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Symmetric products of the

Euclidean spaces and the spheres

Naotsugu Chinen

Abstract. By Fn(X), n ≥ 1, we denote the n-th symmetric product of a metric
space (X, d) as the space of the non-empty finite subsets of X with at most n

elements endowed with the Hausdorff metric dH . In this paper we shall describe
that every isometry from the n-th symmetric product Fn(X) into itself is induced
by some isometry from X into itself, where X is either the Euclidean space or the
sphere with the usual metrics. Moreover, we study the n-th symmetric product
of the Euclidean space up to bi-Lipschitz equivalence and present that the 2nd

symmetric product of the plane is bi-Lipschitz equivalent to the 4-dimensional
Euclidean space.

Keywords: isometry; symmetric product; bi-Lipschitz maps; Euclidean space;
sphere

Classification: Primary 54B20, 54B10; Secondary 30C65, 30L10

1. Introduction

As an interesting construction in topology, Borsuk and Ulam [4] introduced
the n-th symmetric product of a metric space (X, d), denoted by Fn(X). Recall
that Fn(X) is the space of non-empty finite subsets of X with at most n elements
endowed with the Hausdorff metric dH , i.e., Fn(X) = {A ⊂ X : 1 ≤ |A| ≤ n} and
dH(A, A′) = inf{ǫ : A ⊂ Bd(A

′, ǫ) and A′ ⊂ Bd(A, ǫ)} = max{d(a, A′), d(a′, A) :
a ∈ A, a′ ∈ A′} for any A, A′ ∈ Fn(X) (see [12, p. 6]). It was proved in [4] that
Fn(I) is homeomorphic to In (written Fn(I) ≈ In) if and only if 1 ≤ n ≤ 3 (cf.
Remark 4.19 below), and that for n ≥ 4, Fn(I) cannot be embedded into R

n,
where I = [0, 1] has the usual metric. A considerable number of studies have been
made on the topological structures of Fn(X). For example, Molski [15] showed
that F2(I

2) ≈ I4(cf. Remark 4.19 below), and that for n ≥ 3 neither Fn(I2) nor
F2(I

n) can be embedded into R2n.
For the symmetric products of R, it is easily seen that F2(R) ≈ {(x, y) ∈ R2 :

x ≤ y} ≈ R × [0,∞). Indeed, the map h : {(x, y) ∈ R2 : x ≤ y} → F2(R)
defined by h(x, y) = {x, y} is a homeomorphism. It was known that F3(R) and
R

3 are homeomorphic, in particular, there is a bi-Lipschitz equivalence (see [6] or
Section 4 for details). Turning toward the symmetric product Fn(S1) of the circle
S1, in [10], it was proved that for n ∈ N, both F2n−1(S

1) and F2n(S1) have the
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same homotopy type of the (2n−1)-sphere S2n−1. In [8], Bott corrected Borsuk’s
statement [5] and showed that F3(S

1) ≈ S
3. In [10], another proof of it was given.

For a metric space (X, d), we denote by Isomd(X) (Isom(X) for short) the
group of all isometries from X into itself, i.e., φ : X → X ∈ Isomd(X) if φ
is a bijection satisfying that d(x, x′) = d(φ(x), φ(x′)) for any x, x′ ∈ X . Let
n ∈ N. Every isometry φ : X → X induces an isometry χn(φ) : (Fn(X), dH) →
(Fn(X), dH) defined by χn(φ)(A) = φ(A) for each A ∈ Fn(X). Thus, there
exists a natural monomorphism χn : Isomd(X) → IsomdH

(Fn(X)). It is clear
that χn : Isomd(X) → IsomdH

(Fn(X)) is an isomorphism if and only if χn is an
epimorphism, i.e., for every Φ ∈ IsomdH

(Fn(X)) there exists φ ∈ Isomd(X) such
that Φ = χn(φ).

Recently, Borovikova and Ibragimov [6] proved that (F3(R), dH) is bi-Lipschitz
equivalent to (R3, d) and that χ3 : Isomd(R) → IsomdH

(F3(R)) is an isomorphism,
where R has the usual metric d. It is of interest to know whether χn : Isomd(X) →
IsomdH

(Fn(X)) is an isomorphism for a metric space (X, d). In the first part of
this paper, we prove the following result which is a generalization of the result
above and the affirmative answer to [7, p. 60, Conjecture 2.1].

Theorem 1.1. Let l ∈ N and let X be either Rl or Sl with the usual metric d.

Then χn : Isomd(X) → IsomdH
(Fn(X)) is an isomorphism for each n ∈ N.

We note that there exists a compact metric space (X, d) such that neither
χn : Isomd(X) → IsomdH

(Fn(X)) is an isomorphism for n > 1 (see Section 3).
In the second part of this paper, we wish to find a metric space which is bi-

Lipschitz equivalent to (Fn(Rl), dH) for l ∈ N and n ≥ 2. In [14], by use of the
minimal element in A ∈ Fn(R), it is proved that for every n ≥ 2, Fn(R) is bi-
Lipschitz equivalent to the product of R with the open cone over some compact
subset of Fn(I). In Section 4, for every l ∈ N, by use of the Chebyshev center of
A ∈ Fn(Rl), we construct a homeomorphism hcheb from Fn(Rl) to the product of
Rl with the open cone Coneo(F cheb,1

n (Bl)) over some compact subset F cheb,1
n (Bl)

of Fn(Bl) and indicate that hcheb is a bi-Lipschitz equivalence map if and only if
either l = 1 or n = 2 holds. Moreover, we show that (F2(R

2), dH) is bi-Lipschitz
equivalent to (R4, d).

2. Preliminaries

Notation 2.1. Let us denote the set of all natural numbers and real numbers
by N and R, respectively. Let d be the usual metric on Rl, i.e., d(x, y) =

{∑l
i=1(xi − yi)

2}1/2 for any x = (x1, . . . , xl), y = (y1, . . . , yl) ∈ Rl. Write

Sl = {x = (x1, . . . , xl+1) ∈ Rl+1 :
∑l+1

i=1 x2
i = 1} with the length metric d.

See [9] for length metrics. Denote the identity map from X into itself by idX .

Definition 2.2. Let (X, d) be a metric space, let x ∈ X , let Y, Z be subsets of
X and let ǫ > 0. Set diamY = sup{d(y, y′) : y, y′ ∈ Y }, d(Y, Z) = inf{d(y, x) :
y ∈ Y, z ∈ Z}, Bd(Y, ǫ) = {x ∈ X : d(x, Y ) ≤ ǫ} and Sd(Y, ǫ) = {x ∈ X :
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d(x, Y ) = ǫ}. If Y = {y}, for simplicity of notation, we write Bd(y, ǫ) = Bd(Y, ǫ)
and Sd(y, ǫ) = Sd(Y, ǫ).

For n ∈ N, the n-th symmetric product of X is defined by

Fn(X) = {A ⊂ X : 1 ≤ |A| ≤ n}

endowed with the Hausdorff metric dH , i.e., dH(A, B) = inf{ǫ : A ⊂ Bd(B, ǫ) and
B ⊂ Bd(A, ǫ)} = max{d(a, B), d(b, A) : a ∈ A, b ∈ B} for any A, B ∈ Fn(X) (see
[12, p. 6]). Here |A| is the cardinality of A. Write F(m)(X) = {A ⊂ X : |A| = m}
for each m ∈ N. Let Isom(X, Y ) = {φ ∈ Isom(X) : φ(y) = y for each y ∈ Y } for
Y ⊂ X . Set r(A) = min{{1} ∪ {d(a, a′) : a, a′ ∈ A, a 6= a′}} for each A ∈ Fn(X).

Lemma 2.3. Let n ∈ N and let (X, d) be a metric space. Then, χn : Isom(X) →
Isom(Fn(X)) is an isomorphism if and only if

(1) Φ|F1(X) ∈ Isom(F1(X)) for each Φ ∈ Isom(Fn(X)), and

(2) Isom(Fn(X), F1(X)) = {idFn(X)}.
Proof: The part of “only if” is easy from the definition of χn.

Suppose that (1) and (2) hold. Let Φ ∈ Isom(Fn(X)) and let φ = Φ|F1(X) ∈
Isom(F1(X)). Set Φ′ = χn(φ−1) ◦ Φ ∈ Isom(Fn(X)). We claim that Φ′|F1(X) =

id|F1(X). Indeed, Φ|F1(X) = χn(φ)|F1(X) and χn(φ−1) = χn(φ)−1. By assumption,
we have that Φ′ = idFn(X), therefore, Φ = χn(φ), which completes the proof. �

3. Isometries on symmetric products

Definition 3.1. Let (X, d) be a metric space, let n ∈ N, let ǫ > 0 and let
A ∈ Fn(X). Define

(3.1) Dn(A, ǫ) = sup{k ∈ N : A1, . . . , Ak ∈ SdH
(A, ǫ), dH(Ai, Aj) = 2ǫ

for 1 ≤ i < j ≤ k}.

Lemma 3.2. Let l, n ∈ N, let X be either Rl or Sl and let Φ ∈ Isom(Fn(X)).
Then, Φ|F1(X) ∈ Isom(F1(X)).

Proof: Let n ∈ N with n ≥ 2. Let x ∈ X , let ǫ > 0 with ǫ < 1 and let
y ∈ Bd(x, ǫ). It is clear that

(i) if y ∈ Sd(x, ǫ), then there exists the unique y′ ∈ Bd(x, ǫ) such that
d(y, y′) = 2ǫ, and

(ii) if y /∈ Sd(x, ǫ), then there exists no y′ ∈ Bd(x, ǫ) such that d(y, y′) = 2ǫ.

Let A ∈ F1(X). We show that Dn(A, ǫ) = 3. It follows from (i) and (ii) that
for any B, C ∈ Fn(Bd(A, ǫ)) \ F1(Bd(A, ǫ)) we have dH(B, C) < 2ǫ, and that for
any A1, . . . , Am ∈ SdH

(A, ǫ) ∩ F1(X) with dH(Ai, Aj) = 2ǫ for 1 ≤ i < j ≤ m we
see that m ≤ 2. This shows that Dn(A, ǫ) ≤ 3.

Let a, a′ ∈ Sd(A, ǫ) with d(a, a′) = 2ǫ. Set B1 = {a}, B2 = {a′} and B3 =
{a, a′}. Then, Bj ∈ SdH

(A, ǫ) for each j = 1, 2, 3 and dH(Bj , Bj′) = 2ǫ whenever
j 6= j′. Hence, Dn(A, ǫ) ≥ 3. Therefore, Dn(A, ǫ) = 3.
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Let m ∈ N with m ≥ 2, let A = {a1, . . . , am} ∈ F(m)(X) and let ǫ > 0 with
ǫ < r(A)/5. We show that Dn(A, ǫ) > 3. For every j = 1, . . . , m and k = 0, 1, let
aj,k ∈ Sd(aj , ǫ) such that d(aj,0, aj,1) = 2ǫ. Set Aθ = {a1,θ1

, . . . , am,θm
} for each

θ = (θ1, . . . , θm) ∈ {0, 1}m. We see that Aθ ∈ SdH
(A, ǫ) for each θ ∈ {0, 1}m and

that dH(Aθ, Aθ′) = 2ǫ whenever θ 6= θ′, therefore, Dn(A, ǫ) ≥ 2m ≥ 22 > 3.
Let Φ ∈ Isom(Fn(X)), let A ∈ Fn(X) and let ǫ > 0 be such that ǫ <

min{r(A), r(Φ(A))}. From the definition of Dn(A, ǫ), we obtain Dn(A, ǫ) =
Dn(Φ(A), ǫ). By the above, we see that A ∈ F1(X) if and only if Φ(A) ∈ F1(X).
Therefore, Φ|F1(X) ∈ Isom(F1(X)). �

Corollary 3.3. Let l, n ∈ N and let d be a metric on Rl+1 as in Notation 2.1.

Suppose that Sl has a metric ρ = d|Sl . Let Φ ∈ IsomρH
(Fn(Sl)). Then, Φ|F1(Sl) ∈

IsomρH
(F1(S

l)).

Proof: Let A ∈ Fn(Sl) and let ǫ > 0 be such that ǫ < r(A)/5. Define rǫ =
diamBρ((1, 0, . . . , 0), ǫ) and

D′

n(A, ǫ) = sup{k ∈ N : A1, . . . , Ak ∈ SρH
(A, ǫ),

ρH(Ai, Aj) = rǫ for 1 ≤ i < j ≤ k} ∈ N ∪ {∞}.

Analysis similar to that for Dn(A, ǫ) in the proof of Lemma 3.2 can show that
D′

n(A, ǫ) = 3 if and only if A ∈ F1(S
l). Therefore, Φ|F1(Sl) ∈ IsomρH

(F1(S
l)). �

Notation 3.4. Let l, n ∈ N and let A ∈ Fn(Rl). Denote the minimal convex subset
of Rl containing A by conv(A), and the set of all vertices of conv(A) by conv(A)(0)

(see [17] for details). We note that conv(A)(0) is contained in A.

Lemma 3.5. Let l, n ∈ N, let A ∈ Fn(Rl) and let Φ ∈ Isom(Fn(Rl), F1(R
l)).

Then, conv(A)(0) ⊂ Φ(A) ⊂ conv(A).

Proof: Let a ∈ conv(A)(0). We show that a ∈ Φ(A). Let H be a hyperplane
in Rl with dimension l − 1 such that H ∩ conv(A) = {a}, let C be the closed
half-space bounded by H containing conv(A), and let L be the line containing
a which is vertical to H . See [17] for hyperplanes and half-spaces. There exists
x ∈ C ∩ L such that conv(A) ⊂ Bd(x, r) and conv(A) ∩ Sd(x, r) = {a}, where
r = d(x, a).

Since dH({x}, Φ(A)) = dH(Φ({x}), Φ(A)) = dH({x}, A) = r, we have that
Φ(A) ⊂ Bd(x, r) and Sd(x, r) ∩ Φ(A) 6= ∅. Let x′ ∈ C ∩ L such that r′ =
d(x′, a) > r. By a similar argument, we see that Sd(x

′, r′) ∩ Φ(A) 6= ∅ and
Sd(x

′, r′) ∩ Bd(x, r) = {a}. Thus, a ∈ Φ(A).
We show that Φ(A) ⊂ conv(A). If similar arguments apply to Φ(A) and Φ−1,

we obtain

conv(Φ(A))(0) ⊂ Φ−1(Φ(A)) = A.

Therefore, Φ(A) ⊂ conv(conv(Φ(A))(0)) ⊂ conv(A). �
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Definition 3.6. Let l, n ∈ N, let ǫ > 0 and let A ∈ Fn(Rl). Define Sc
dH

(A, ǫ) =
{B ∈ SdH

(A, ǫ) : conv(A) = conv(B)}, and

(3.2) Dc
n(A, ǫ) = sup{k ∈ N : A1, . . . , Ak ∈ Sc

dH
(A, ǫ), dH(Ai, Aj) = 2ǫ

for 1 ≤ i < j ≤ k}.

Lemma 3.7. Let l, n ∈ N and let Φ ∈ Isom(Fn(Rl), F1(R
l)). Then, Φ|F2(Rl) =

idF2(Rl).

Proof: Let A ∈ F(2)(R
l). Since A = conv(A)(0), by Lemma 3.5, A ⊂ Φ(A).

Thus, if Φ(A) ∈ F(2)(R
l), then A = Φ(A). Therefore, it suffices to show that

Φ(A) ∈ F(2)(R
l). We may assume that n ≥ 3.

Suppose that l = 1. By [7], Φ(F(2)(R)) = F(2)(R), but we give another short
proof of it. Let A ∈ F(2)(R) and let ǫ > 0 with ǫ < r(A)/5. We claim that
Dc

n(A, ǫ) = 1. Indeed, on the contrary, suppose that Dc
n(A, ǫ) ≥ 2, i.e., there exist

A1, A2 ∈ Sc
dH

(A, ǫ) such that dH(A1, A2) = 2ǫ. Since A ⊂ A1 ∩ A2, A1 ∪ A2 ⊂
Bd(A, ǫ) ⊂ Bd(A1, ǫ) ∩ Bd(A2, ǫ), thus dH(A1, A2) ≤ ǫ, a contradiction.

Let B ∈ F(m)(R) with 3 ≤ m ≤ n and let ǫ > 0 with ǫ < r(B)/5. We
claim that Dc

n(B, ǫ) ≥ 2. Indeed, if we choose b ∈ B \ {min B, maxB}, we define
B1 = (B \ {b})∪ {b− ǫ} and B2 = (B \ {b})∪ {b + ǫ}. Then, B1, B2 ∈ Sc

dH
(B, ǫ)

and dH(B1, B2) = 2ǫ, thus, Dc
n(B, ǫ) ≥ 2.

Let A ∈ Fn(R) \ F1(R) and let ǫ > 0 with ǫ < min{r(A)/5, r(Φ(A))/5}. By
Lemma 3.5, Φ(Sc

dH
(A, ǫ)) = Sc

dH
(Φ(A), ǫ). Thus, Dc

n(A, ǫ) = Dc
n(Φ(A), ǫ). By the

above, Φ(A) ∈ F(2)(R
l).

Suppose that l ≥ 2. Let A ∈ F(2)(R
l) and let L be the line in Rl containing A.

By Lemma 3.5, Φ(Fn(L)) = Fn(L), i.e., Φ|Fn(L) ∈ Isom(Fn(L)). Applying to the
case l = 1, Φ(A) = A, which completes the proof. �

Lemma 3.8. Let l, n ∈ N. Then, Isom(Fn(Rl), F1(R
l)) = {idFn(Rl)}.

Proof: Let Φ ∈ Isom(Fn(Rl), F1(R
l)) and let A ∈ F(m)(R

l). We show that
Φ(A) ⊂ A. On the contrary, suppose that there exists z ∈ Φ(A) \ A. By
Lemma 3.5, we note that conv(A)(0) ⊂ Φ(A) ⊂ conv(A). There exist a hyperplane
H in R

l with dimension l−1 containing z and a line L in R
l containing z such that

H is vertical to L, A∩H = ∅, and, A∩Ck 6= ∅ for k = 0, 1, where C0 and C1 are the
closed half-spaces bounded by H with C0∪C1 = Rl. As in the proof of Lemma 3.5,
there exist a sufficiently large r > 0 and xk ∈ L ∩ IntRlCk for k = 0, 1 such that
r = d(x0, z) = d(x1, z), A ∩ (Sd(x0, r) ∪ Sd(x1, r)) = ∅, and A ⊂ Bd(x0, r) ∪
Bd(x1, r). Set A1 = {x0, x1}. Since d(z, A1) = r, we see dH(Φ(A), A1) ≥ r. Since
A ∩ Sd(A1, r) = ∅, A ⊂ Bd(A1, r) and A1 ⊂ Bd(A, r), we have dH(A, A1) < r.
By Lemma 3.7, we have r ≤ dH(Φ(A), A1) = dH(Φ(A), Φ(A1)) = dH(A, A1) < r,
a contradiction.

If similar arguments apply to Φ(A) and Φ−1, we obtain A = Φ−1(Φ(A)) ⊂
Φ(A), therefore, A = Φ(A), which completes the proof. �

Lemma 3.9. Let l, n ∈ N. Then Isom(Fn(Sl), F1(S
l)) = {idFn(Sl)}.
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Proof: Let Φ ∈ Isom(Fn(Sl), F1(S
l)), m ∈ N with 2 ≤ m ≤ n and let A ∈

F(m)(S
l). We show that A = Φ(A). Let a ∈ A and let a′ ∈ S

l be the anti-point
of a. Since dH({a′}, Φ(A)) = dH(Φ({a′}), Φ(A)) = dH({a′}, A) = π, we have
a ∈ Φ(A), therefore, A ⊂ Φ(A). If similar arguments apply to Φ(A) and Φ−1,
we obtain Φ(A) ⊂ Φ−1(Φ(A)) = A, therefore, A = Φ(A), which completes the
proof. �

Proof of Theorem 1.1: By Lemmas 3.2, 3.8 and 3.9, the conditions in
Lemma 2.3 hold for (X, d), which completes the proof. �

Corollary 3.10. Let l, n ∈ N and let d be a metric on Rl+1 as in Notation 2.1.

Suppose Sl has a metric ρ = d|Sl . Then χn : Isomρ(S
l) → IsomρH

(Fn(Sl)) is an

isomorphism for each n ∈ N.

Proof: By similar arguments as in the proof of Lemma 3.9, we have
IsomρH

(Fn(Sl), F1(S
l)) = {idFn(Sl)}. By Corollary 3.3, the conditions in

Lemma 2.3 hold for (Sl, ρ), which completes the proof. �

Question 3.11. Let l, n ∈ N with n ≥ 2. Is χn : Isomd(X) → IsomdH
(Fn(X))

an isomorphism when

(1) X is a convex subset of R
l,

(2) X is an R-tree (see [3] for R-trees) or

(3) X is the hyperbolic l-space (see [9] for the hyperbolic l-space)?

Remark 3.12. Let n, m ∈ N with 2 ≤ n ≤ m and let (X, d) be an m-points
discrete metric space satisfying that d(x, x′) = 1 whenever x 6= x′. Then, Fn(X)
is a discrete metric space such that dH(A, A′) = 1 for any A, A′ ∈ Fn(X) with
A 6= A′. Thus, |Isom(X)| = |X |! < |Fn(X)|! = |Isom(Fn(X))|, therefore, χn :
Isomd(X) → IsomdH

(Fn(X)) is not an isomorphism.
By [1, p. 182], there exists Φ ∈ IsomξH

(F2(R
2))\{idF2(R2)} such that Φ|F1(R2) =

idF1(R2). Hence, by Lemma 2.3, χ2 : Isomξ(R
2) → IsomξH

(F2(R
2)) is not an

isomorphism.

Remark 3.13. Recall that F (X) is the space of non-empty compact subsets of
a metric space (X, d) endowed with the Hausdorff metric dH . Similarly, we can
define a natural monomorphism χ : Isomd(X) → IsomdH

(F (X)). There are
quite general results for some underlying spaces X corresponding to Theorem 1.1
and Question 3.11 on an epimorphism χ : Isomd(X) → IsomdH

(F (X)) (see [1]
and [11]).

4. Bi-Lipschitz equivalence

Definition 4.1. Let K > 0 and let f : (X, d) → (Y, ρ) be a map from a metric
space (X, d) to a metric space (Y, ρ). The map f is said to K-Lipschitz if for any
x, x′ ∈ X , ρ(f(x), f(x′)) ≤ Kd(x, x′). If f is a bijection and for any x, x′ ∈ X ,

K−1d(x, x′) ≤ ρ(f(x), f(x′)) ≤ Kd(x, x′),

then f is said to be K-bi-Lipschitz equivalence (bi-Lipschitz equivalence for short).
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Remark 4.2. Let d be a metric on R2 as in Notation 2.1, let ρ = d|S1 be a metric
on S

1, and let θ be the length metric on S
1. We see that the identity map idS1 :

(S1, ρ) → (S1, θ) is a π-bi-Lipschitz equivalence map. Indeed, ρ < θ and, for every
xt = e2πit ∈ S1, we have that π2ρ(x0, xt)

2−θ(x0, xt)
2 = 2π2(1−cos t)− t2 ≥ 0 for

0 ≤ t ≤ π/3, and that πρ(x0, xt) ≥ π ≥ t = θ(x0, xt) for π/3 ≤ t ≤ π, therefore
θ ≤ π ρ.

Notation 4.3. Let l, n ∈ N, let t ∈ [0,∞), let a = (a1, . . . , al), x = (x1, . . . , xl) ∈ Rl

and let A ∈ Fn(Rl). Write a ± x = (a1 ± x1, . . . , al ± xl), ta = (ta1, . . . , tal),
A ± x = {a ± x : a ∈ A} and tA = {ta : a ∈ A}.
Definition 4.4. Let l, n ∈ N with n > 1, let z0 = (0, . . . , 0) ∈ Rl, let c :
(Fn(Rl), dH) → (Rl, d) be a map, and let F c

n(Rl) = {A ∈ Fn(Rl) : c(A) = z0}.
Let us define two maps c0 : Rl ×F c

n(Rl) → Fn(Rl) and c1 : Fn(Rl) → Rl ×Fn(Rl)
by c0(x, A) = A + x and c1(A

′) = (c(A′), A′ − c(A′)) for each A ∈ F c
n(Rl), each

A′ ∈ Fn(Rl) and each x ∈ Rl.

The proof of the following lemma is based on the proof of [14, Lemma 2.4].

Lemma 4.5. Let l, n ∈ N with n > 1, let c : (Fn(Rl), dH) → (Rl, d) be a map and

let c0 : (Rl × F c
n(Rl), ρ) → (Fn(Rl), dH) and c1 : (Fn(Rl), dH) → (Rl × Fn(Rl), ρ)

be two maps as in Definition 4.4, where ρ =
√

d2 + d2
H is the metric compatible

with the topology on Rl × Fn(Rl). Then, the following statements hold.

(1) The map c0 is a
√

2-Lipschitz map.

(2) If the map c is a K-Lipschitz map for some K > 0, then the map c1 is a√
2K2 + 2K + 1-Lipschitz map.

(3) If c(A + x) = c(A) + x for each A ∈ Fn(Rl) and each x ∈ Rl, then

c1(Fn(Rl)) = R
l × F c

n(Rl) and c1
−1 = c0.

(4) If c satisfies (2) and (3), then the map c1 : (Fn(Rl), dH) →
(Rl × F c

n(Rl), ρ) is a K ′-bi-Lipschitz equivalence map, where K ′ =

max{
√

2,
√

2K2 + 2K + 1}.
Proof: (1) Let (x, A), (x′, A′) ∈ Rl × F c

n(Rl), let ǫ > 0 such that A ⊂ Bd(A
′, ǫ)

and A′ ⊂ Bd(A, ǫ) and let a ∈ A. Then, there exists a′ ∈ A′ such that d(a, a′) < ǫ.
Thus,

d(a + x, a′ + x′) = d(a, a′ + x′ − x) ≤ d(a, a′) + d(a′, a′ + x′ − x) ≤ ǫ + d(x, x′).

Hence, a+x ∈ Bd(A
′+x′, ǫ+d(x, x′)), therefore, A+x ⊂ Bd(A

′ +x′, ǫ+d(x, x′)).
Similarly, A′+x′ ⊂ Bd(A+x, ǫ+d(x, x′)). We conclude that dH(A+x, A′+x′)2 ≤
{dH(A, A′)+ d(x, x′)}2 ≤ 2{d(x, x′)2 + dH(A, A′)2} = 2ρ((x, A), (x′, A′))2, hence,

the map c0 is a
√

2-Lipschitz map.
(2) Let A, A′ ∈ Fn(Rl) and let ǫ > 0 such that A ⊂ Bd(A

′, ǫ) and A′ ⊂ Bd(A, ǫ).
Let a ∈ A. Then, there exists a′ ∈ A′ such that d(a, a′) < ǫ. We have

d(a − c(A), a′ − c(A′)) = d(a, a′ − (c(A′) − c(A)))

≤ d(a, a′) + d(a′, a′ − (c(A′) − c(A)))
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= d(a, a′) + d(c(A′), c(A))

< ǫ + d(c(A′), c(A)).

Thus, a − c(A) ∈ Bd(A
′, ǫ + d(c(A′), c(A))), therefore, A − c(A) ⊂ Bd(A

′, ǫ +
d(c(A′), c(A))). Similarly, we obtain A′ − c(A′) ⊂ Bd(A, ǫ + d(c(A′), c(A))). We
conclude

dH(A − c(A), A′ − c(A′)) ≤ dH(A, A′) + d(c(A), c(A′))

≤ dH(A, A′) + KdH(A, A′) = (K + 1)dH(A, A′),

therefore, the map c1 is a (
√

2K2 + 2K + 1)-Lipschitz map.
(3) By assumption, it is clear that c1(Fn(Rl)) = Rl × F c

n(Rl). Let A ∈ F c
n(Rl)

and let x ∈ Rl. Then c1 ◦ c0(x, A) = c1(A + x) = (c(A + x), A + x − c(A + x)) =
(c(A) + x, A + x − (c(A) + x)) = (x, A). Therefore, c1 ◦ c0 = idRl×F c

n(Rl). It is
clear that c0 ◦ c1 = idFn(Rl).

(4) It is clear from (1),(2) and (3). �

Definition 4.6 ([14]). Let (X, d) be a metric space with diamX ≤ 2. The
quotient space Coneo(X) = X × [0,∞)/X × {0} is called an open cone over X .
Let p : X × [0,∞) → Coneo(X) be the natural projection. Denote p(x, t) by
[x, t] ∈ Coneo(X). Let us define a metric dc on Coneo(X) compatible with the
topology on Coneo(X) by

dc([x, t], [x′, t′]) = min{t, t′}d(x, x′) + |t − t′|

for any [x, t], [x′, t′] ∈ Coneo(X).

Remark 4.7. Let (X, d) and (Y, ρ) be metric spaces and let f : (X, d) → (Y, ρ) be
a K-Lipschitz map for some K > 0. Then, χn(f) : (Fn(X), dH) → (Fn(Y ), ρH)
defined by χn(f)(A) = f(A) for each A ∈ Fn(X) is a K-Lipschitz map. If

max{diamX, diamY } ≤ 2 and K ≥ 1, then f : (Coneo(X), dc) → (Coneo(Y ), ρc)
defined by f([x, t]) = [f(x), t] for each [x, t] ∈ Coneo(X) is a K-Lipschitz map.

The following lemma is obtained from the proof of [14, Lemma 2.2].

Lemma 4.8. Let (X, d) be a metric space with diamX ≤ 2, let K > 0, and let ρ
be a metric on Coneo(X) compatible with the topology on Coneo(X) such that

(1) ρ([x, t], [x′, t]) = td(x, x′),
(2) ρ([x, t], [x′, t′]) ≥ |t − t′|, and,

(3) ρ([x, t], [x, t′]) ≤ K|t − t′|
for any t, t′ ∈ [0,∞) and any x, x′ ∈ X . Then, idConeo(X) : (Coneo(X), ρ) →
(Coneo(X), dc) is a K-Lipschitz map and idConeo(X) : (Coneo(X), dc) →
(Coneo(X), ρ) is a (K + 2)-Lipschitz map and, thus, idConeo(X) is a (K + 2)-
bi-Lipschitz equivalence map.

Definition 4.9. Let l, n ∈ N with n > 1, let Bl = {x ∈ Rl : d(x, z0) ≤ 1}, and
let c : Fn(Rl) → R

l be a map. Set F c,1
n (Bl) = {A ∈ Fn(Bl) : c(A) = z0 and
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dH({z0}, A) = 1}. Let us define c̃ : Coneo(F c,1
n (Bl)) → Fn(Rl) by c̃([A, t]) = tA

for each A ∈ F c,1
n (Bl) and each t ∈ [0,∞).

The proof of the following lemma is based on the proof of [14, Lemma 2.4].

Lemma 4.10. If c(tA) = z0 for each A ∈ F c
n(Rl) and each t ∈ [0,∞), then

c̃(Coneo(F c,1
n (Bl))) = F c

n(Rl) and c̃ : (Coneo(F c,1
n (Bl)), (dH)c) → (F c

n(Rl), dH)
is a 3-bi-Lipschitz equivalence map, where c̃ is the map as in Definition 4.9. In

particular, c̃ is a 3-Lipschitz map and c̃−1 is a 1-Lipschitz map.

Proof: It is clear that c̃(Coneo(F c,1
n (Bl))) = F c

n(Rl). It suffices to show three
conditions with K = 1 from Lemma 4.8 for d = ρ = dH .

Since d(tx, tx′) = td(x, x′) for any x, x′ ∈ Bl and each t ∈ [0,∞), dH(tA, tA′) =
tdH(A, A′) for each A ∈ F c,1

n (Bl) and each t ∈ [0,∞).
Let t, t′ ∈ [0,∞) with t ≤ t′ and let A, A′ ∈ F c,1

n (Bl). Since Sd(z0, t)∩ (tA) 6= ∅
and Sd(z0, t

′)∩(t′A′) 6= ∅, we have dH(tA, t′A′) ≥ dH(Sd(z0, t), Sd(z0, t
′)) = t′− t.

Let t, t′ ∈ [0,∞) and let A ∈ F c,1
n (Bl). Let x ∈ A. Since

d(tx, t′x) = |t − t′|d(z0, x) ≤ |t − t′|,

t′x ∈ Bd(tA, |t − t′|). Hence, t′A ⊂ Bd(tA, |t − t′|). Similarly, we see that tA ⊂
Bd(t

′A, |t − t′|), therefore, dH(tA, t′A) ≤ |t − t′|. �

Proposition 4.11. Let l, n ∈ N with n > 1 and let c : (Fn(Rl), dH) → (Rl, d) be

a map such that c(A + x) = c(A) + x for each A ∈ Fn(Rl) and each x ∈ R
l, and

that c(tA′) = z0 for each A′ ∈ F c
n(Rl) and each t ∈ [0,∞). Let σ =

√
d2 + (dH)2c

be the metric compatible with the topology on Rl × Coneo(F c,1
n (Bl)) and let

hc = (idRl × c̃−1)◦c1 : (Fn(Rl), dH) → (Rl×Coneo(F c,1
n (Bl)), σ) be a map, where

c1 and c̃ are the maps as in Definitions 4.4 and 4.9, respectively.

(1) If c is a K-Lipschitz map for some K > 0, then hc is a K ′-bi-Lipschitz

equivalence map, where K ′ = max{3
√

2,
√

2K2 + 2K + 1}. In particular,

hc is a
√

2K2 + 2K + 1-Lipschitz map and h−1
c is a 3

√
2-Lipschitz map.

(2) Conversely, if hc is K ′′-Lipschitz map for some K ′′ > 0, then c is a

K ′′-Lipschitz map.

Proof: (1) By Lemma 4.10,

idRl × c̃−1 : (Rl × F c
n(Rl), ρ) → (Rl × Coneo(F c,1

n (Bl)), σ)

is a 3-bi-Lipschitz equivalence map. Thus, by Lemma 4.5, hc is a K ′-bi-Lipschitz
equivalence map.

(2) Let p : (Rl × Coneo(F c,1
n (Bl)), σ) → (Rl, d) be the projection map which is

an 1-Lipschitz map. Since c = p ◦ hc, c is a K ′′-Lipschitz map. �

If c satisfies the assumptions in Proposition 4.11, then c is a Lipschitz map if
and only if hc is a bi-Lipschitz equivalence map.
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Definition 4.12. Let l, n ∈ N with n > 1 and let A ∈ Fn(Rl). A point cheb(A)
of R

l is said to be the Chebyshev center of A if

max
a∈A

d(cheb(A), a) = min
x∈Rl

max
a∈A

d(x, a)

(dH({cheb(A)}, A) = min
x∈Rl

dH({x}, A) = dH(F1(R
l), A)).

(∗)

Set R(A) = maxa∈A d(cheb(A), a) = dH({cheb(A)}, A), called a Chebyshev radius

of A. It is known that such a point satisfying (∗) is unique and the map cheb :
Fn(Rl) → Rl : A 7→ cheb(A) is well-defined and continuous (see [2] or [13]). It
is clear that R : Fn(Rl) → R : A 7→ R(A) is continuous by (∗) and that cheb
satisfies the assumptions for c = cheb in Proposition 4.11.

Let F cheb,1
n (Bl) = {A ∈ Fn(Bl) : cheb(A) = z0 and R(A) = 1}, and let

Coneo(F cheb,1
n (Bl)) be the open cone over F cheb,1

n (Bl) with the metric (dH)c. Fix
A0 ∈ F cheb,1

n (Bl). Let us define a map hcheb : Fn(Rl) → Rl × Coneo(F cheb,1
n (Bl))

by

hcheb(A) =

{
(cheb(A), [(A − cheb(A))/R(A), R(A)]) if A ∈ Fn(Rl) \ F1(R

l)

(cheb(A), [A0, 0]) if A ∈ F1(R
l).

It is clear that hcheb = (idRl × c̃heb
−1

) ◦ cheb1, where cheb1 and c̃heb are the
maps as in Definitions 4.4 and 4.9 for c = cheb, respectively.

By definition, it is easy to check the following result.

Proposition 4.13. Let l, n ∈ N with n > 1. The map hcheb : Fn(Rl) → Rl ×
Coneo(F cheb,1

n (Bl)) defined in Definition 4.12 is a homeomorphism.

We note that F cheb,1
2 (B) is one point, F cheb,1

3 (B) = {{−1, t, 1} : −1 ≤ t ≤ 1}
is a circle, and, F cheb,1

2 (Bl) = {{−x, x} ⊂ B
l : d(x, z0) = 1} is the real projective

(l− 1)-space RP
l−1 for each l ≥ 2. Hence, it is obtained that F2(R) ≈ R× [0,∞),

F3(R) ≈ R × R2 ≈ R3, F2(R
l) ≈ Rl × Coneo(RP

l−1) for each l ≥ 2, in particular,
F2(R

2) ≈ R2 × R2 ≈ R4.

We obtain the following result from Proposition 4.11 and [13, Lemmas 1,2
and 3].

Corollary 4.14. Let l, n ∈ N with n > 1 and let hcheb : (Fn(Rl), dH) → (Rl ×
Coneo(F cheb,1

n (Bl)), σ) be the map defined in Definition 4.12. Then, the following

conditions are equivalent:

(1) hcheb is a bi-Lipschitz equivalence map;

(2) hcheb is a 3
√

2-bi-Lipschitz equivalence map;

(3) either l = 1 or n = 2 holds.

In particular, if either l = 1 or n = 2 holds, then hcheb is a
√

5-Lipschitz map
and h−1

cheb is a 3
√

2-Lipschitz map.
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Remark 4.15. Let n ∈ N with n > 1. Let us define min : (Fn(R), dH) → (R, d)
by min(A) = min{a : a ∈ A} for each A ∈ Fn(R). It is clear that min is a
1-Lipschitz map satisfying the assumptions for c = min in Proposition 4.11. By
Proposition 4.11(1), hmin : (Fn(R), dH) → (R×Coneo(Fmin,1

n (B)), σ) is a 3
√

2-bi-

Lipschitz equivalence map. We note that Fmin,1
n (B) = I

(n)
∗ which is bi-Lipschitz

equivalent to F cheb,1
n (B). Here I

(n)
∗ = {A ∈ Fn(I) : {0, 1} ⊂ A} is induced in [14].

Question 4.16. Let l > 1 and let n > 2. Are spaces (Fn(Rl), dH) and (Rl ×
Coneo(F cheb,1

n (Bl)), σ) bi-Lipschitz non-equivalent?

Since Coneo(F cheb,1
2 (B)) is one point, by Corollary 4.14, F2(R) is 3

√
2-bi-

Lipschitz equivalent to R × [0,∞). The following result was first proved in [6].

Corollary 4.17. (F3(R), dH) is bi-Lipschitz equivalent to (R3, d).

Proof: We note that F cheb,1
3 (B) = {At = {−1, t, 1} : −1 ≤ t ≤ 1} has the

metric dH and S1 = {e(t+1)πi ∈ S1 : −1 ≤ t ≤ 1} has the length metric θ,
where M(t, t′) = max{d(t, A1), d(t′, A1)}, dH(At, At′) = min{|t − t′|, M(t, t′)}
and θ(t, t′) = π min{|t − t′|, 2 − |t − t′|} for each −1 ≤ t ≤ 1. Let us define

α : F cheb,1
3 (B) → S1 by α(At) = e(t+1)πi for each −1 ≤ t ≤ 1. We note that

M(t, t′) ≤ d(t, A1) + d(t′, A1) = 2 − |t − t′| ≤ 2M(t, t′)(∗)

for any t, t′ ∈ [−1, 1]. Hence, dH(At, At′) ≤ θ(t, t′) for any t, t′ ∈ [−1, 1] and α−1 :

(S1, θ) → (F cheb,1
3 (B), dH) is a 1-Lipschitz map. We show that α : (F cheb,1

3 (B), dH)
→ (S1, θ) is a (2π)-Lipschitz map. If dH(At, At′) = |t− t′|, then θ(t, t′) = π|t− t′|
by (∗). If dH(At, At′) = M(t, t′), by (∗), then

1

π
θ(t, t′) ≤ 2 − |t − t′| ≤ 2M(t, t′) ≤ 2dH(At, At′),

thus, α : (F cheb,1
3 (B), dH) → (S1, θ) is a (2π)-bi-Lipschitz equivalence map. By

Remark 4.2, idS1 ◦ α : (F cheb,1
3 (B), dH) → (S1, θ) → (S1, ρ) is a (2π)-Lipschitz

map and its inverse is a π-Lipschitz map. Therefore, by Remark 4.7, the natural

extension map α : (Coneo(F cheb,1
3 (B)), (dH )c) → (Coneo(S1), ρc) of idS1 ◦ α is a

(2π)-Lipschitz map and its inverse is a π-Lipschitz map.
Let us define β : (R2, d) → (Coneo(S1), ρc) by β(x) = [x/d(x, z0), d(x, z0)] for

each x ∈ R2 \ {z0} and β(z0) = [eπi, 0]. We show that β is a 1-Lipschitz map
and its inverse is a 3-Lipschitz map. It suffices to show three conditions with
K = 1 from Lemma 4.8 for d. It is clear that d(tx, tx′) = td(x, x′) = tρ(x, x′)
for each t ∈ [0,∞) and any x, x′ ∈ S1. Let t, t′ ∈ [0,∞) with t ≤ t′ and let
x, x′ ∈ S1. Since tx ∈ Sd(z0, t) and t′x′ ∈ Sd(z0, t

′), we have dH(tx, t′x′) ≥
dH(Sd(z0, t), Sd(z0, t

′)) = t′−t. Let t, t′ ∈ [0,∞) and let x ∈ S1. Then d(tx, t′x) =
|t − t′|d(z0, x) = |t − t′|.

By Corollary 4.14, (idR × β−1) ◦ (idR × α) ◦ hcheb : (F3(R), dH) → (R ×
Coneo(F cheb,1

3 (B1)), σ) → (R × Coneo(S1),
√

d2 + ρ2
c) → (R3, d) is a 6

√
5 π-bi-

Lipschitz equivalence map. �
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Corollary 4.18. (F2(R
2), dH) is bi-Lipschitz equivalent to (R4, d).

Proof: We note that S1 = {e2πit ∈ B2 : 0 ≤ t ≤ 1} has the length met-

ric θ, F cheb,1
2 (B2) = {At = {−eπit, eπit} : 0 ≤ t ≤ 1}. Let θH be the metric

on F cheb,1
2 (B2) induced by θ. It is clear that the map α : (F cheb,1

2 (B2), θH) →
(S1, θ) defined by α(At) = e2πit for each t ∈ [0, 1] is a 2-Lipschitz map and
its inverse is a 1/2-Lipschitz map. By Remarks 4.2 and 4.7, the identity maps

idS1 : (S1, θ) → (S1, ρ) and idF cheb,1
2

(B2) : (F cheb,1
2 (B2), θH) → (F cheb,1

2 (B2), dH)

are 1-Lipschitz and its inverses are π-Lipschitz. Therefore, by Remark 4.7, the

natural extension map α : (Coneo(F cheb,1
2 (B2)), (dH)c) → (Coneo(S1), (ρH)c) of

idS1◦α◦(idF cheb,1

2
(B2))

−1 is a (2π)-Lipschitz map and its inverse is a (π/2)-Lipschitz
map.

Let β : (R2, d) → (Coneo(S1), ρc) be a 1-Lipschitz map such that its inverse is
a 3-Lipschitz map as in the proof of Corollary 4.17. By Corollary 4.14, (idR2 ×
β−1) ◦ (idR2 × α) ◦ hcheb : (F2(R

2), dH) → (R2 × Coneo(F cheb,1
2 (B2)), σ) → (R2 ×

Coneo(S1),
√

d2 + ρ2
c) → (R4, d) is a 6

√
5π-bi-Lipschitz equivalence map. �

Remark 4.19. Let (X, d) be a metric space with diamX ≤ 2. Set Cone(X) =
X × [0, 1]/X×{0} which is called a cone over X . Let us consider Fn(Bl) and the
restriction map h′

cheb = hcheb|Fn(Bl) : (Fn(Bl), dH) → (Bl × Cone(F cheb,1
n (Bl)), σ)

of hcheb defined in Definition 4.12. It is clear that h′

cheb is a homeomorphism. If
similar arguments above apply to the case (Bl, d), we obtain that the following
conditions are equivalent:

(1) h′

cheb is a bi-Lipschitz equivalence map;

(2) h′

cheb is a 3
√

2-bi-Lipschitz equivalence map;
(3) either l = 1 or n = 2 holds.

Moreover, (F2(B), dH), (F3(B), dH) and (F2(B
2), dH) are bi-Lipschitz equivalent

to (B2, d), (B3, d) and (B4, d), respectively.

Question 4.20. Since F3(S
1) ≈ S3, it is natural to ask a question whether F3(S

1)
is bi-Lipschitz equivalent to S3.

Acknowledgment. The author is grateful to H. Kodama, A. Koyama, K. Mine
and Y. Ogasawara, for a useful suggestion which significantly shortened the proof
of Lemma 3.9, and would like to thank the referee for helpful suggestions and
comments (in particular, on Remark 3.13).

References

[1] Bandt C., On the metric structure of hyperspaces with Hausdorff metric, Math. Nachr.
129 (1986), 175–183.
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