \subseteq(-g)$. Suppose that $q \in G$. We want to show that $p_{1} \cap q_{0}=0$. Choose $r \in G$ such that $r \leq p, q$. Then $p_{1} \cap q_{0} \subseteq r_{1} \cap r_{0}=0$. So $p^{*} \subseteq b$. We consider cases according to the definition of $D_{e, f}$.

- Case 1. $p_{0} \cup p_{1} \supseteq e \triangle f$. Then Lemma 1.3 gives that $b \in A$, so $\mathcal{X} \cup\{b\}$ is not ideal-independent by maximality of \mathcal{X} in A.
- Case 2. $\exists n \in \omega \exists x_{0}, \ldots, x_{n} \in \mathcal{X}\left[x_{0} \subseteq p^{*} \cup x_{1} \cup \ldots \cup x_{n}\right]$. Then $x_{0} \subseteq b \cup x_{1} \cup$ $\ldots \cup x_{n}$.
- Case 3. $\exists n \in \omega \exists x_{0}, \ldots, x_{n} \in \mathcal{X}\left[p^{*} \cup a_{p} \subseteq x_{0} \cup \ldots \cup x_{n}\right]$. Clearly $b \cap\left(p_{0} \cup p_{1}\right)=p^{*}$, so $b \subseteq p^{*} \cup a_{p}$. So also $b \subseteq x_{0} \cup \ldots \cup x_{n}$.

Lemma 1.5. With the above notation, C remains maximal in $\langle A \cup\{g\}\rangle$.
Proof: Letting $b \in\langle A \cup\{g\}\rangle$ we can write $b=(g \cap e) \cup(f \backslash g)$ for some $e, f \in A$. Let $p \in G \cap E_{e, f}$; we will show that $C \frown\{b\}$ is no longer free, considering cases according to the definition of $E_{e, f}$.

- Case 1. $p_{0} \cup p_{1} \supseteq e \triangle f$. By Lemma 1.3, in this case $b \in A$. So b does not extend C by maximality in A.
- Case 2. $\exists i<j \in \xi\left[p^{*} \supseteq c_{i} \backslash c_{j}\right]$. We have that $p^{*} \subseteq b$, so also $c_{i} \backslash c_{j} \subseteq b$. Then $\left(c_{i}\right) \cap\left(\omega \backslash c_{j}\right) \cap(\omega \backslash b)=\emptyset$, so b does not extend C.
- Case 3. $\exists i \in \xi\left[p^{*} \cup a_{p} \subseteq \omega \backslash c_{i}\right]$. Clearly $b \cap\left(p_{0} \cup p_{1}\right)=p^{*}$, so $b \subseteq p^{*} \cup a_{p}$. So $b \subseteq \omega \backslash c_{i}$. Thus $c_{i} \cap b=\emptyset$, and again b does not extend C.
- Case 4. $\omega \backslash c_{0} \subseteq p^{*}$. Since $p^{*} \subseteq b$, also $\omega \backslash c_{0} \subseteq b$ so $\left(\omega \backslash c_{0}\right) \cap(\omega \backslash b)=\emptyset$.

Theorem $1.6(\mathrm{CH})$. Assuming $C H$ there is an atomless Boolean algebra B such that $\mathrm{s}_{\mathrm{mm}}(\mathrm{B})=\mathfrak{f}(\mathrm{B})=\omega<\omega_{1}=\mathfrak{u}(B)$.

Proof: Let $A_{0}=A$, and let $C, \mathcal{X} \subseteq A_{0}$ be as above. Let $\left\langle\ell_{\alpha}: \alpha<\omega_{1}\right\rangle$ enumerate the limit ordinals below ω_{1}. Partition ω_{1} into the sets $\left\{M_{i}: i \in \omega_{1}\right\}$, with each part of size ω_{1}. For each $i \in \omega_{1}$ let $\left\langle k_{\alpha}^{i}: \alpha<\omega_{1}\right\rangle$ enumerate $M_{i} \backslash\left(\ell_{i}+1\right)$. Now we construct a sequence $\left\langle A_{\alpha}: \alpha<\omega_{1}\right\rangle$ of countable atomless subalgebras of $\mathscr{P}(\omega)$ as follows. We have already defined A_{0}. For any limit ordinal $\alpha=\ell_{i}$ let $A_{\alpha}=\bigcup_{\beta<\alpha} A_{\beta}$ and let $\left\langle u_{\beta}^{i}: \beta<\omega_{1}\right\rangle$ enumerate all the nonprincipal ultrafilters on A_{α}. Now suppose α is the successor ordinal $\gamma+1$. If $\gamma=k_{\beta}^{i}$, we proceed as follows. Note that $\ell_{i}<k_{\beta}^{i}$ and so $u_{\beta}^{i} \subseteq A_{\gamma}$. Let $\overline{u_{\beta}^{i}}$ denote the filter on A_{γ} generated by u_{β}^{i}. If $\overline{u_{\beta}^{i}}$ is not an ultrafilter or if γ is not in any of the sets $M_{i} \backslash\left(\ell_{i}+1\right)$ let $A_{\alpha}=A_{\gamma}$. If $\overline{u_{\beta}^{i}}$ is an ultrafilter then we let x_{γ} be generic for $P\left(A_{\gamma}, \overline{u_{\beta}^{i}}\right)$. Define $A_{\alpha}=\left\langle A_{\gamma} \cup\left\{x_{\gamma}\right\}\right\rangle$. Note that A_{α} is atomless and $\overline{u_{\beta}^{i}}$ does not generate an ultrafilter on A_{α}.

Now define $B=\bigcup_{\alpha<\omega_{1}} A_{\alpha}$. B is atomless as it is a union of atomless algebras. Suppose that some countable $X \subseteq B$ generates an ultrafilter on B. Then pick a limit ordinal $\alpha=\ell_{i}<\omega_{1}$ such that $X \subseteq A_{\alpha}$. So X generates an ultrafilter of A_{α}; say it generates u_{β}^{i}. Let $\gamma=k_{\beta}^{i}$. Then by construction, X does not generate an ultrafilter on $A_{\gamma+1}$, contradiction. Therefore $|B|=\omega_{1}=\mathfrak{u}(B)$.

Finally, $\mathrm{s}_{\mathrm{mm}}(\mathrm{B})=\omega$ and $\mathfrak{f}(B)=\omega$ by Lemmas 1.4 and 1.5, respectively.

References

[BK81] Baumgartner J.E., Komjáth P., Boolean algebras in which every chain and antichain is countable, Fund. Math. 111 (1981), 125-133.
[KMB89] Koppelberg S., Monk J.D., Bonnet R., Handbook of Boolean Algebras, vol. 1989, North-Holland, Amsterdam, 1989.
[Kos99] Koszmider P., Forcing minimal extensions of Boolean algebras, Trans. Amer. Math. Soc. 351 (1999), no. 8, 3073-3117.
[Mon08] Monk J.D., Maximal irredundance and maximal ideal independence in Boolean algebras, J. Symbolic Logic 73 (2008), no. 1, 261-275.
[Mon11] Monk J.D., Maximal free sequences in a Boolean algebra, Comment. Math. Univ. Carolin. 52 (2011), no. 4, 593-610.

Department of Mathematics, University of Colorado at Boulder, Campus Box 395, Boulder, CO 80309-0395, USA

E-mail: Kevin.Selker@Colorado.edu
(Received October 2, 2013, revised March 3, 2014)

