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GRADUAL DOUBLING PROPERTY OF HUTCHINSON ORBITS
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Abstract. The classical self-similar fractals can be obtained as fixed points of the iteration
technique introduced by Hutchinson. The well known results of Mosco show that typically
the limit fractal equipped with the invariant measure is a (normal) space of homogeneous
type. But the doubling property along this iteration is generally not preserved even when
the starting point, and of course the limit point, both have the doubling property. We prove
that the elements of Hutchinson orbits possess the doubling property except perhaps for
radii which decrease to zero as the step of the iteration grows, and in this sense, we say
that the doubling property of the limit is achieved gradually. We use this result to prove
the uniform upper doubling property of the orbits.

Keywords: metric space; doubling measure; Hausdorff-Kantorovich metric; iterated func-
tion system
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1. Introduction

Since the earlier works by Coifman and Guzmán in [5] and Coifman and Weiss

in [6], the harmonic analysis has a natural environment of the (quasi) metric spaces

with doubling measures. There the expression space of homogeneous type for this

setting seems to be coined. Since the doubling property allows the use of Wiener type

covering lemmas, many of the basic results of harmonic analysis have been extended

to the setting of spaces of homogeneous type.

On the other hand, the results in [17] show that typically the limit fractal pro-

vided by the Hutchinson iteration scheme (see [8]) and equipped with the invariant

measure, is a (normal) space of homogeneous type. Some current attempts to extend

notions of harmonic analysis and partial differential equations to fractals (see [18],
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[15], [14]) suggest that some results of real and functional analysis on these settings

are of interest.

Since the classical self-similar fractals are actually obtained as fixed points of the

iteration technique introduced by Hutchinson, one may ask for the preservation of

the doubling property along the iteration. If this property is uniformly preserved,

one can expect that the behavior of some operators on the limit fractal could be

predicted from approximate versions defined on the simpler approximation spaces

(see [2]). But the doubling property is generally not preserved by the iteration

procedure. In [1] we prove that it may happen that no point, except for the first

and last, of the orbit generated by a contraction is a space of homogeneous type,

even when the starting point, and of course the limit point, both have the doubling

property. On the other hand, the uniqueness of the (Banach) fixed point lead us to

the same limit space no matter what is the initial space, and under the assumptions

in [17] this limit space is doubling. Hence the question of how suddenly the doubling

property of the limit appears seems natural.

In this note we prove that, in a precise sense, the elements of Hutchinson orbits

become more and more doubling as the step of the iteration grows (Theorem 3.2),

and the doubling property of the limit, in this sense, is gradual (Proposition 3.1).

We use this result to prove the uniform upper doubling property of the orbits in

Theorem 4.1.

For the sake of notational simplicty we have assumed the same contractivity coef-

ficient for each of the contractive similitudes involved. As can easily be verified, the

results in this paper still hold in the case of different coefficients.

In Section 2 we introduce notation and definitions, and some basic results. In

Section 3 we find a gradual improvement for the doubling property of the orbit

as the iteration step increases in Theorem 3.2, the proof of which is based on the

construction of discrete approximations to the attractor. We consider the orbits

starting from a mass point space, defined by a finite family of contractive similitudes,

and prove the uniform normality, and hence the uniform doubling property, for the

whole orbit (Lemmas 3.3 and 3.4). We also state some basic properties of iterated

function systems (IFS) in Lemma 3.5. Finally, in Section 4, we use Theorem 3.2

in order to show that the approximating sequence of spaces is a uniform family of

upper doubling spaces, in the sense of Hytönen.

2. Notation and basic results

Let us start by describing our general framework. Throughout this note, (X, d)

is a given compact metric space. Without loss of generality we will assume that
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diam(X) = 1, where diam(X) = sup{d(x, y) : x, y ∈ X}. We define an open ball

centered at x of radius r to be the set B(x, r) = {y ∈ X : d(x, y) < r}.

Let K = {K ⊆ X : K 6= ∅, K compact}. With [A]ε we shall denote the ε-

enlargement of the set A ⊆ X ; i.e. [A]ε =
⋃

x∈A

B(x, ε) = {y ∈ X : d(y,A) < ε}. Here

d(x,A) = inf{d(x, y) : y ∈ A}. Given two sets A and B in K the Hausdorff distance

from A to B is given by

dH(A,B) = inf{ε > 0: A ⊆ [B]ε and B ⊆ [A]ε}.

Let us now introduce the Kantorovich-Hutchinson distance on the set of all Borel

regular probability measures on the metric space (X, d). We denote

P = {µ : µ is a non-negative Borel measure on X and µ(X) = 1},

and Lip1 as the space of all Lipschitz continuous functions defined on X with Lip-

schitz constant less than or equal to one, i.e., f ∈ Lip1 if and only if |f(x)− f(y)| 6

d(x, y) for every x, y ∈ X .

Since (X, d) is compact, dK(µ, ν) = sup{|
∫
f dµ−

∫
f dν| : f ∈ Lip1} gives a dis-

tance on P such that the dK -convergence of a sequence is equivalent to its weak star

convergence to the same limit (see [7] for the Euclidean case and [3] for more general

settings).

In [3] the following metric on K × P is considered

δ((Y1, µ1), (Y2, µ2)) = dH(Y1, Y2) + dK(µ1, µ2),

with (Yi, µi) ∈ K × P , i = 1, 2. So (K × P , δ) becomes a complete metric space. It

is also proved that the set

E = {(Y, µ) ∈ K × P : supp(µ) ⊆ Y }

is a closed subset of K × P , so that (E , δ) is a complete metric space.

Throughout this paper, a finite set Φ = {ϕi : X → X, i = 1, 2, . . . ,M} of con-

tractive similitudes with the same contractivity coefficient is given. Precisely, each

ϕi satisfies

d(ϕi(x), ϕi(y)) =
1

a
d(x, y)

for every x, y ∈ X and some a > 1. The constant 1/a is called the contractivity

coefficient.
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We consider the transformation T induced by Φ, defined on (Y, µ) ∈ E for

T (Y, µ) = (T1(Y ), T2(µ)) = (Y ′, µ′) where

Y ′ =

M⋃

i=1

ϕi(Y ),

and

µ′(B) =
1

M

M∑

i=1

µ(ϕ−1

i (B)),

for every Borel subset B of X . It is easy to see that T : E → E is a δ-contraction.

From the (Banach) fixed point theorem we have that any δ-contractive mapping

T : E → E has a unique fixed point. Moreover, the fixed point can be achieved

as the limit for n → ∞ of the n-th iteration T n of T starting at any initial point

(Y0, µ0) ∈ E .

Let us write (Y∞, µ∞) to denote the unique limit point of T n(Y0, µ0), which de-

pends only on T but not on the starting space (Y0, µ0). The fractal set Y∞ is called

the attractor of the system Φ, and is the only compact set in X satisfying

Y∞ =

M⋃

i=1

ϕi(Y∞).

On the other hand, µ∞ is called the invariant measure and is the only probability

Borel measure supported in Y∞ such that

µ∞(B) =
1

M

M∑

i=1

µ∞(ϕ−1

i (B)),

for every Borel set B (see [7], [8]).

We shall say that the system Φ = {ϕ1, . . . , ϕM} satisfies the open set condition

(OSC) if there exists a nonempty open set U ⊂ X such that

M⋃

i=1

ϕi(U) ⊆ U,

and ϕi(U) ∩ ϕj(U) = ∅ if i 6= j. We shall say that U is an open set for the OSC for

Φ (see for example [8], [7] and [16]).

The basic examples of IFS are the systems generating the most classical and

best-known fractal sets, such as the ternary Cantor set, the Sierpinski gasket and

carpet, and the von Koch snowflake. For example, in the case of the ternary Cantor
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set C the system Φ is defined on X = [0, 1] equipped with the Euclidean distance

d(x, y) = |x − y|, and consists of M = 2 contractive similitudes with contractivity

coefficient equal to 1/3 (a = 3). More precisely, ϕ1(x) = x/3 and ϕ2(x) = x/3+2/3.

Also U = (0, 1) is an open set for the OSC for Φ. If we take Y0 = [0, 1] and µ0 =

Lebesgue measure on Y0, we have that T1(Y0) = [0, 1/3]∪ [2/3, 1], T 2
1 (Y0) = [0, 1/9]∪

[2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1], and in general, T n
1 (Y0) is the union of 2

n disjoint

intervals of the n-th step in the usual construction of the Cantor set. Denoting

this union by Cn, we have that T
n
2 (µ0) coincides with the uniform measure on Cn

normalized to a probability measure. But if we now take Y0 = {0} and µ0 to be the

Dirac delta concentrated at 0, then T n
1 (Y0) is the collection Ln of all the left points

of each interval in Cn, and T
n
2 (µ0) is the counting measure on Ln divided by 2n.

As we have already mentioned, the fixed point depends only on T but not on the

starting space (Y0, µ0). In this case the limit (Y∞, µ∞) is the Cantor set C with the

s-dimensional Hausdorff measure on C, where s = log 2/ log 3 (see [7], [8]).

Then we consider some subclasses of E introduced in [1].

Definition 2.1. Given (Y, µ) ∈ E , we say that (Y, µ) is a space of homogeneous

type, or that µ is a doubling measure on Y , if there exists a constant A > 1 such that

the inequalities

(2.1) 0 < µ(B(y, 2r)) 6 Aµ(B(y, r))

hold for every y ∈ Y and every r > 0. When (Y, µ) ∈ E satisfies (2.1) we shall write

(Y, µ) ∈ DA to keep record of the quantitative parameter of the doubling property.

Set D =
⋃

A>1

DA.

We make some remarks concerning the classes DA defined above. First let us

observe that D1 is not empty, since every set consisting of a single point equipped

with any metric and with the counting measure, belongs to D1. Notice also that

if A1 6 A2 then DA1
⊆ DA2

. Finally let us point out that if (Y, µ) ∈ DA then

supp(µ) = Y . In fact, since (Y, µ) ∈ E we have supp(µ) ⊆ Y . On the other hand,

for y ∈ Y \ supp(µ) there exists an open set G containing y with µ(G) = 0. So for

some ball B in Y we should have µ(B) = 0, which is impossible.

It is proved in [17] that, under the open set condition for the system Φ, the limit set

(attractor) equipped with the invariant measure and the usual Euclidean distance,

is a (normal or Ahlfors regular) space of homogeneous type. With our notation

(Y∞, µ∞) ∈ D. However, the examples in [1] show that it may happen that the only

points in the orbit satisfying the doubling property are (Y0, µ0) and (Y∞, µ∞), but no

other (Yn, µn) := T n(Y0, µ0) is a space of homogeneous type. These examples seem

to suggest that, if we take a sequence {εn} whose elements tend to zero when n→ ∞,
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then there exists a constant A > 1 such that (2.1) holds for every n, every y ∈ Yn

and every r > εn. This leads us to define the ε-doubling condition for a measure and

consequently another subclass of E .

Definition 2.2. For ε > 0, we shall denote by Dε
A the class of all those couples

(Y, µ) ∈ E for which (2.1) holds for every y ∈ Y and every r > ε. Set Dε =
⋃

A>1

Dε
A.

We shall now give a representative example of the above definition.

Example 2.3. Take Y = [0, 1] and µ(E) = 1/10 card{E ∩ Z}, where the set Z

is defined by Z = {j/10, j = 0, 1, . . . , 9}. It is easy to see that (Y, µ) /∈ D since

µ(B(1/20, 1/20)) = 0 but µ(B(1/20, 1/10)) = 1/5. Nevertheless, (2.1) becomes true

for every y ∈ Y , taking r > 1/10.

3. Uniform gradual doubling orbits starting at any point of E

When the elements of the approximating sequence become more and more doubling

in a sense that will be made precise, below, then the doubling property of the limit

(Y∞, µ∞) does not appear suddenly but naturally. This result is stated in the next

proposition.

Proposition 3.1. Let ((Yn, µn))n>1 be a sequence in E such that (Yn, µn) ∈ Dεn
A

for some sequence εn → 0 when n→ ∞. If (Yn, µn)
δ
→ (Y, µ) then (Y, µ) ∈ DA4 .

P r o o f. Take y ∈ Y and r > 0. Let ψ be the continuous function defined on R
+
0

by ψ ≡ 1 on [0, 1], ψ ≡ 0 on [2,∞), and by assuming it to be linear on [1, 2]. For

t > 0 we denote ψy,t(x) = ψ(d(y, x)/t) for x ∈ X . Since Yn
dH−→ Y , we can choose

yn ∈ Yn such that d(yn, y) → 0 when n → ∞. Then, since there exists n0 such that

yn ∈ B(y, r/16) and εn < 5r/16 for every n > n0, we have

µ(B(y, 2r)) 6

∫
ψy,2r(x) dµ(x) = lim

n→∞

∫
ψy,2r(x) dµn(x)

6 lim inf
n→∞

µn(B(y, 4r)) 6 lim inf
n→∞

µn(B(yn, 5r))

6 lim inf
n→∞

A4µn

(
B
(
yn,

5r

16

))
6 A4 lim inf

n→∞
µn

(
B
(
y,
r

2

))

6 A4 lim
n→∞

∫
ψy,r/2(x) dµn(x) = A4

∫
ψy,r/2(x) dµ(x)

6 A4µ(B(y, r)).

�
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Let us state the additional hypothesis that we are assuming for the results in the

remainder of this section. We will assume that (X, d) has furthermore finite metric

(or Assouad) dimension. This means that there exists a constant N ∈ N, called

a constant for the Assouad dimension of X , such that for every x ∈ X , every r > 0

and every r-disperse subset E of X , we have that card(E ∩B(x, 2r)) 6 N . A set E

is said to be r-disperse if d(x, y) > r for every x, y ∈ E, x 6= y. If (X, d) has finite

metric dimension, then every r-disperse subset of X has at most Nm points in each

ball of radius 2mr, with m a positive integer (see [6] and [4]).

The following theorem is the main result of our paper. This theorem proves that

the elements of Hutchinson orbits generated by a transformation induced by IFS

become uniformly more and more doubling in the following sense: the doubling

property is satisfied with the same doubling constant except perhaps for radii which

decrease to zero as the step of the iteration grows.

Theorem 3.2. Let Φ = {ϕ1, . . . , ϕM} be a family of contractive similitudes on

X with the same contractivity coefficient 1/a and satisfying the OSC. Let U be an

open set for the OSC of Φ. Let (Y0, µ0) ∈ E be such that Y0 ⊆ U , and for each non-

negative integer n, set (Yn, µn) = T n(Y0, µ0). Then there exists a constant A > 1

such that (Yn, µn) ∈ D5a−n

A for each n.

Notice that the above theorem and Proposition 3.1 with εn = 5a−n show that, even

when no point of the orbit is a space of homogeneous type, the doubling property of

the limit space (Y∞, µ∞) does not appear suddenly.

In order to prove Theorem 3.2, we shall use the following three lemmas. In Lem-

mas 3.3 and 3.4 we assume the hypothesis (Y0, µ0) ∈ E with Y0 ⊆ U and use the

definitions given below.

Let us fix u ∈ Y0, and for each non-negative integer n set

T n({u}, λu) = (∆n, νn),

where λu is the unit mass at u. So ∆n has M
n elements and for every x ∈ ∆n we

have νn({x}) = M−n. In other words, νn is the measure on X counting the points

of ∆n, normalized to a probability measure.

Notice that due to the OSC each Yn can be written as a disjoint union of M
n

Borel pieces Y i
n , where i ∈ {1, 2, . . . ,M}n. Also ∆n ⊆ Yn and card(∆n ∩Y i

n) = 1 for

every i ∈ {1, 2, . . . ,M}n.
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Lemma 3.3. There exists a constant C > 1, depending on ̺ = dist(Y0, ∂U) > 0,

such that the inequalities

C−1rs 6 νn(B(x, r)) 6 Crs

hold for every r > ̺a−n, every x ∈ ∆n and every n ∈ N, where s = logaM .

The above lemma states that each (∆n, νn) is an Ahlfors s-regular space for every

r > ̺a−n with a constant which does not depend on n.

Lemma 3.4. The elements of the sequence ((∆n, νn))n>1 are uniform spaces

of homogeneous type. In other words, there exists a constant Ã > 1 such that

((∆n, νn))n>1 ⊆ DÃ.

Finally we shall state some basic results about IFS. Given i = (i1, i2, . . . , ik) ∈

{1, 2, . . . ,M}k we denote by ϕi the composition ϕik ◦ ϕik−1
◦ . . . ◦ ϕi2 ◦ ϕi1 . Also, if

i0 ∈ {1, 2, . . . ,M} we write i′ = (i0, i) to denote the (k + 1)-tuple (i0, i1, i2, . . . , ik).

Lemma 3.5. With U an open set for the OSC for Φ, we have

(a) if i, j ∈ {1, 2, . . . ,M}k and i 6= j, then ϕi(U) ∩ϕj(U) = ∅;

(b) if i = (i, i′) with i′ ∈ {1, 2, . . . ,M}k and i ∈ {1, 2, . . . ,M}, then ϕi(U) ⊆

ϕi′(U);

(c) if i′ and j′ are two different elements in {1, 2, . . . ,M}k and i = (i, i′) where

i ∈ {1, 2, . . . ,M}, then ϕi(U) ∩ ϕj′(U) = ∅;

(d) for any fixed u ∈ U and each positive integer n, if we define

∆n = {ϕj(u) : j ∈ {1, 2, . . . ,M}n},

then we have

card(ϕl(U) ∩∆n) =Mn−k

for every k 6 n and every l ∈ {1, 2, . . . ,M}k.

The proof of Lemma 3.5 is contained in [1]. We shall postpone the proofs of

Lemmas 3.3 and 3.4 and give the proof of the theorem.

P r o o f of Theorem 3.2. Let (Y0, µ0) ∈ E be such that Y0 ⊆ U . Notice that

µn(Y
j
n ) = µn(ϕj(Y0)) =M−n
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for every n ∈ N and every j ∈ {1, 2 . . . ,M}n. In fact, for a fixed j ∈ {1, 2 . . . ,M}n

we have

µn(ϕj(Y0)) =M−n
∑

i∈{1,2...,M}n

µ0(ϕ
−1

i (ϕj(Y0)))

=M−nµ0(Y0) +M−n
∑

i∈{1,2...,M}n

i6=j

µ0(ϕ
−1

i (ϕj(Y0)).

Since µ0(Y0) = 1 and ϕ−1

i (ϕj(Y0)) = ∅ for every choice of i 6= j (see Lemma 3.5 (a)),

we have the claim.

Fix n ∈ N, y ∈ Yn and r > 5a−n. There exists one and only one i ∈ {1, . . . ,M}n

such that y ∈ Y i
n . Let us write x

i
n to denote the unique point in ∆n ∩ Y i

n . Then

d(y, xin) 6 a−n. For t > 2a−n denote

Bk = B(xin, t+ (k − 2)a−n),

k = 0, 1, 3, 4. Notice that

B1 ⊆ B(y, t) ⊆ B3,

and then

µn(B1) 6 µn(B(y, t)) 6 µn(B3).

We claim that the comparison of the measure µn with the counting measure νn on

∆n is

(3.1) µn(B1) > νn(B0) and µn(B3) 6 νn(B4).

If the claim holds, then

νn(B0) 6 µn(B(y, t)) 6 νn(B4)

for every y ∈ Y i
n and t > 2a−n. Let Ã > 1 be a constant such that {(∆n, νn) : n ∈

N} ⊆ DÃ (see Lemma 3.4). Then

µn(B(y, 2r)) 6 νn(B(xin, 2r + 2a−n))

6 Ã2νn(B(xin, (r + a−n)/2))

6 Ã2µn(B(y, (r + 5a−n)/2))

6 Ã2µn(B(y, r)),
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and the result holds with A = Ã2. Then it only remains to prove the inequalities

contained in (3.1). To show the first we define the set

J = {j ∈ {1, . . . ,M}n : Y j
n ⊆ B1}.

Let us prove that if xjn ∈ B0 ∩ ∆n then j ∈ J . Since xjn ∈ B0 we have that

d(xjn, x
i
n) < t − 2a−n. To see that Y j

n ⊆ B1 fix z ∈ Y j
n . Since diam(Y j

n ) = a−n we

have that d(z, xjn) 6 a−n. Then

d(z, xin) 6 d(z, xjn) + d(xjn, x
i
n) < a−n + t− 2a−n = t− a−n,

and hence Y j
n ⊆ B1. So

µn(B1) >
∑

j∈J

µn(Y
j
n ) =

∑

j∈J

M−n =
∑

j∈J

νn({x
j
n}) > νn(B0).

To prove the second inequality let us now define the set

Q = {q ∈ {1, . . . ,M}n : Y q
n ∩B3 6= ∅}.

Observe that if q ∈ Q then Y q
n ⊆ B4. In fact, if q ∈ Q there exists zqn ∈ Y q

n ∩

B(xin, t+ a−n). Then for every z ∈ Y q
n we have

d(z, xin) 6 d(z, zqn) + d(zqn, x
i
n) < a−n + t+ a−n = t+ 2a−n,

and then z ∈ B4. Hence

µn(B3) 6
∑

q∈Q

µn(Y
q
n ) =

∑

q∈Q

νn({x
q
n}) 6 νn(B4),

as desired. �

P r o o f of Lemma 3.3. Fix n ∈ N, x ∈ ∆n = {ϕi(u) : i ∈ {1, 2, . . . ,M}n} and

r > ̺a−n, where ̺ = dist(Y0, ∂U) > 0. Let us start with the following two remarks.

The first is that if l ∈ {1, 2, . . . ,M}k and k 6 n, then from Lemma 3.5 (d) we have

νn(ϕl(U)) =M−ncard(ϕl(U) ∩∆n) =M−k = a−ks,

with s = logaM .

The second remark is that the OSC implies that ∆n is a ̺a
−n-disperse set. In

fact, take j, i ∈ {1, . . . ,M}n with j 6= i, and set xn,j = ϕj(u) and xn,i = ϕi(u).

Since U is an open set, we have that B(u, ̺) ⊆ U . Then

B(xn,j , ̺a
−n) = ϕj(B(u, ̺)) ⊆ ϕj(U),

B(xn,i, ̺a
−n) = ϕi(B(u, ̺)) ⊆ ϕi(U),
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and since ϕj(U) and ϕi(U) are disjoint, we have B(xn,j , ̺a
−n)∩B(xn,i, ̺a

−n) = ∅.

This implies that d(xn,j , xn,i) > ̺a−n.

Assume first that r > a−n. Set k to denote the only integer less than or equal to n

for which a−k < r 6 a−k+1. For the lower bound, with x = ϕi(u), i = (i1, i2, . . . , in)

and i′ = (in−k+1, in−k+2, . . . , in) we have

ϕi′(U) ∩∆n ⊆ B(x, r) ∩∆n.

In fact, if y ∈ ϕi′(U) ∩∆n then y = ϕl(u), where

l = (l1, l2, . . . , ln−k, in−k+1, in−k+2, . . . , in),

for some l1, l2, . . . , ln−k ∈ {1, 2, . . . ,M}. Then

d(x, y) 6 a−k < r.

Hence

νn(B(x, r)) > νn(ϕi′(U)) = a−ks
> a−srs.

For the upper bound, we define

J = {j ∈ {1, 2, . . . ,M}k : B(x, r) ∩ ϕj(U) 6= ∅}.

Since {ϕj(U), j ∈ {1, 2, . . . ,M}k} is a covering of ∆n we have

B(x, r) ∩∆n ⊆
⋃

j∈J

ϕj(U).

From the first remark at the beginning of the proof,

νn(B(x, r)) 6
∑

j∈J

νn(ϕj(U)) = card(J )a−ks 6 card(J )rs.

We only have to show that card(J ) is bounded by a constant which does not depend

on x and r. In order to prove it, let us identify each j ∈ J with the point ϕj(u) ∈

ϕj(U), and let us define the set A = {ϕj(u) : j ∈ J }. Since ϕj(U) are pairwise

disjoint for j ranging on the set of indices with fixed length, we have that card(J ) =

card(A). Notice that A ⊆ B(x, 2r). In fact, if j ∈ J then there exists y ∈ B(x, r) ∩

ϕj(U), and

d(ϕj(u), x) 6 d(ϕj(u), y) + d(y, x) < a−k + r 6 2r.

Since, being a subset of ∆k, the set A is ̺a−k-disperse, we have that

card(A) = card(B(x, 2r) ∩A) 6 card(B(x, 2a−k+1) ∩ A) 6 N l,
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where l is a positive integer such that 2l > 2a/̺ and N is a constant for the finite

Assouad dimension of X .

Let us finally check the case ̺a−n 6 r 6 a−n. Notice first that

νn(B(x, r)) > νn(B(x, ̺a−n)) >M−n = a−ns > rs,

and on the other hand,

νn(B(x, r)) 6 νn(B(x, a−n)) =M−ncard(∆n ∩B(x, a−n))

6 N l−1a−ns 6 N l−1̺−srs,

with l and N as before.

Hence the result holds with C = N l̺−s. �

P r o o f of Lemma 3.4. Fix n ∈ N, x ∈ ∆n and r > 0. If 2r < ̺a−n, since ∆n is

̺a−n-disperse (see proof of Lemma 3.3) we have that B(x, 2r)∩∆n = B(x, r)∩∆n =

{x} and the result holds taking Ã = 1. Otherwise, if 2r > ̺a−n, we shall consider

the cases r > ̺a−n and r < ̺a−n and in both cases we shall use Lemma 3.3. In the

first case we obtain

νn(B(x, 2r)) 6 C2srs 6 C22sνn(B(x, r)).

On the other hand, when r < ̺a−n 6 2r, since as =M we have

νn(B(x, 2r)) 6 C2srs < C2s̺sa−ns = C2s̺sM−n = C2s̺sνn(B(x, r)).

Hence the lemma holds with Ã = C2s̺s. �

As we already mentioned, for the sake of notational simplicity we have assumed the

same contractivity coefficient 1/a for all contractive similitude ϕi, for i = 1, . . . ,M .

Nevertheless, the results in this paper still hold in the case of different coefficients

1/ai, with ai > 1 for every i. In this case, Lemma 3.3 holds with amax instead of a,

where amax := max
16i6M

ai, proof of Lemma 3.4 follows the same lines, and Theorem 3.2

holds with amin instead of a, where amin := min
16i6M

ai.
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4. Uniform upper doubling property of the orbits

A new class of metric measure spaces is introduced in [9], which generalizes the

spaces of homogeneous type as well as power-bounded measures on R
n, have been

in the centre of the recent developments of non-doubling harmonic analysis theory.

Given a metric space (X, d) and Y ⊆ X , a Borel measure µ on Y is called upper

doubling if there exist a function λ : Y × R
+ → R

+ and a constant Cλ such that

λ(y, r) 6 λ(y, s),

λ(y, 2r) 6 Cλλ(y, r),

µ(B(y, r)) 6 λ(y, r),

for every y ∈ Y , r > 0 and s > r. The function λ is called a dominating function,

and we say that (Y, µ) is an upper doubling space.

Then, a doubling measure is a special case of upper doubling measure, with

λ(x, r) = µ(B(x, r)). On the other hand, non-doubling harmonic analysis has re-

cently been developed in the spaces (Rn, µ) with µ(B(x, r)) 6 Crt for some t ∈ (0, n],

which are upper doubling spaces with the dominating function λ(x, r) = Crt.

The interest in upper doubling spaces has been growing during the last few years

because these spaces provide an adequate framework for an abstract extension of

results of harmonic and real analysis (see for example [9], [10], [11], [12] and [13]).

In this section we shall apply Theorem 3.2 in order to show that the orbits are

uniformly upper doubling spaces. We shall keep the assumption of finite metric

dimension of (X, d) and the hypothesis of Theorem 3.2, and as before we shall use

(Yn, µn) to denote the space T
n(Y0, µ0).

For a fixed n, we define a dominating function λn : Yn×R
+ → R

+ in the following

way:

λn(y, r) =

{
µn(B(y, r)), if r > 5a−n;

µn(B(y, 5a−n)), if r < 5a−n.

The following result states that the orbits (Yn, µn) are uniformly upper doubling

spaces. Here the “uniformity” refers to the doubling constant Cλn
for the dominating

function λn.

Theorem 4.1. The sequence ((Yn, µn))n>1 is a uniform family of upper doubling

spaces, in the sense that the doubling constant of all dominating functions is the

constant A of Theorem 3.2.

P r o o f. Let us fix a natural number n, y ∈ Yn and r > 0. It is clear that

µn(B(y, r)) 6 λn(y, r) and that λn(y, r) 6 λn(y, s) if s > r. Also, if r > 5a−n from
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Theorem 3.2 we have that

λn(y, 2r) = µn(B(y, 2r)) 6 Aµn(B(y, r)) = Aλn(y, r).

On the other hand, if r < 5a−n, we shall consider the cases 2r < 5a−n and 2r > 5a−n.

In the former case we have λn(y, 2r) = λn(y, r), and in the latter we have

λn(y, 2r) 6 λn(y, 10a
−n) 6 Aλn(y, 5a

−n) = Aλn(y, r).

So we can take Cλn
= A for every n. �

Remark 4.2. Since from Proposition 3.1 the limit measure have the doubling

property with constant A4, then µ is trivially upper doubling with the dominating

function λ(y, r) = µ(B(y, r)) for y ∈ Y and for all r > 0. On the other hand, since

A is greater than 1 we can conclude, using the above theorem, that all spaces of

the orbit and its limit space are upper doubling spaces, where each corresponding

dominating function has the doubling constant A4.
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