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Abstract. A subgroup H of a finite group G is said to be ss-supplemented in G if there
exists a subgroup K of G such that G = HK and H ∩ K is s-permutable in K. In this
paper, we first give an example to show that the conjecture in A.A.Heliel’s paper (2014)
has negative solutions. Next, we prove that a finite group G is solvable if every subgroup
of odd prime order of G is ss-supplemented in G, and that G is solvable if and only if every
Sylow subgroup of odd order of G is ss-supplemented in G. These results improve and
extend recent and classical results in the literature.
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1. Introduction

All groups considered in this paper are finite. Recall that a subgroup H of

a group G is said to be s-permutable in G if H permutes with every Sylow sub-

group P of G, that is, HP = PH (see [13]); H is said to be c-supplemented in G if G

has a subgroup K such that G = HK and H ∩K 6 HG, where HG is the normal

core of H in G (see [3]); H is said to be ss-quasinormal in G if there is a subgroup K

of G such that G = HK and H permutes with every Sylow subgroup of K (see [14]).

Recently, Guo and Lu in [7] introduced the following concept, which covers both the

ss-quasinormality and c-supplementation concepts.

Definition 1.1. A subgroup H of G is said to be ss-supplemented in G if there

exists a subgroup K of G such that G = HK and H ∩K is s-permutable in K.
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It is clear that each of the c-supplementation and ss-quasinormality concepts im-

plies ss-supplementation. The following example shows that the ss-supplementation

is a true generalization of the ss-quasinormality and c-supplementation concepts.

Example 1.2 ([7], Example 2.3). Let G = S4 × P , where S4 is the symmetric

group of degree 4 and P = 〈x, y : x16 = y4 = 1, xy = x3〉, and let H = C2 × P1,

K = A4 × P , where C2 = 〈(34)〉, P1 = 〈y2〉 and A4 is the alternating group on four

symbols. Then G = HK andH∩K is s-permutable inK sinceH∩K ∼= P1. HenceH

is ss-supplemented in G. However, H is neither c-supplemented nor ss-quasinormal

in G.

In the literature, many authors have investigated the structure of the group G

under the assumption that some subgroups of G are well-situated in G. For example,

Hall in [9] proved that a group G is solvable if and only if each Sylow subgroup of G

is complemented in G. Arad and Ward in [1] obtained a nice generalization of Hall’s

theorem. In fact, they proved that a group G is solvable if the Sylow 2-subgroups

and Sylow 3-subgroups of G are complemented in G. Moreover, Hall in [10] proved

that a group G is supersolvable with elementary abelian Sylow subgroups if and only

if every subgroup of G is complemented in G. Ballester-Bolinches and Guo in [4]

analysed the class of groups for which every subgroup of prime order is complemented.

In fact, they proved that G is supersolvable if every subgroup of prime order of G is

complemented in G.

In [3], Ballester-Bolinches, Wang and Guo proved that a group G is solvable if and

only if every Sylow subgroup of G is c-supplemented in G. Some related results can

also be found by Wang in [18]. Asaad and Ramadan in [2] proved that G is solvable

if every subgroup of prime order of G is c-supplemented in G.

Recently, Guo and Lu in [7] proved that a group G is solvable if and only if every

Sylow subgroup of G is ss-supplemented in G. Lu, Guo and Li in [16] proved that G

is solvable if every subgroup of prime order of G is ss-supplemented in G. In [11],

Heliel improved and extended some of the classical and recent results mentioned

above, and he proposed the following conjecture.

Question 1.3 ([11]). Let G be a group such that every noncyclic Sylow subgroup

P of odd order of G has a subgroup D such that 1 < |D| 6 |P | and all subgroups

H of P with |H | = |D| are c-supplemented in G. Is G solvable?

The following example shows that in general the answer to Question 1.3 is negative.

Example 1.4. Let B be an elementary abelian group of order 5n for some non-

negative integer n, and let G = A5 × B, where A5 is the alternating group on five

symbols. Now, let P be the Sylow 5-subgroup of G. Then for any subgroup D of P

428



with 1 < |D| 6 |P |, all subgroups H of P with |H | = |D| are complemented in G.

However, G is not solvable.

In this paper, we take the studies mentioned above a bit further. More precisely,

we improve and generalize the results of Hall [9], Arad and Ward [1], Ballester-

Bolinches et al. [3], Asaad and Ramadan [2], Guo et al. [7], [16], and Heliel [11] as

follows.

Theorem 1.5. Let G be a group. Then G is solvable if and only if every Sylow

subgroup of odd order of G is ss-supplemented in G.

Theorem 1.6. Let G be a group. Then G is solvable if and only if all Sylow

2-subgroups and Sylow 3-subgroups of G are ss-supplemented in G.

Theorem 1.7. Let G be a group. If each subgroup of odd prime order of G is

ss-supplemented in G, then G is solvable and possesses a normal 2-subgroup S such

that G/S is supersolvable.

2. Preliminaries

Lemma 2.1 ([7], Lemma 2.4). Let H be an ss-supplemented subgroup of G.

Then the following statements hold:

(1) If K is a subgroup of G and H 6 K, then H is ss-supplemented in K.

(2) If N is a normal subgroup of G and N 6 H , then H/N is ss-supplemented in

G/N .

(3) Let π be a set of primes. If H is a π-subgroup of G and N is a normal π′-

subgroup of G, then HN/N is ss-supplemented in G/N .

Lemma 2.2 ([13]). Let G be a group and H 6 G. If H is s-permutable in G,

then H is subnormal in G.

Lemma 2.3 ([17], Lemma A). If H is a p-subgroup of G for some prime p, then

H is s-permutable in G if and only if Op(G) 6 NG(H).

Let U denote the class of supersolvable groups. Then the U-hypercenter of

a group G, denoted by ZU(G), is the product of all normal subgroups N of G such

that each chief factor of G below N has prime order.
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Lemma 2.4 ([15], Theorem 3.3). Suppose that P is a normal p-subgroup of G,

where p is an odd prime number. If every subgroup of P of order p is s-permutable

in G, then P 6 ZU(G).

Lemma 2.5. Suppose that P is a normal p-subgroup of G, where p is an odd

prime number. If every subgroup of P of order p is ss-supplemented in G, then

P 6 ZU(G).

P r o o f. In view of Lemma 2.4, we may assume that P has a minimal subgroupH

such thatH is not s-permutable in G. By assumption, there exists a subgroupK of G

such that G = HK and H ∩K is s-permutable in K. Since H is not s-permutable

in G, we see that H∩K = 1. It is easy to see that P = H(P ∩K) and P ∩K is normal

in G. Since every subgroup of P ∩K of order p is ss-supplemented in G, it follows

that P ∩K 6 ZU(G) by induction. As P/(P ∩K) is a normal subgroup of G/(P ∩K)

of order p, we have that P/(P ∩ K) 6 ZU(G/(P ∩K)). Since P ∩ K 6 ZU(G), it

follows that ZU (G/(P ∩K)) = ZU(G)/(P ∩K) and so P 6 ZU (G) as desired. �

3. The proofs

P r o o f of Theorem 1.5. If the group G is solvable, then, by Hall’s theorem in [9],

every Sylow subgroup of G is complemented and hence is ss-supplemented in G. In

particular, every Sylow subgroup of odd order of G is ss-supplemented in G.

Conversely, we assume that every Sylow subgroup of odd order of G is ss-

supplemented in G. We claim that every Sylow subgroup of odd order of G is, in

fact, complemented in G. Let P be any Sylow subgroup of odd order of G. Then, by

definition, there exists K 6 G such that PK = G and P ∩K is S-quasinormal in K.

Clearly, P ∩K is a Sylow subgroup of K. By Lemma 2.2, P ∩K is subnormal in K,

and therefore P ∩ K is normal in K. By applying the Schur-Zassenhaus theorem

in [6], Theorem 6.2.1, we have K = (P ∩ K)Kp′ , where Kp′ is a Hall p-subgroup

of K. Now G = PK = PKp′ and P ∩Kp′ = 1. Hence P is complemented in G, as

claimed.

Now we show G is not simple. Assume false. By Burnside’s theorem, we may

assume that |π(G)| > 3. Since every Sylow subgroup of odd order of G is com-

plemented in G, we conclude that G possesses two subgroups H and K such that

|G : H | = ps and |G : K| = qt, where p and q are different odd primes with p < q.

By checking the simple groups with subgroups of prime power index (see [8], The-

orem 1), we have that G ∼= PSL(2, 7). Therefore, |G : H | = 3, and consequently,

G has nontrivial normal subgroups, a contradiction. Thus G is not simple.
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Let N be a minimal normal subgroup of G. For any Sylow subgroup P of odd

order of G, by the above argument, we have that P ∩ N is complemented in N .

As P ∩ N is also a Sylow subgroup of N , it follows that every Sylow subgroup of

odd order of N is complemented in N . By induction, N is solvable, and so N is an

elementary abelian p-group for some prime p. Now, by Lemma 2.1, G/N satisfies the

hypothesis of the theorem. By induction, G/N is solvable, and hence G is solvable.

This completes the proof. �

P r o o f of Theorem 1.6. If the group G is solvable, then, by Hall’s theorem in [9],

every Sylow subgroup of G is complemented and hence is ss-supplemented in G. In

particular, all Sylow 2-subgroups and Sylow 3-subgroups of G are ss-supplemented

in G.

Conversely, assume that the Sylow 2-subgroups and Sylow 3-subgroups of G are

ss-supplemented in G. With the same argument as in the proof of Theorem 1.5,

we know that the Sylow 2-subgroups and Sylow 3-subgroups of G are complemented

in G. By Arad and Ward in [1], G is solvable as desired. �

P r o o f of Theorem 1.7. We first show that G is solvable. Assume false and

choose G to be a counterexample of minimal order.

(1) Every proper subgroup of G is solvable.

Let H be any proper subgroup of G. By Lemma 2.1 (1), each subgroup of odd

prime order of H is ss-supplemented in H . Thus H is solvable by the choice of G.

(2) For each odd prime p dividing the order of G, there exists a subgroup N of

order p such that N is not s-permutable in G.

Assume that there exists an odd prime, say p, such that each subgroup N of G of

order p is s-permutable in G. Then, by Lemma 2.3, Op(G) 6 NG(L). If O
p(G) is

a proper subgroup of G, then Op(G) is solvable by (1) and so is G, a contradiction.

Hence we may assume Op(G) = G and so N is normal in G. Applying the NC-

theorem, we have that G′ 6 CG(N), where G′ is the commutator subgroup of G.

Then Ω1(P ∩ G′) 6 Z(G′), where P is a Sylow p-subgroup of G. It follows from

Itô’s lemma in [12], Satz 5.5, page 435, that G′ is p-nilpotent. This together with

(1) implies that G is solvable, a contradiction.

(3) There exist two subgroupsH andK ofG such that |G : H | = p and |G : K| = q,

where p and q are distinct odd primes with p < q.

Since G is not solvable, by Burnside’s theorem, we may assume that |π(G)| > 3.

Let p, q ∈ π(G) be two distinct odd primes with p < q. By (2), there exist two

subgroups L1 and L2 such that |L1| = p, |L2| = q and L1, L2 are not s-permutable

in G. By the hypothesis, L1 and L2 are ss-supplemented in G. Since L1 and L2

are not s-permutable in G, we claim that L1 and L2 are complemented in G. Hence

there exist two subgroups H and K of G such that |G : H | = p and |G : K| = q.
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(4) Final contradiction.

Considering the permutable representation of G on H , we have that G/HG is

isomorphic to a subgroup of Sp, where Sp is the symmetric group on p symbols.

Then |G/HG| divides |Sp| = p!. Since p < q, we know that HG contains some

Sylow q-subgroup of G. In particular, HG 6= 1. Thus G = HGK and so G/HG =

K/(HG ∩K). By (1), we know that H and K are solvable. This implies that G is

solvable, a contradiction.

Now, we show that G possesses a normal 2-subgroup S such that G/S is super-

solvable. Set S = O2(G). Assume that S = 1. Since G is solvable, we know that

F (G) 6= 1 and F (G) is of odd order. By Lemma 2.5, each Sylow subgroup of F (G)

is contained in ZU (G) and so F (G) 6 ZU (G). By [5], page 390, Theorem 6.10,

G/CG(F (G)) is supersolvable. Since G is solvable, we get CG(F (G)) 6 F (G). This

implies that G/F (G) is supersolvable. Hence G is supersolvable and we are done.

Assume that S 6= 1. By Lemma 2.1(3), we know that G/S satisfies the hypothesis

of the theorem. Thus, by induction, G/S possesses a normal 2-subgroup P/S such

that (G/S)/(P/S) = G/P is supersolvable. Since S = O2(G), we have S = P and

G/S is supersolvable as desired. �
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