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TO BRUALDI-LI MATRICES
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Abstract. In this paper we derive new properties complementary to an 2n×2n Brualdi-Li
tournament matrix B2n. We show that B2n has exactly one positive real eigenvalue and
one negative real eigenvalue and, as a by-product, reprove that every Brualdi-Li matrix has
distinct eigenvalues. We then bound the partial sums of the real parts and the imaginary
parts of its eigenvalues. The inverse of B2n is also determined. Related results obtained in
previous articles are proven to be corollaries.
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1. Introduction

For a matrix or vector X , let X∗ and Xt stand for the transpose conjugate and

the transpose, respectively. An n× n zero-one matrix A is tournament if

(1.1) A+At = J − I,

where J is the all ones matrix. A 2n × 2n tournament matrix T is almost regular

if it has n row sums equal to n− 1 and n row sums equal to n. In [3], Brualdi and

Li conjectured that for each n, the 2n× 2n tournament matrix that maximizes the

Perron value (the largest eigenvalue) can be written as

B2n =

(

Un U t
n

U t
n + I Un

)

,

The research has been supported partly by DIMACS (NSF center at Rutgers, The State
University of New Jersey), Shanxi Beiren Jihua Projects of China and The University of
Puerto Rico at Mayagüez.
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where Un denotes the matrix with all ones above the main diagonal, and all zeros

on and below the diagonal (this matrix is often called the n × n transitive tourna-

ment). Notice that B2n is an almost regular tournament matrix. To the best of

our knowledge, the conjecture is still open. However, there has been great progress

made on it. A strong result about this conjecture was obtained by Kirkland [13],

who proved that, for sufficiently large even n, a tournament matrix T which maxi-

mizes the Perron value must be almost regular. More results about the Perron value

and its asymptotic related properties can be found in [14], [15]. Motivated by the

conjecture on the maximal spectral radius property of the Brualdi-Li matrix B2n,

we derive further properties of this matrix, which, we think, can help in considering

the conjecture.

For an n× n tournament matrix A, the vector s = A · 1 is called the score vector
of A, and if s = (n− 1)/2 · 1, then A is said to be regular. The score vector can

be used to obtain information about eigenvalues of A, see [16], [18]. Note that the

score vector s satisfies st · 1 = n(n − 1)/2 and sts > n(n − 1)2/4 with equality if

and only if it is regular. These properties are useful in localizing the eigenvalues of

a tournament matrix.

Tournament matrices have been well studied in the past decades (see [2], [6], [7],

[9], [23] and their references). A wealth of literature focuses on deriving algebraic

or combinatorial attributes of the matrices because of their interplays between ma-

trix/graph theoretic and spectral properties [1], [2], [6], [16], [20], [23]. Originally

Brauer and Gentry [1], [2] showed that if λ is an eigenvalue of a tournament ma-

trix A of order n, then −1/2 6 Reλ 6 (n− 1)/2 and |Imλ| 6
√

n(n− 1)/6. Then

Moon and Pullman extended their idea to derive similar results for the generalized

tournament matrices [21]. And, subsequently, Maybee and Pullman [18] considered

more general matrices, the pseudo-tournament matrices, in which they introduced

h-hypertournament matrices and showed that −1/2 6 Reλ 6 (n− 1)/2 for the

h-hypertournament matrices.

In Section 2 we describe the preliminaries and fundamentals and then, in Section 3,

we consider the distribution of the eigenvalues of the Brualdi-Li matrix B2n and

bound the partial sums of the real parts and imaginary parts of the eigenvalues

of B2n. The inverse of B2n is obtained in Section 4. Several results obtained in the

previous articles are proven to be special cases to the ones obtained in this paper.

For convenience, except the notations mentioned above, we will also use the fol-

lowing ones:

C
n(Rn): the n-dimensional complex (real) Euclidean vector space,

λi(A): the i-th eigenvalue of matrix A,

Reλi(A): the real part of λi(A),
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Imλi(A): the imaginary part of λi(A),

J = 1 · 1t: the all ones matrix of an appropriate size,

̺(A): the spectral radius of matrix A (the Perron value, if A is nonnegative),

‖·‖2: the Euclidean norm.
In addition, for an n× n matrix A we assume that

Reλ1(A) > Reλ2(A) > . . . > Reλn(A),

Imλi1 (A) > Imλi2 (A) > . . . > Imλin(A),

where {i1, i2, . . . , in} is a permutation of {1, 2, . . . , n}.

2. Preliminaries and lemmas

In this section we describe the fundamentals that are crucial for our consideration.

Lemma 2.1. Let x = (x1, x2, . . . , xn)
t and y = (y1, y2, . . . , yn)

t be two vectors

in R
n satisfying

x1 > x2 > . . . > xn, y1 > y2 > . . . > yn.

Then the following four statements are equivalent:

(a) y = Sx for a doubly stochastic matrix S;

(b)
k
∑

i=1

xi >
k
∑

i=1

yi, k = 1, 2, . . . , n− 1, and
n
∑

i=1

xi =
n
∑

i=1

yi;

(c)
n
∑

i=1

ϕ(xi) >
n
∑

i=1

ϕ(yi), for any continuous convex function ϕ;

(d) there exists an n× n Hermitian matrix with eigenvalues x1, x2, . . . , xn and di-

agonal elements y1, y2, . . . , yn.

P r o o f. A proof of the equivalences of statements (a), (b), and (c) is shown in [8];

the equivalence of statements (a) and (d) is proven in [10], [19]. �

The Perron value of an almost regular tournament matrix has been well studied.

Let Tmax be an almost regular tournament matrix that has the maximum spectral

radius over all 2n × 2n tournament matrices. Then combining the result obtained

by Friedland in [5] with the one obtained by Kirkland in [12] yields the following

“asymptotic” formula:

̺(Tmax) =
2n− 1

2
− γn

2n
+O

( 1

n2

)

,

where 0.375 . . . 6 γn 6 0.380797 . . . The following lemma was originally obtained by

Kirkland in [16] and subsequently also by Savchenko (see Acknowledgement). We

will use this lemma in bounding the partial sums of the real parts of the eigenvalues

of an almost regular tournament matrix later in the paper.
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Lemma 2.2 ([16], Corollary 1.4). Let T be a 2n× 2n almost regular tournament

matrix. Then

̺(T ) >
n− 1

2
+

n

2

√

1− 1

n2
.

The following lemma is applied to bound the partial sums of the real parts and

the partial sums of the imaginary parts of the eigenvalues of a tournament matrix.

Lemma 2.3. Let A be an n×n tournament matrix. Then there exists a collection

of numbers q1, q2, . . . , qn satisfying 1 > q1 > q2 > . . . > qn > 0 and
∑

j

qj = 1 such

that

2Reλ1(A) = nq1 − 1, 2Reλ2(A) = nq2 − 1, . . . , 2Reλn(A) = nqn − 1,

which imply
k
∑

i=1

Reλi(A) 6
n− k

2
, k = 1, 2, . . . , n− 1,

and, in particular, −1/2 6 Reλn(A), Reλ1(A) 6 (n− 1)/2.

P r o o f. By the well-known Bendixon’s inequalities [11] we immediately have that

−1

2
6 Reλj(A) 6

n− 1

2
, j = 1, 2, . . . , n.

On the other hand, for all j, set qj = (2Reλj + 1)/n. Then we have qj > qj+1 > 0

and
k
∑

j=1

qj 6 1, for all k < n, and
n
∑

j

qj = 1. The claim follows trivially from these

facts. �

From Lemma 2.3, one sees that for an n× n tournament matrix A, the equality

(2.1) Reλk(A) + Reλk−1(A) + . . .+Reλ1(A) =
n− k

2
, k > 1

holds if and only if A has at least n− k eigenvalues with real part equal to −1/2. In

[17], Theorem 3, Kirkland and Shader derived if and only if conditions that a tour-

nament matrix satisfies ̺(A) = (n− k)/2 and λj(A) = 0, j = 2, 3, . . . , k. Since their

conditions satisfy equation (2.1), we immediately have that

Reλj(A) = −1

2
, j = k + 1, k + 2, . . . , n.

From Lemma 2.3 one also sees that for an n× n tournament matrix A,

(2.2) λ1(A) >
n− 2

4
+ p implies

k
∑

j=2

Reλj(A) 6
n− 2k + 2

4
− p, ∀ 2 6 k 6 n,
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where p is a real number. This property will be used to bound the (partial) sums of

the real parts of the eigenvalues of A later in this paper.

3. The distributions and bounds of the eigenvalues of B2n

In [9] Kirkland derived several eigen-properties of Brualdi-Li matrix B2n and

showed that every Brualdi-Li matrix has distinct eigenvalues and so it is diagonaliz-

able. In this section we derive further properties of this matrix and, as a by-product,

reprove that every Brualdi-Li matrix has distinct eigenvalues.

Theorem 3.1. The Brualdi-Li matrix B2n has exactly one real positive eigen-

value, one real negative eigenvalue, and its all other eigenvalues are distinct complex

numbers with negative real part and satisfy

−1

2
6 Reλ2n(B) 6 . . . 6 Reλ2(A) 6 −1

2
+

1

2n

1

1 +
√

1− 1/n2
.

P r o o f. From Lemma 2.3 we have Reλ2(A)+λ1(A) 6 (2n− 2)/2. Applying the

inequality in Lemma 2.2 yields

Reλ2(A) 6
2n− 2

2
− n− 1

2
− n

2

√

1− 1

n2

= − 1

2
+

n

2
− n

2

√

1− 1

n2

= − 1

2
+

1

2n

1

1 +
√

1− 1/n2
.

Because B2n is known to have distinct eigenvalues [9], it suffices to show that B2n

has exactly one real negative eigenvalue λ2. From Theorem 5 of [9], the characteristic

polynomial c(λ) of B2n is given by

c(λ) = λ2n −
n−1
∑

j=0

(n− 1− 2j)(λ+ 1)2(n−j−1)λ2j .

Rewriting c(λ) we have

c(λ) = λ2n −
n−1
∑

j=0

(n− 1− 2j)(λ+ 1)2(n−j−1)λ2j
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= λ2n −
⌊n/2⌋−1
∑

j=0

(n− 1− 2j)(λ+ 1)2(n−j−1)λ2j

−
n−1
∑

j=⌊n/2⌋

(n− 1− 2j)(λ+ 1)2(n−j−1)λ2j

= λ2n −
⌊n/2⌋−1
∑

j=0

(n− 1− 2j)
[

(λ+ 1)2(n−j−1)λ2j − (λ + 1)2jλ2(n−j−1)
]

= λ2n −
⌊n/2⌋−1
∑

j=0

(n− 1− 2j)[fj(λ)− fj(−λ− 1)],

where fj(λ) = (λ + 1)2(n−j−1)λ2j .

Noting that if λ 6 −1/2 + (2n)−1/(1 +
√

1− 1/n2), then

(n− 1)λ+ j 6 −n

2
+

1

2
+

n− 1

2n

1

1 +
√

1− 1/n2
+
⌊n

2

⌋

− 1 < 0,

and, for all λ ∈ (−1,−1/2 + (2n)−1/(1 +
√

1− 1/n2)],

f ′
j(λ) =

d

dλ

(

(λ+ 1)2(n−j−1)λ2j
)

= 2(n− j − 1)(λ+ 1)2(n−j−1)−1λ2j + 2j(λ+ 1)2(n−j−1)λ2j−1

= 2(λ+ 1)2(n−j−1)−1λ2j−1((n− 1)λ+ j) > 0,

we see that fj(λ) is strictly increasing. This implies that the function g(λ) = fj(λ)−
fj(−λ− 1) is also strictly increasing, and so is

⌊n/2⌋−1
∑

j=0

(n− 1− 2j)[fj(λ)− fj(−λ− 1)].

By this property and noting that B2n has exactly one positive eigenvalue, c(λ) = 0

has exactly one real negative root. Therefore, combining this result with Theorem 3

of [9] we conclude that B2n has exactly one real positive eigenvalue and one real

negative eigenvalue, and its all other eigenvalues are distinct complex numbers with

negative real part. �
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Theorem 3.2. Let λ 6= 0 and (λ+ 1)/λ = ez. Then λ is an eigenvalue of

the Brualdi-Li matrix B2n if and only if z is a solution of the following hyperbolic

equation:

(3.1) tanhnz · tanh z

2
+ coth

z

2
= 2n.

P r o o f. From the proof of Theorem 3.1, the characteristic polynomial c(λ) of

B2n can be rewritten as

c(λ) = λ2n −
⌊n/2⌋−1
∑

j=0

(n− 1− 2j)
[

(λ+ 1)2(n−j−1)λ2j − (λ + 1)2jλ2(n−j−1)
]

= λ2n

(

1− 1

λ2

(

λ+ 1

λ

)n−1 ⌊n/2⌋−1
∑

j=0

(n− 2j − 1)

×
[(

λ+ 1

λ

)n−2j−1

−
(

λ

λ+ 1

)n−2j−1])

.

Now, for any nonzero λ (complex or real), define (λ + 1)/λ = ez. Then

⌊n/2⌋−1
∑

j=0

(n− 2j − 1)

((

λ+ 1

λ

)n−2j−1

−
(

λ

λ+ 1

)n−2j−1)

=

⌊n/2⌋−1
∑

j=0

d

dz

(

e(n−2j−1)z + e−(n−2j−1)z
)

=
d

dz

⌊n/2⌋−1
∑

j=0

(

e(n−2j−1)z + e−(n−2j−1)z
)

= 2
d

dz

⌊n/2⌋−1
∑

j=0

cosh(n− 2j − 1)z.

It is easily checked that, similar to the formula in [22], page 73, we have

⌊n/2⌋−1
∑

j=0

cosh(n− 2j − 1)z =















sinhnz

2 sinh z
, n even,

sinhnz

2 sinh z
− 1

2
, n odd,

differentiating both sides of the above identity and then proceeding a simple manip-

ulation by setting c(λ) = 0 yield

2
d

dz

⌊n/2⌋−1
∑

j=0

cosh(n− 2j − 1)z =
n coshnz sinh z − sinhnz cosh z

sinh2 z
=

e−nz

2(cosh z − 1)
.
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Since e−nz = coshnz − sinhnz, we have

n coshnz sinh z − sinhnz cosh z

sinh2 z
=

− sinhnz + coshnz

2(cosh z − 1)

⇐⇒ n coshnz

sinh z
− coshnz

2(cosh z − 1)
=

sinhnz cosh z

sinh2 z
− sinhnz

2(cosh z − 1)

=
sinhnz

sinh2 z

(

cosh z − sinh2 z

2(cosh z − 1)

)

=
sinhnz

2 sinh2 z
(cosh z − 1)

(applying the formulas sinh z = 2 sinh(z/2) cosh(z/2), cosh z − 1 = 2 sinh2(z/2))

⇐⇒
(

2n− sinh z

cosh z − 1

)

coshnz =
sinhnz

cosh z
2

sinh
z

2

⇐⇒ tanhnz · tanh z

2
= 2n− coth

z

2
.

Noting that if λ is the real negative eigenvalue of B2n from Theorem 3.1, we have

λ > −1/2, and so, letting z = −x + iπ (x > 0) implies that (λ+ 1)/λ = −e−x,

equivalently,

λ =
1

−e−x − 1
.

If λ is the real positive eigenvalue (the Perron value) of B2n, then we may let z =

x > 0 so that (λ+ 1)/λ = ex, which implies

λ =
1

ex − 1
.

The prove is thus completed. �

Remark 3.1. One can easily show that equation (3.1) has 2n distinct roots and

among them there are exactly one real positive root and one real negative real root.

Therefore, Theorem 3.2 implies that B2n has 2n distinct eigenvalues, generating an

alternative proof of Theorem 3 of [9].

In the following we derive the upper bounds on the partial sums of the real parts

and the imaginary parts of the eigenvalues of B2n. Since B2n has exactly 2n − 2

eigenvalues with nonzero imaginary parts, we will only take care of the n−1 positive

imaginary parts of the complex eigenvalues.
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Theorem 3.3. The partial sums of the real parts of the eigenvalues of Brualdi-Li

matrix B2n satisfy

−k − 1

2
6

k
∑

j=2

Reλj(A) 6 −k − 1

2
+

1

2n

1

1 +
√

1− 1/n2
, ∀ k, 2 6 k 6 2n,

while the partial sums of the imaginary parts of the complex eigenvalues of Brualdi-Li

matrix B2n satisfy

k
∑

j=1

Imλij (B2n) 6
1

2

k
∑

j=1

cot
(2j − 1)π

4n
, ∀ k, 1 6 k 6 n− 1,

where Imλij (B2n) > Imλij+1
(B2n) > 0, for all 1 6 j 6 n− 1.

P r o o f. By combining Theorem 3.1 and Lemmas 2.2 and 2.3, it is easily checked

that the partial sums of the real parts of the eigenvalues of B2n satisfy the inequalities

asserted. Below we consider the imaginary parts. By the Schur decomposition

theorem [11] there exists a unitary matrix Q such that

Q∗AQ =







λ1(A) aij
. . .

0 λn(A)






,

which yields

Q∗(B2n −Bt
2n)Q =







2i Imλ1(B2n) aij
. . .

−a∗ij 2i Imλ2n(B2n)






.

Let Pn = (B2n −Bt
2n)/(2i). Then Pn is an Hermitian matrix, and so by Lemma 2.1

we have

(3.2)

k
∑

j=1

Imλij (B2n) 6

k
∑

j=1

λj(Pn), k = 1, 2, . . . , 2n− 1,

2n
∑

j=1

Imλj(B2n) =

2n
∑

j=1

λj(Pn) = 0.

We now determine the eigenvalues of Pn and consider the eigenvalues of the following

“shifted” matrix:

I + 2iPn = I + B2n −Bt
2n =

(

I + Un − U t
n U t

n − Un − I

U t
n − Un + I I + Un − U t

n

)

=

(

Vn −Vn

V t
n Vn

)

,
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where Vn = I + Un − Un, for example, if n = 4, then

I + 2iP4 =





























1 1 1 1 −1 −1 −1 −1

−1 1 1 1 1 −1 −1 −1

−1 −1 1 1 1 1 −1 −1

−1 −1 −1 1 1 1 1 −1

1 −1 −1 −1 1 1 1 1

1 1 −1 −1 −1 1 1 1

1 1 1 −1 −1 −1 1 1

1 1 1 1 −1 −1 −1 1





























=

(

V2 −V2

V t
2 V2

)

.

Noting that Vn = I + η + . . . ηn−1, where

η =









0 1 0 . . .

0 0 1 . . .

. . .

−1 0 . . . 0









=

(

0 In−1

−1 0

)

,

from [4], Probl. (4) on p. 84, ηn = −I and η has eigenvalues σj = cos ((2j − 1)π/n)+

i sin ((2j − 1)π/n), j = 1, 2, . . . , n. This implies that the eigenvalues of Vn are λ
′
j =

2/(1− σj). On the other hand, it is easily checked that Vn is a normal matrix. So

we have

det(λI − (I + 2iPn)) = det((λI − Vn)
2 + V t

nVn) =
n
∏

j=1

{(λ− λ′
j)

2 + |λ′
j |2},

and therefore, λj(I +2iP ) = λ′
j ± i|λ′

j |, j = 1, 2, . . . , n. Through a simple calculation

we obtain that λ′
j = 1+i cot ((2j − 1)π/(2n)) and |λ′

j | =
√

1 + cot2 ((2j − 1)π/(2n)),

and so plugging these values into the equations yields

λj(I + 2iPn) = 1 + i

(

cot
(2j − 1)π

2n
±
√

1 + cot2
(2j − 1)π

2n

)

, j = 1, 2, . . . , n.

Equivalently,

λj(Pn) =
1

2

(

cot
(2j − 1)π

2n
±
√

1 + cot2
(2j − 1)π

2n

)

=















1

2
cot

(2j − 1)π

4n
, j 6 n,

−1

2
tan

(2j − 1)π

4n
, j > n.

Plugging these expressions into (3.2) results in the proof of the theorem. �
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Notice that in Theorem 3.3, when k = 1, the upper bound coincides with Pick’s

bound derived in [7], that is, Imλi1 (B2n) 6
1
2 cot(π/(4n)).

Corollary 3.1. Let λ1(B2n) and λ2(B2n) be the positive and negative eigenvalues

of B2n, respectively. Then the complex eigenvalues λj(B2n), j > 3, satisfy

2
(

1− 1

2n− 1

)

<

2n
∏

j=3

λj(B2n) < 2
(

1 +
1

n− 1

)

,

which implies

lim
n→∞

n−1
∏

j=1

(1

4
+ (Imλij (B2n))

2
)

= lim
n→∞

2n
∏

j=3

λj(B2n) = 2.

P r o o f. From the characteristic polynomial c(λ) of B2n (see the proof of Theo-

rem 3.1), the determinant of B2n satisfies

det(B2n) = −2n− 2

2
.

From Lemma 2.2 and Theorem 3.1 we have

2n− 1

2
> λ1(B2n) >

2n− 2

2
,

1

2
> |λ2(B2n)| >

1

2

(

1− 1

n

)

=
n− 1

2n
.

Combining these properties,

2n
∏

j=3

λj(B2n) = −2n− 2

2

1

λ1(B2n)λ2(B2n)
<

1

|λ2(B2n)|
<

2n

n− 1
= 2
(

1 +
1

n− 1

)

.

On the other hand,

2n
∏

j=3

λj(B2n) = −2n− 2

2

1

λ1(B2n)λ2(B2n)
>

2n− 2

2

4

2n− 1
= 2
(

1− 1

2n− 1

)

,

which implies lim
n→∞

2n
∏

j=3

λj(B2n) = 2. The rest of proof follows from Theorem 3.1. �
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4. The inverse of Brualdi-Li matrix B2n

In this section we derive the inverse of Brualdi-Li matrix B2n. For the sake of

convenience, we introduce some conventions. Let

ξ =









0 1 0 . . .

0 0 1 . . .

. . .

1 0 . . . 0









=

(

0 I2n−2

1 0

)

be the (2n−1)× (2n−1) basic circulant matrix and let C = I+ ξ+ . . .+ ξn−2. Then

B2n =

(

a C

1 bt

)

,

where a is the (2n−1)-dimensional zero-one column vector whose first n entries are 0

and the last n − 1 entries are 1, and b is the (2n− 1)-dimensional zero-one column

vector whose first n − 1 entries are 1 and the last n entries are 0. For example, if

n = 4, we have

B8 =





























0 1 1 1 0 0 0 0

0 0 1 1 1 0 0 0

0 0 0 1 1 1 0 0

0 0 0 0 1 1 1 0

1 0 0 0 0 1 1 1

1 1 0 0 0 0 1 1

1 1 1 0 0 0 0 1

1 1 1 1 0 0 0 0





























.

We now solve the following equation for x, y, T and z.

(

a C

1 bt

)(

xt y

T z

)

= I2n,

where T is an (2n− 1)× (2n− 1) matrix and y is a number. Comparing both sides

we get

axt + CT = I2n−1, ay + Cz = 0, xt + btT = 0, y = 1− btz.

Combining the second and fourth equations, we have a(1 − btz) + Cz = 0 =⇒
a = (abt − C)z, and z = (0, . . . , 0,−1)t, and so y = 1 − btz = 1. Observing

that B2n = (bi,j) satisfies bi,j = bn+1−j,n+1−i, its inverse also has this property.

This implies that we must have xt = −btT = (−1, 0, . . . , 0). So from the equation
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axt + CT = I2n−1 we have T = (C − abt)−1. Consequently, the inverse of B2n is

given by

(4.1) B−1
2n =

(

xt 1

(C − abt)−1 z

)

= (b′i,j),

where xt = (−1, 0, . . . , 0), z = (0, . . . , 0,−1)t, and

abt =

(

0n,n−1 0n,n

Jn−1,n−1 0n−1,n

)

.

Making use of the property b′i,j = b′n+1−j,n+1,i and performing simple calculations

on (C − abt)−1 in (4.1), we obtain the inverse

(4.2) B−1
2n =

1

n− 1



























1−n 0 0 ... 0 0 0 ... 0 0 n−1

1 2−n 1 ... 1 2−n 1 ... 1 1 0

1 1 2−n 1 ... 1 2−n 1 ... 1 0

...
...

.. .
.. .

.. .
.. .

...
...

1 1 ... 2−n 1 ... 1 2−n 0

2−n 1 1 ... 1 2−n 1 ... 1 0

1 2−n 1 ... 1 2−n 1 ... 1 0

...
...
. . .
.. .

.. .
.. .

...
...

1 1 ... 2−n 1 1 ... 1 2−n 0

1 1 ... 1 2−n 1 ... 1 1−n



























,

where, in the left-bottom block, the elements (2 − n) are along three lines parallel

to the main diagonal, the first starting from the position (1, 2), the second from

(1, n+ 1), and the last from (n, 1). For example, if n = 4, then

B−1
8 =

1

3





























−3 0 0 0 0 0 0 3

1 −2 1 1 −2 1 1 0

1 1 −2 1 1 −2 1 0

1 1 1 −2 1 1 −2 0

−2 1 1 1 −2 1 1 0

1 −2 1 1 1 −2 1 0

1 1 −2 1 1 1 −2 0

1 1 1 −2 1 1 1 −3





























.

Theorem 4.1.

(i) The inverse of the Brualdi-Li matrix B2n is given by (4.2).

(ii) Let σ1 and σ2n be the largest and the least singular values of B2n, respectively.

Then

n− 1 < σ1 < n,
1

4− 1

n− 1

< σ2n <
1√
2
.
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P r o o f. From Lemma 2.2, we have that (2n− 2)/2 < λ1(B2n) 6 σ1. On the

other hand, since σ2
1 = ||B2n||2 6 ||B2n||1||B2n||∞ = n2, we have n− 1 < σ1 < n.

We now turn to the second part. From the last row and the first column of matrix

(4.2) we have

σ−1
2n 6 (‖B−1

2n ‖∞‖B−1
2n ‖1)1/2 =

4n− 5

n− 1
= 4− 1

n− 1
.

On the other hand,

σ−2
2n > (B−1

2n B−t
2n )11 = 2.

Combining the two bounds yields the assertion. �

5. Concluding remarks

In this paper we derived further properties of the Brualdi-Li tournament matri-

ces B2n. We considered the distribution of their eigenvalues and derived bounds on

the partial sums of the real parts and imaginary parts of the eigenvalues of B2n.

The inverse of B2n is also obtained. Several results obtained in previous articles are

proven to be special cases to the ones provided in this paper.
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