De-Yan Zeng; Jian Hua Yin On a characterization of *k*-trees

Czechoslovak Mathematical Journal, Vol. 65 (2015), No. 2, 361-365

Persistent URL: http://dml.cz/dmlcz/144274

Terms of use:

© Institute of Mathematics AS CR, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz

ON A CHARACTERIZATION OF k-TREES

DE-YAN ZENG, JIAN-HUA YIN, Haikou

(Received March 3, 2014)

Abstract. A graph G is a k-tree if either G is the complete graph on k + 1 vertices, or G has a vertex v whose neighborhood is a clique of order k and the graph obtained by removing v from G is also a k-tree. Clearly, a k-tree has at least k + 1 vertices, and G is a 1-tree (usual tree) if and only if it is a 1-connected graph and has no K_3 -minor. In this paper, motivated by some properties of 2-trees, we obtain a characterization of k-trees as follows: if G is a graph with at least k + 1 vertices, then G is a k-tree if and only if G has no K_{k+2} -minor, G does not contain any chordless cycle of length at least 4 and G is k-connected.

Keywords: characterization; k-tree; K_t -minor

MSC 2010: 05C05

1. INTRODUCTION

Graphs in this paper are finite and simple. Let G be a graph. For $X \subseteq V(G)$ and $v \in V(G)$, the neighborhood of v in X is denoted by $N_X(v)$. Further, for $X \subseteq V(G)$ and $Y \subseteq V(G)$, we denote $N_X(Y) = \bigcup_{v \in Y} N_X(v)$. For $X \subseteq V(G)$, the induced subgraph of G on X is denoted by G[X]. Let K_t be a complete graph on t vertices. We say that K_t is a *minor* of G if K_t can be obtained from a subgraph of G by contracting edges (and deleting the resulting multiple edges and loops).

A graph G is a k-tree if either G is the complete graph on k + 1 vertices, or G has a vertex v whose neighborhood is a clique of order k and the graph obtained by removing v from G is a k-tree. Clearly, a k-tree has at least k+1 vertices and 1-trees are usual trees. It is also obvious that G is a 1-tree if and only if it is a 1-connected graph and has no K_3 -minor. An *edge bonding* of two disjoint graphs G and G' is any

This work is supported by National Natural Science Foundation of China (Grant No. 11161016).

graph constructed from G and G' by identifying an edge of G with an edge of G'. Cai [3] showed that an edge bonding of two disjoint 2-trees is also a 2-tree. Some properties of 2-trees can be summarized as follows (see [1], [3]): if G is a 2-tree, then G is planar, G is the edge-maximal graph having no K_4 -minor, G does not contain any chordless cycle of length at least 4 and G is 2-connected.

From [1], [4], it is known that k-trees are intrinsically related to treewidth, which is an important parameter in the Robertson-Seymour theory of graph minors and in algorithmic complexity. In particular, a graph has *treewidth* k if and only if it is a subgraph of a k-tree. Thus, k-trees are the edge-maximal graphs of treewidth k. Bose et al. [2] gave a characterization of the degree sequences of 2-trees. Motivated by the properties of 2-trees, we can obtain a characterization of k-trees as follows.

Theorem 1.1. Let G be a graph with at least k + 1 vertices. Then G is a k-tree if and only if (a)–(c) are fulfiled

- (a) G has no K_{k+2} -minor;
- (b) G does not contain any chordless cycle of length at least 4;
- (c) G is k-connected.

2. Proof of Theorem 1.1

We first extend the concept of 'an edge bonding' due to Cai [3] to the concept of 'a K_t -bonding'. Let G and G' be two disjoint graphs and have K_t as a subgraph. A K_t -bonding of G and G' is any graph constructed from G and G' by identifying a K_t of G with a K_t of G'. An *ear* in a k-tree is a vertex of degree k whose neighbors are adjacent to each other.

Lemma 2.1. A K_k -bonding of two disjoint k-trees is also a k-tree.

Proof. Let G_1 be a k-tree on s vertices and G_2 be a k-tree on t vertices. Then G_1 and G_2 have K_k as a subgraph. Let G be a K_k -bonding of G_1 and G_2 . We now use induction on s. If s = k + 1, then $G_1 = K_{k+1}$, and hence G is the graph obtained from G_2 by adding an ear. Thus G is a k-tree. Assume that s > k+1. It is known that the set of all ears of G_1 is an independent set in G_1 and has at least two elements. This implies that there exists an ear v in G_1 with $v \notin V(K_k)$. Then G - v is a K_k -bonding of $G_1 - v$ and G_2 . By the induction hypothesis, G - v is a k-tree. Thus G is also a k-tree.

We now prove Theorem 1.1.

Proof of Theorem 1.1. We use induction on n to prove the necessity. Let G be a k-tree on n vertices. Then $n \ge k+1$. If n = k+1, then $G = K_{k+1}$. Clearly, Gsatisfies (a)–(c). Assume that n > k+1. Let u be an ear of G and denote G' = G - u. Let $N_G(u) = \{x_1, \ldots, x_k\}$. Then $\{x_1, \ldots, x_k\}$ is a clique in G.

By the induction hypothesis, G' has no K_{k+2} -minor. If G has K_{k+2} -minor, let H be a subgraph of G so that we can obtain K_{k+2} from H by contracting edges, then $u \in V(H)$. By $d_H(u) \leq d_G(u) = k < k+1$, we have that $u \notin V(K_{k+2})$. This implies that some edge ux_j in H will be contracted in the process of forming K_{k+2} . Let H' be the graph obtained from H by contracting ux_j . Since $\{x_1, \ldots, x_k\}$ is a clique in G, it is easy to see that H' is a subgraph of G'. Since we can obtain K_{k+2} from H' by contracting edges, we have that G' has K_{k+2} -minor, a contradiction. Therefore, G has no K_{k+2} -minor.

By the induction hypothesis, G' has no chordless cycle of length at least 4. If G has a chordless cycle C with $|V(C)| \ge 4$, then $u \in V(C)$. This is impossible by $G[\{u\} \cup N_G(u)] = K_{k+1}$. Therefore, G has no chordless cycle of length at least 4.

By the induction hypothesis, G' is k-connected. Thus G is also k-connected by $d_{G'}(u) = k$.

We now use induction on n to prove the sufficiency. Let $n \ge k+1$ and G be a graph on n vertices satisfying (a)–(c). If n = k + 1, then $G = K_{k+1}$ by G satisfying (c). Clearly, G is a k-tree. Assume that $n \ge k+2$. We first prove the following Claim.

Claim. G contains K_k as a subgraph.

Proof of Claim. Since G has no K_{k+2} -minor, G is not a complete graph. Then there exist two vertices $u, v \in V(G)$ with $uv \notin E(G)$. Since G is k-connected, by Menger's theorem, there are at least k internally-disjoint paths between u and v. Let

$$P_1 = ux_{11} \dots x_{1t_1}v,$$

$$P_2 = ux_{21} \dots x_{2t_2}v,$$

$$\vdots$$

$$P_k = ux_{k1} \dots x_{kt_k}v$$

be the k internally-disjoint paths between u and v so that $|P_1| + |P_2| + \ldots + |P_k|$ is minimal. Let

$$X_1 = \{x_{11}, \dots, x_{1t_1}\},\$$

$$X_2 = \{x_{21}, \dots, x_{2t_2}\},\$$

$$\vdots$$

$$X_k = \{x_{k1}, \dots, x_{kt_k}\}.$$

363

Denote $X = X_1 \cup \ldots \cup X_k$. Let s and t be two arbitrary integers with $1 \leq s < t \leq k$. Since $P_s \cup P_t$ is a cycle of length at least 4, by the minimality of $|P_1| + |P_2| + \ldots + |P_k|$, we have that $N_{X_s}(X_t) \neq \emptyset$ and $N_{X_t}(X_s) \neq \emptyset$. Let $x_{si} \in X_s$ and $x_{tj} \in X_t$ so that $x_{si}x_{tj} \in E(G)$ and i + j is minimal. Since $ux_{s1} \ldots x_{si}x_{tj} \ldots x_{t1}u$ is a chordless cycle of G with length i + j + 1, we have that i + j = 2. This implies that i = j = 1 and $x_{s1}x_{t1} \in E(G)$. Therefore, $G[\{x_{11}, x_{21}, \ldots, x_{k1}\}] = K_k$. The proof of Claim is completed.

Denote $F = G[\{x_{11}, x_{21}, \ldots, x_{k1}\}] = K_k$. We now consider the following two cases.

Case 1. G - V(F) is connected.

Let $P = uy_1 \dots y_l v$ be a path connecting u and v in G - V(F) and denote $Y = \{y_1, \dots, y_l\}$. If $X \cap Y = \emptyset$, then there exists a subgraph $F \cup P \cup P_1 \cup \dots \cup P_k$ of G so that we can get a K_{k+2} from this subgraph by contracting edges. In other words, G has K_{k+2} -minor, a contradiction. Thus $X \cap Y \neq \emptyset$. Let $y_{l_0} \in X \cap Y$ so that l_0 is minimal, and denote $P_0 = uy_1 \dots y_{l_0}$. Then there exists a subgraph $F \cup P_0 \cup P_1 \cup \dots \cup P_k$ of G so that we can get a K_{k+2} from this subgraph by contracting edges. In other words, G has K_{k+2} -minor, a contradiction.

Case 2. G - V(F) is not connected.

Let H_1, \ldots, H_m be *m* connected components of G - V(F). If $G[V(H_i) \cup V(F)]$ satisfies (a)–(c) for each *i* with $1 \leq i \leq m$, then by the induction hypothesis, $G[V(H_i) \cup V(F)]$ is a *k*-tree for each *i* with $1 \leq i \leq m$. Since *G* is a *K_k*-bonding of $G[V(H_1) \cup V(F)], \ldots, G[V(H_m) \cup V(F)]$, we have that *G* is also a *k*-tree by Lemma 2.1. We now assume that there exists a *r* with $1 \leq r \leq m$ such that $G[V(H_r) \cup V(F)]$ does not satisfy (a)–(c).

If $G[V(H_r) \cup V(F)]$ does not satisfy (a), i.e., $G[V(H_r) \cup V(F)]$ has K_{k+2} -minor, then G also has K_{k+2} -minor as $G[V(H_r) \cup V(H)]$ is a subgraph of G, a contradiction.

If $G[V(H_r) \cup V(F)]$ does not satisfy (b), i.e., $G[V(H_r) \cup V(F)]$ contains a chordless cycle C with $|C| \ge 4$, then C is also a chordless cycle in G, a contradiction.

Assume that $G[V(H_r) \cup V(F)]$ does not satisfy (c), i.e., $G[V(H_r) \cup V(F)]$ is not kconnected. If $|V(H_r)| = 1$, then by G satisfying (c), we have that $G[V(H_r) \cup V(F)] = K_{k+1}$, which is a k-connected graph, a contradiction. So $|V(H_r)| \ge 2$. Let V' be a vertex-cut of $G[V(H_r) \cup V(F)]$ with |V'| < k and let M_1, M_2 be two connected components of $G[V(H_r) \cup V(F)] - V'$. If $V(M_1) \cap V(F) \ne \emptyset$, then $V(M_2) \cap V(F) = \emptyset$. This implies that $V(M_1) \cap V(F) = \emptyset$ or $V(M_2) \cap V(F) = \emptyset$. Without loss of generality, we let $V(M_1) \cap V(F) = \emptyset$. Then M_1 is also a connected component of G - V'. In other words, V' is a vertex-cut of G. Thus G is not k-connected, a contradiction. This completes the proof of Theorem 1.1.

References

- H. L. Bodlaender: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209 (1998), 1–45.
- [2] P. Bose, V. Dujmović, D. Krizanc, S. Langerman, P. Morin, D. R. Wood, S. Wuhrer: A characterization of the degree sequences of 2-trees. J. Graph Theory 58 (2008), 191–209.
- [3] L. Cai: On spanning 2-trees in a graph. Discrete Appl. Math. 74 (1997), 203–216.
- [4] B. A. Reed: Algorithmic aspects of treewidth. Recent Advances in Algorithms and Combinatorics. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Vol. 11, Springer, New York, 2003, pp. 85–107.

Authors' address: De-Yan Zeng, Jian-Hua Yin (corresponding author), College of Information Science and Technology, Hainan University, No. 58, Renmin Road, Haikou 570228, P.R. China, e-mail: zengdeyan1@163.com, yinjh@ustc.edu.