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Abstract. We study classifying problems of real hypersurfaces in a complex two-plane
Grassmannian G2(C

m+2). In relation to the generalized Tanaka-Webster connection, we
consider that the generalized Tanaka-Webster derivative of the normal Jacobi operator
coincides with the covariant derivative. In this case, we prove complete classifications for
real hypersurfaces in G2(C

m+2) satisfying such conditions.
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1. Introduction

In complex projective spaces or in quaternionic projective spaces, many differential

geometers studied real hypersurfaces with parallel curvature tensor ([7], [13]). From

a new perspective, it is investigated to classify real hypersurfaces in complex two-

plane Grassmannians with parallel normal Jacobi operator, that is, ∇RN = 0 (see

[5], [6], [12]).

As a prevailing notion, in a Riemannian manifold (M, g), a vector field X along

a geodesic γ of M̃ is called a Jacobi field if it satisfies the following second order

Jacobi equation

∇2

γ̇X +R(X, γ̇)γ̇ = 0,
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where γ̇ is the vector tangent to γ. For any tangent vector field X at x ∈ M , the

Jacobi operator RX is defined by

(RXY )(x) = (R(Y,X)X)(x),

for any vector field Y ∈ TxM .

On the other hand, let us put a unit normal vector field N to a hypersurface M

into the curvature tensor R of the ambient space M . Then for any tangent vector

field X on M , the normal Jacobi operator RN is defined by

RN (X) = R(X,N)N.

Our ambient space, a complex two-plane Grassmannian G2(C
m+2) consists of all

complex two-dimensional linear subspaces in C
m+2. This Riemannian symmetric

space is the unique compact irreducible Riemannian manifold being equipped with

both a Kähler structure J and a quaternionic Kähler structure J not containing J .

Then, naturally we could consider two geometric conditions for hypersurfaces M in

G2(C
m+2) that the 1-dimensional distribution [ξ] = span{ξ} and the 3-dimensional

distribution D⊥ = span{ξ1, ξ2, ξ3} are both invariant under the shape operator A
ofM (see [3]), where the Reeb vector field ξ is defined by ξ = −JN , N denotes a local

unit normal vector field ofM in G2(C
m+2) and the almost contact 3-structure vector

fields ξν are defined by ξν = −JνN (ν = 1, 2, 3).

By using the result in Alekseevskii [1], Berndt and Suh [3] proved the following:

Theorem A. Let M be a connected orientable real hypersurface in G2(C
m+2),

m > 3. Then both [ξ] and D⊥ are invariant under the shape operator of M if and

only if

(A) M is an open part of a tube around a totally geodesic G2(C
m+1) in G2(C

m+2),

or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally

geodesic HPn in G2(C
m+2).

Besides, the Reeb vector field ξ is said to be Hopf vector field if it is invariant

under the shape operator A. The one dimensional foliation of M by the integral

manifolds of the Reeb vector field ξ is said to be a Hopf foliation of M . We say

that M is a Hopf hypersurface in G2(C
m+2) if and only if the Hopf foliation ofM is

totally geodesic. Using the formulas in ([5], Section 3) it can be easily checked that

M is Hopf if and only if the Reeb vector field ξ is Hopf.

Now, we consider another one instead of Levi-Civita connection for real hypersur-

faces in Kähler manifolds, namely, the generalized Tanaka-Webster connection (in
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short, the g-Tanaka-Webster connection) ∇̂(k) for a non-zero real number k ([4], [8]).

The Tanaka-Webster connection ([14], [16]) is a unique affine connection on a non-

degenerate CR-manifold. Tanno [15] introduced the notion of generalized Tanaka-

Webster connection ∇̂ for contact metric manifolds by the canonical connection which
coincides with the Tanaka-Webster connection if the associated CR-structure is inte-

grable. In particular, if the shape operator of a real hypersurface in Kähler manifolds

satisfies ϕA + Aϕ = 2kϕ, k 6= 0, then the g-Tanaka-Webster connection ∇̂(k) coin-

cides with the Tanaka-Webster connection. Cho [4] defined the g-Tanaka-Webster

connection by

∇̂(k)
X Y = ∇XY + F

(k)
X Y,

where the operator F (k) is given by

F
(k)
X Y = g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY, k ∈ R \ {0}

and this is said to be g-Tanaka-Webster operator.

Using this g-Tanaka-Webster connection ∇̂(k), we have proved a non-existence

theorem about parallelism of the normal Jacobi operatorRN (see [11]). In this paper,

let us consider a new notion between the g-Tanaka-Webster connection ∇̂(k)and the

Levi-Civita connection ∇ for the normal Jacobi operator RN as follows:

(∇̂(k)
X RN )Y = (∇XRN )Y,(1.1)

(∇̂(k)

D⊥RN )Y = (∇D⊥RN )Y,(1.2)

and

(1.3) (∇̂(k)
D

RN )Y = (∇DRN )Y,

for any vector field Y ∈ TM , where D and D⊥ denote the distributions defined

by TxM = D ⊕D⊥, x ∈ M , and D⊥ = span{ξ1, ξ2, ξ3}. The condition (1.1) means
that the g-Tanaka-Webster covariant derivative and the Levi derivative of the normal

Jacobi operatorRN coincide with each other on the tangent bundle TM . As a further

generalization, the condition (1.2) (or (1.3)) has a weakened meaning that the two

derivatives coincide on the distributionD⊥ (orD, respectively) of the tangent bundle

TM in G2(C
m+2).

In this paper, related to the conditions (1.1), (1.2), and (1.3) mentioned above, we

want to study some non-existence properties of the normal Jacobi operator. First

we give the following
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Theorem 1.1. There does not exist any Hopf hypersurface in a complex two-

plane Grassmannian G2(C
m+2), m > 3, if the g-Tanaka-Webster connection of the

normal Jacobi operator coincides with the Levi-Civita connection.

As a generalization of Theorem 1.1, we give two theorems on the distributions D

and D⊥ for the bundle TM of real hypersuraces M in G2(C
m+2) as follows:

Theorem 1.2. There does not exist any Hopf hypersurface in a complex two-

plane Grassmannian G2(C
m+2), m > 3, if the g-Tanaka-Webster connection of the

normal Jacobi operator coincides with the Levi-Civita connection on the distribu-

tion D⊥.

Theorem 1.3. There does not exist any Hopf hypersurface in a complex two-

plane Grassmannian G2(C
m+2), m > 3, if the g-Tanaka-Webster connection of the

normal Jacobi operator coincides with the Levi-Civita connection on the distribu-

tion D.

On the other hand, this condition (1.1) has a geometric meaning that the g-

Tanaka-Webster operator F
(k)
X and the normal Jacobi operator RN commute with

each other, that is, F
(k)
X (RNY ) = RN (F

(k)
X Y ). Then the conditions (1.2) and (1.3)

also have the meaning that F
(k)
X (RNY ) = RN (F

(k)
X Y ) holds for any X ∈ D⊥ and

X ∈ D, respectively.

In Section 2 we introduce a key lemma being used to solve theorems. In Sec-

tion 3 we will give a complete proof of the theorems. In this paper, we refer to [1],

[2], [3], [5], [9] for Riemannian geometric structures of G2(C
m+2) and its geometric

quantities, respectively.

2. Key lemma

Let us denote by R(X,Y )Z the curvature tensor in G2(C
m+2). Then the normal

Jacobi operator RN of a real hypersurfaceM in a complex two-plane Grassmannian

G2(C
m+2) can be defined by RNX = R(X,N)N for any vector field X ∈ TxM =

D⊕D⊥, x ∈ M (see [5]).

In [5], [6], the normal Jacobi operator is obtained as

(2.1) RNX = X + 3η(X)ξ + 3

3∑

ν=1

ην(X)ξν

−
3∑

ν=1

{ϕν(ξ)ϕνϕX − ην(ξ)η(X)ξν − ην(ϕX)ϕνξ}

for any tangent vector field X on M .
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Recall that the g-Tanaka-Webster operator

(2.2) F
(k)
X Y = g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY,

where k ∈ R \ {0} and a geometric meaning in the introduction

(2.3) F
(k)
X (RNY ) = RN (F

(k)
X Y ).

From now on, unless otherwise stated in the present section, we may write the

Reeb vector field ξ as follows:

(∗) ξ = η(X0)X0 + η(ξ1)ξ1, η(X0)η(ξ1) 6= 0

for some unit vector fields X0 ∈ D and ξ1 ∈ D⊥.

Now, using this fact, we prove the following:

Lemma 2.1. Let M be a Hopf hypersurface in a complex two-plane Grassman-

nian G2(C
m+2), m > 3. If the g-Tanaka-Webster connection of the normal Jacobi

operator coincides with the Levi-Civita connection along any vector field X , the dis-

tribution D⊥, or the distribution D, then ξ belongs to either the distribution D or

the distribution D⊥, respectively.

P r o o f. By taking X = ξ, X = ξ1 and X = ϕξ1 in (2.1) and using the

condition (∗), we have

RNξ = 4ξ + 4η1(ξ)ξ1,(2.4)

RNξ1 = 4ξ1 + 4η1(ξ)ξ,(2.5)

RN (ϕξ1) = 0,(2.6)

respectively.

Putting Y = ϕξ1 in (2.2), it becomes

(2.7) F
(k)
X (ϕξ1) = σξ + kη(X)ξ1,

where σ = η1(AX)− αη(ξ1)η(X)− kη(X)η(ξ1).

Inserting Y = ϕξ1 in (2.3) and using (2.6), (2.7), we have

(2.8) RN (σξ + kη(X)ξ1) = 0.

Using (2.5), (2.6) and (∗) in (2.8), it is written as

σ + kη(X)η1(ξ) = 0,(2.9)

ση1(ξ) + kη(X) = 0.(2.10)
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Applying η1(ξ) to (2.9) and subtracting (2.10), it follows that

(2.11) kη(X)η2(X0) = 0.

Now let us check the following three cases:

Case 1: (∇̂(k)
X RN )Y = (∇XRN )Y for all X, Y ∈ TM. Putting X = ξ in (2.11),

ξ belongs the distribution D⊥, because k 6= 0 is a real number.

Case 2: (∇̂(k)

D⊥RN)Y = (∇D⊥RN )Y for all Y ∈ TM . Replacing X = ξ1 in (2.11),

ξ belongs to either the distribution D or the distribution D⊥, because of k ∈ R\{0}.
Case 3: (∇̂(k)

D
RN )Y = (∇DRN )Y for all Y ∈ TM . Taking X = X0 in (2.11), we

have kη3(X0) = 0. This means that ξ belongs to the distribution D⊥.

Summing up the above three cases, we can give a complete proof of our lemma.

�

3. Proof of theorems

Let us consider a Hopf hypersurface M in G2(C
m+2). Then by Lemma 2.1 we

shall divide our consideration in the cases that the Reeb vector field ξ belongs to

either the distribution D⊥ or the distribution D.

First of all, we consider the case ξ ∈ D⊥. Then in this case we want to prove the

following

Lemma 3.1. Let M be a Hopf hypersurface in complex two-plane Grassmannian

G2(C
m+2), m > 3, such that the Reeb vector field ξ belongs to the distribution D⊥.

If the g-Tanaka-Webster connection of the normal Jacobi operator coincides with

the Levi-Civita connection along any vector field X , the distribution D⊥, and the

distribution D, respectively, then the distribution D⊥ is invariant under the shape

operator A of M .

P r o o f. Without loss of generality, we may put ξ = ξ1. Now let us take ξ = ξ1
in (2.1), we have

(3.1) RNX = X + 4η(X)ξ + 3η1(X)ξ1 + 2η2(X)ξ2 + 2η3(X)ξ3 − ϕ1ϕX

for any tangent vector field X on M . Substituting X by ϕAX in (3.1), we get

RN (ϕAX) = ϕAX + 2η3(AX)ξ2 − 2η2(AX)ξ3 + ϕ1AX.

Using the equation (see [10], (1.8)), it becomes

(3.2) RN (ϕAX) = 2ϕAX.
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Putting X = ξ in (3.1), it is written as

(3.3) RN (ξ) = 8ξ.

On the other hand, inserting Y = ξ in (2.2), we get

(3.4) F
(k)
X ξ = −ϕAX.

Substituting Y = ξ in (2.3) and using (3.2), (3.3), (3.4), we have ϕAX = 0. Applying

the structure tensor field ϕ, it becomes

(3.5) AX = αη(X)ξ,

for any tangent vector field X in M .

Therefore, we consider the following three cases:

Case 1: (∇̂(k)
X RN )Y = (∇XRN )Y for all X, Y ∈ TM . Since ξ ∈ D⊥, AX of (3.5)

belongs to the distribution D⊥.

Case 2: (∇̂(k)

D⊥RN )Y = (∇D⊥RN )Y for all Y ∈ TM . This case has the same

result as in Case 1.

Case 3: (∇̂(k)
D

RN )Y = (∇DRN )Y for all Y ∈ TM . Taking X ∈ D in (3.5), we

have AX = 0.

So, in any of Cases 1, 2 and 3, we can assert our Lemma 3.1. �

If ξ ∈ D⊥, by Theorem A and Lemma 3.1, we can assert thatM is locally congruent

to a model space of type (A), that is, a tube over a totally geodesic G2(C
m+1) in

G2(C
m+2). Now let us check whether a model space of type (A) satisfies one of the

conditions (1.1), (1.2) and (1.3) or not. For a real hypersurface of type (A), detailed

information (eigenspaces, corresponding eigenvalues, and multiplicities) was given

in [3].

For Cases 1 and 2, putting X = ξ2 in (3.5), we have βξ2 = 0. Since β =√
2 cot(

√
2r), r ∈ (0, π/

√
8), this gives ξ2 = 0 which makes a contradiction. For

the remaining Case 3, taking non-zero vector field X ∈ Tλ in (3.5), we get λX = 0.

This gives that λ = 0. But the eigenvalue is λ = −
√
2 tan(

√
2r), r ∈ (0, π/

√
8). This

gives us a contradiction.

Next, if ξ ∈ D, by the assumption of Hopf and using [9], we see that M is locally

congruent to a real hypersurface of type (B), which is a tube over a totally geodesic

and totally real quaternionic projective space HPn in G2(C
m+2). Hence it remains to

check if a model space of type (B) satisfies one of the conditions (1.1), (1.2) and (1.3)

or not. Now, by using the detailed information for real hypersurfaces of type (B)

given in [3], we can check these cases as follows:
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Taking ξ ∈ D in (2.1), we have

(3.6) RNX = X + 3η(X)ξ + 3

3∑

ν=1

ην(X)ξν +

3∑

ν=1

ην(ϕX)ϕνξ.

In (3.6), let us insert X = ξ and X = ϕAX , respectively, we get

RNξ = 4ξ,(3.7)

RN (ϕAX) = ϕAX + 3
3∑

ν=1

ην(ϕAX)ξν −
3∑

ν=1

ην(AX)ϕνξ.(3.8)

Putting Y = ξ in (2.3) and using (3.6), (3.7), (3.8), we obtain

(3.9) −3ϕAX = −3

3∑

ν=1

ην(ϕAX)ξν +

3∑

ν=1

ην(AX)ϕνξ.

For Cases 1 and 2, we can put X = ξ1 ∈ D⊥ in (3.9), then we have 4βϕξ1 = 0.

This gives β = 0, which gives us a contradiction.

For Case 3, we can put X ∈ Tλ in (3.9), we get λϕX = 0. Since β = 2 cot(2r),

r ∈ (0, π/4) and λ = cot(r), r ∈ (0, π/4), it gives us also a contradiction.

Hence summing up these assertions, we can give a complete proof of our Theo-

rems 1.1, 1.2, and 1.3 in the introduction. �
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