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Abstract. The paper is motivated by the study of interesting models from economics and
the natural sciences where the underlying randomness contains jumps. Stochastic differen-
tial equations with Poisson jumps have become very popular in modeling the phenomena
arising in the field of financial mathematics, where the jump processes are widely used to
describe the asset and commodity price dynamics. This paper addresses the issue of ap-
proximate controllability of impulsive fractional stochastic differential systems with infinite
delay and Poisson jumps in Hilbert spaces under the assumption that the corresponding
linear system is approximately controllable. The existence of mild solutions of the fractional
dynamical system is proved by using the Banach contraction principle and Krasnoselskii’s
fixed-point theorem. More precisely, sufficient conditions for the controllability results are
established by using fractional calculations, sectorial operator theory and stochastic analysis
techniques. Finally, examples are provided to illustrate the applications of the main results.

Keywords: approximate controllability; fixed-point theorem; fractional stochastic differ-
ential system; Hilbert space, Poisson jumps
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1. Introduction

Differential equations involving fractional derivatives in time, compared with those

of integer order in time, are more realistic to describe many phenomena in nature (for
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instance, to describe the memory and hereditary properties of various materials and

processes), the study of such equations has become an object of extensive research

during recent years (see [11], [17]). Fractional differential equations have a wide range

of applications in many physical phenomena such as seepage flow in porous media,

fluid dynamics, traffic models, etc. The most important advantage of using fractional

differential equations is their time delay property. This means that the next state of

a system depends not only upon its current state but also upon all its historical states.

This is probably the most relevant feature making this fractional tool useful from an

applied standpoint and interesting from a mathematical standpoint, which led to the

sustained study of the theory of fractional differential equations. Besides, noise or

stochastic perturbation is unavoidable and omnipresent in nature as well as in man-

made systems. Therefore, it is of great significance to import the stochastic effects

into the investigation of fractional differential systems. Various evolutionary pro-

cesses from fields as diverse as physics, population dynamics, aeronautics, economics

and engineering are characterized by the fact that they undergo abrupt changes of

state at certain moments of time between intervals of continuous evolution. Because

the duration of these changes is often negligible compared to the total duration of the

process, such changes can be reasonably well approximated as being instantaneous

changes of state, or in the form of impulses (see [13]). These processes are suit-

ably modeled by impulsive fractional stochastic differential equations. Moreover, the

qualitative behavior such as the existence and controllability of fractional dynamical

systems are current important issues explored by many researchers, for example see

[7], [18], [20]. Tai et al. [26] addressed the controllability results of fractional-order im-

pulsive neutral functional infinite delay integro-differential systems in Banach spaces

by using Krasnoselskii’s fixed-point theorem. In control theory, the main tool is to

convert the controllability problem into a fixed-point problem with the assumption

that the controllability operator has an induced inverse on a quotient space. To

prove controllability, an assumption that the semigroup (or the resolvent operator)

associated with the linear part is compact is often made. However, if the compact-

ness condition holds on the bounded operator that maps the control function on the

generated C0-semigroup, then the controllability operator is also compact and its

inverse does not exist if the state space is infinite-dimensional (see [28]). Sukavanam

et al. [25] have proved some sufficient conditions for the approximate controllability

of fractional order system in which the nonlinear term depends on both state and

control variables. Balasubramaniam et al. [1] discussed the approximate controlla-

bility of impulsive fractional integro-differential systems with nonlocal conditions in

Hilbert space by using Darbo-Sadovskii’s fixed-point theorem.

In recent years there has been an accelerating interest in the development of

stochastic models for describing the functions of intrinsic noise, due to the uncer-
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tainty of natural phenomena, and extrinsic noise, due to fluctuations in the envi-

ronment. Thus, stochastic differential equations appear as a natural description

of several observed phenomena of real world (see [6]). In infinite dimensions, the

stochastic systems can be studied using Brownian motion with finite trace nuclear

covariance operator. Cui et al. [4] proved the existence result for fractional neu-

tral stochastic integro-differential equations with infinite delay by using Sadovskii’s

fixed-point theorem. The existence and uniqueness for a class of fractional stochastic

delay differential equations has been established in [8]. Sakthivel et al. [22] addressed

the issue of existence of mild solutions for a class of fractional stochastic differential

equations with impulses in Hilbert spaces by using fractional calculations, fixed-point

technique and stochastic analysis theory. In contrast, papers dealing with the ap-

proximate controllability of fractional order stochastic systems are scarce. Recently,

the subject was addressed in Sakthivel et al. [23] without Poisson jumps.

The modelling of risky asset by stochastic processes with continuous paths, based

on Brownian motion, suffers from several defects. First, the path continuity assump-

tion does not seem reasonable in view of the possibility of sudden price variations

(jumps) resulting of market crashes. A solution is to use stochastic processes with

jumps, which will account for sudden variations of the asset prices. On the other

hand, such jump models are generally based on the Poisson random measure. Many

popular economic and financial models are described by stochastic differential equa-

tions with Poisson jumps (see [3], [29]). Taniguchi et al. [27] derived a new set of

sufficient conditions for the existence of mild solutions of stochastic evolution equa-

tions with infinite delay driven by Poisson jump processes. Liu et al. [14] studied

the existence and uniqueness of global mild solutions of jump-type stochastic frac-

tional partial differential equations with fractional noise by using Green functions.

Hausenblas et al. [10] studied the numerical approximation of parabolic stochastic

partial differential equations driven by a Poisson random measure by using spectral

methods, implicit Euler scheme and explicit Euler scheme. Very few authors stud-

ied the qualitative properties of stochastic differential equations driven by Poisson

jumps (see [5], [19] and references therein). Sakthivel et al. [21] studied the com-

plete controllability of stochastic evolution equations with jumps without assuming

the compactness of the semigroup property. Long et al. [15] proved the sufficient

condition for the approximate controllability of SPDE with infinite delays driven

by Poisson jumps by using the Krasnoselskii-Schaefer fixed-point theorem. Here,

we move from deterministic impulsive fractional differential equations to stochastic

impulsive fractional differential equations with Poisson jumps for the study of exis-

tence of solutions and controllability properties. Motivated by few studies [7], [18],

[23], [22], the existence of solutions and approximate controllability of the follow-

ing impulsive fractional stochastic differential system with infinite delay and Poisson
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jumps remains an untreated topic in the literature:

(1.1) Dα
t x(t) = Ax(t) +Bu(t) + f(t, xt) + g(t, xt)

dW (t)

dt

+

∫

Z

h(t, xt, η)Ñ(dt, dη), t ∈ J := [0, b], t 6= ti,

∆x(ti) = Ii(x(t
−

i )), i = 1, 2, . . . ,m,

x(t) = ϕ ∈ Cv, −∞ < t 6 0, t ∈ J0 := (−∞, 0],

where 0 < α < 1; Dα
t denotes the Caputo fractional derivative of order α. Here,

x(·) takes values in the Hilbert space H with inner product 〈·, ·〉 and norm ‖·‖,
A : D(A) ⊂ H → H is the infinitesimal generator of an α-resolvent family Sα(t)t>0.

The control function u(·) takes values in LF
2 (J, U), the space of admissible control

functions, U is a Hilbert space, B is a bounded linear operator from U into H . Let

K be another separable Hilbert space with inner product 〈·, ·〉K and the norm ‖·‖K .
Suppose {W (t)}t>0 is a given K-valued Brownian motion or Wiener process with

a finite trace nuclear covariance operator Q > 0. We use the same notation ‖·‖
for the norm of L(K,H), where L(K,H) denotes the space of all bounded linear

operators from K into H , simply L(H) if K = H . The histories xt : (−∞, 0] → Cv
defined by xt = {x(t + θ) ; θ ∈ (−∞, 0]} belong to the phase space Cv, which is
defined in Section 2. Let q̂ = (q̂(t)), t ∈ Dq̂, be a stationary Ft-Poisson point process

with a characteristic measure λ̂. Let N(dt, dη) be the Poisson counting measure

associated with q̂. Thus, we have N(t, Z) =
∑

s∈Dq̂ ,s6t

IZ(q̂(s)) with a measurable

set Z ∈ B(K − {0}), which denotes the Borel σ-field of K − {0}. Let Ñ(dt, dη) =

N(dt, dη) − dtλ̂(dη) be the compensated Poisson measure that is independent of

Brownian motion. Let p2([0, b] × Z;H) be the space of all predictable mappings

χ̂ : [0, b]× Z → H for which

∫ b

0

∫

Z

E‖χ̂(t, η)‖2H dtλ̂(dη) < ∞.

Then, we can define the H-valued stochastic integral
∫ b

0

∫
Z χ̂(t, η)Ñ(dt, dη), which

is a centred square-integrable martingale. The functions f : J × Cv → H , g : J ×
Cv → LQ(K,H) and h : J × Cv × Z → H are Borel measurable functions, where

LQ(K,H) denotes the space of all Q-Hilbert-Schmidt operators from K into H . For

i = 1, 2, . . . ,m, Ii : H → H are appropriate functions. Here 0 = t0 6 t1 6 . . . 6 tm 6

tm+1 = b, ∆x(ti) = x(t+i ) − x(t−i ), x(t
+
i ) = lim

ĥ→0
x(ti + ĥ) and x(t−i ) = lim

ĥ→0
x(ti − ĥ)

are respectively the right and left limits of x(t) at t = ti. The initial data ϕ(t) is an

F0-adapted H-valued random variable independent of the Wiener process W .
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The paper is organized as follows. In Section 2, we introduce the basic notations

and assumptions which are necessary to formulate the main results. In Section 3, we

derive the existence of mild solutions using fixed-point techniques. In Section 4, the

approximate controllability result is investigated. Examples are provided in Section 5

to illustrate the desired theoretical results.

2. Preliminaries

For more details on the concepts presented in this section, the reader may refer to

[16], [18], [22] and references therein. Throughout the paper, (H, ‖·‖) and (K, ‖·‖K)

denote real separable Hilbert spaces. Let (Ω,F, P ) be a complete probability space

equipped with a normal filtration {Ft, t ∈ J} satisfying the usual conditions (that is,
right continuity and F0 containing all P -null sets of F). AnH-valued random variable

is an F-measurable function x(t) : Ω → H and the collection of random variables

S = {x(t, ω) : Ω → H |t∈J} is called a stochastic process. Generally, we just write
x(t) instead of x(t, ω) and x(t) : J → H in the space of S. Let {ζi}∞i=1 be a complete

orthonormal basis of K. Suppose that {W (t); t > 0} is a K-valued Wiener process
with finite trace nuclear covariance operator Q > 0, denote Tr(Q) =

∞∑
i=1

λi < ∞,

which satisfies Qζi = λiζi. So, actually, W (t) =
∞∑
i=1

√
λiβi(t)ζi, where {βi(t)}∞i=1,

are mutually independent one-dimensional standard Wiener processes. We assume

that Ft = σ{W (s) : 0 6 s 6 t} is the σ-algebra generated by W and Fb = F. Let

χ ∈ L(K,H) and define

‖χ‖2Q = Tr(χQχ∗) =

∞∑

i=1

∥∥√λiχζi
∥∥2.

If ‖χ‖Q < ∞, then χ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H)

denote the space of all Q-Hilbert-Schmidt operators χ : K → H . The completion

LQ(K,H) of L(K,H) with respect to the topology induced by the norm ‖·‖Q, where
‖χ‖2Q = 〈χ, χ〉 is a Hilbert space with the above norm topology. The collection of
all strongly measurable, square integrable H-valued random variables, denoted by

L2(Ω,F, P ;H) ≡ L2(Ω;H), is a Banach space equipped with the norm ‖x(·)‖L2
=

(E‖x(·;ω)‖2H)1/2, where the expectation E is defined by E(h1) =
∫
Ω h1(ω) dP . Let

Ĵ = (−∞, b] and let C(Ĵ , L2(Ω;H)) be the Banach space of all continuous maps

from Ĵ into L2(Ω;H) satisfying the condition sup
t∈Ĵ

E‖x(t)‖2 < ∞. Now, we present

the abstract phase space Cv. Assume that v : (−∞, 0] → (0,∞) is a continuous

function satisfying l =
∫ 0

−∞
v(t) dt < ∞. The Banach space (Cv, ‖·‖Cv

) induced by
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the function v is defined as follows:

Cv =

{
ϕ : (−∞, 0] → H, such that for any a > 0, E(|ϕ(θ)|2)1/2 is

a bounded and measurable function on [−a, 0] with ϕ(0) = 0

and

∫ 0

−∞

v(s) sup
s6θ60

E(|ϕ(θ)|2)1/2 ds < ∞
}

and Cv is endowed with the norm ‖ϕ‖Cv
=

∫ 0

−∞
v(s) sup

s6θ60
E(|ϕ(θ)|2)1/2 ds, ϕ ∈ Cv

(see [12], [19]). Let us consider the space

Cb = {x : (−∞, b] → H, such that x|Ji
∈ C(Ji, H) and there exist x(t+i ) and

x(t−i ) with x(ti) = x(t−i ), x0 = ϕ ∈ Cv, i = 1, 2, . . .m},

where x|Ji
is the restriction of x to Ji = (ti, ti+1], i = 0, 1, 2, . . . ,m. Set ‖·‖Cb

to be

a seminorm defined by

‖x‖Cb
= ‖ϕ‖Cv

+ sup
s∈[0,b]

(E|x(s)|2)1/2, x ∈ Cb.

Lemma 2.1. Assume that x ∈ Cb. Then for t ∈ J , xt ∈ Cv. Moreover,

l(E‖x(t)‖2)1/2 6 ‖ϕ‖Cv
+ l sup

s∈[0,b]

(E|x(s)|2)1/2.

Definition 2.2 ([9]). A closed linear operator A is said to be sectorial if there

are constants w ∈ R, θ ∈ [π/2, π], M > 0, such that the following two conditions are

satisfied:

i) ̺(A) ⊂ Σ(θ,w) = {λ̃ ∈ C : λ̃ 6= w, |arg(λ̃− w)| < θ},
ii) ‖R(λ̃, A)‖ 6 M/|λ̃− w|, λ̃ ∈ Σ(θ,w).

Definition 2.3 ([22]). Let A be a closed linear operator with the domain D(A)

defined in a Banach space H . Let ̺(A) be the resolvent set of A. We say that A is

the generator of an α-resolvent family if there exist w > 0 and a strongly continuous

function Sα : R+ → L(H), where L(H) is a Banach space of all bounded linear

operators from H into H and the corresponding norm is denoted by ‖·‖, such that
{λ̃α : Re λ̃ > w} ⊂ ̺(A) and

(λ̃αI −A)−1x =

∫ ∞

0

eλ̃tSα(t)xdt, Re λ̃ > w, x ∈ H,

where Sα(t) is called the α-resolvent family generated by A.

400



Definition 2.4 ([7]). Let A be a closed linear operator with the domain D(A)

defined in a Banach space H and α > 0. We say that A is the generator of a solution

operator if there exist w > 0 and a strongly continuous function Tα : R+ → L(H)

such that {λ̃α : Re λ̃ > w} ⊂ ̺(A) and

λ̃α−1(λ̃αI −A)−1x =

∫ ∞

0

eλ̃tTα(t)xdt, Re λ̃ > w, x ∈ H,

where Tα(t) is called the solution operator generated by A.

For more details on the α-resolvent family and solution operator, the reader may

refer to [7], [9], [24] and references therein.

Definition 2.5 ([2]). The Caputo derivative of order α with the lower limit 0

for a function f can be written as

cDαf(t) =
1

Γ(n− α)

∫ t

0

fn(s)

(t− s)α+1−n
ds = In−αfn(t), t > 0, 0 6 n− 1 < α < n.

The Caputo derivative of a constant is equal to zero. The Laplace transform of the

Caputo derivative of order α > 0 is given by

L{Dα
t f(t); λ̃} = λ̃αf̂(λ̃)−

n−1∑

k=0

λ̃α−k−1fk(0), n− 1 6 α < n.

Lemma 2.6 ([7], [22]). Let A be a sectorial operator. Then the unique solution

of the linear fractional control problem

Dα
t x(t) = Ax(t) +Bu(t), t > t0, t0 > 0, 0 < α < 1,

x(t) = ϕ(t), t 6 t0,

is given by

x(t) = Tα(t− t0)x(t0) +

∫ t

t0

Sα(t− s)Bu(s) ds,

where Tα(t) = (2πi)−1
∫
B̂r

eλ̃tλ̃α−1/(λ̃α −A) dλ̃, Sα(t) = (2πi)−1
∫
B̂r

eλ̃t/(λ̃α −A) dλ̃,

where B̂r denotes the Bromwich path, Sα(t) is the α-resolvent family, and Tα(t) is

the solution operator generated by A.

Let us now introduce the following operators. Define the operator Γb
0 : H → H

associated with the linear system of (1.1) (that is, in equation (1.1), f = g = h = 0)

as

Γb
0 =

∫ b

0

Sα(b− s)BB⋆S⋆
α(b− s) ds, R(λ,Γb

0) = (λI + Γb
0)

−1,

where B⋆ denotes the adjoint of B, ‖B‖ = MB and Sα(t)
⋆ is the adjoint of Sα(t).
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Definition 2.7 (see [22], [26]). An Ft-adapted stochastic process x : (−∞, b] → H

is called a mild solution of the system (1.1) if x0 = ϕ ∈ Cv and the following conditions
hold:

(i) x(t) is Cv-valued and the restriction of x(·) to the interval (ti, ti+1], i =

1, 2, . . . ,m is continuous,

(ii) for each t ∈ J , x(t) satisfies the following integral equation:

(2.1) x(t) =





ϕ(t), t ∈ (−∞, 0],
∫ t

0

Sα(t− s)Bu(s) ds+

∫ t

0

Sα(t− s)f(s, xs) ds

+

∫ t

0

Sα(t− s)g(s, xs) dW (s)

+

∫ t

0

∫

Z

Sα(t− s)h(s, xs, η)Ñ(ds, dη), t ∈ [0, t1],

Tα(t− ti)(x(t
−

i ) + Ii(x(t
−

i ))) +

∫ t

ti

Sα(t− s)Bu(s) ds

+

∫ t

ti

Sα(t− s)f(s, xs) ds+

∫ t

ti

Sα(t− s)g(s, xs) dW (s)

+

∫ t

ti

∫

Z

Sα(t− s)h(s, xs, η)Ñ(ds, dη), t ∈ (ti, ti+1],

i = 1, 2, . . . ,m,

(iii) ∆x|t=ti = Ii(x(t
−

i )), i = 1, 2, . . . ,m, the restriction of x(·) to the integral [0, b)\
{t1, t2, . . . , tm} is continuous.

In general, let us denote u(t) = B⋆S⋆
α(b − t)R(λ,Γb

0)p(x(·)), where

(2.2) p(x(·)) =





xt1 −
∫ t1

0

Sα(t1 − s)f(s, xs) ds−
∫ t1

0

Sα(t1 − s)g(s, xs) dW (s)

−
∫ t1

0

∫

Z

Sα(t1 − s)h(s, xs, η)Ñ(ds, dη), t ∈ [0, t1],

xti+1
− Tα(b− ti)(x(t

−

i ) + Ii(x(t
−

i )))−
∫ b

ti

Sα(b− s)f(s, xs) ds

−
∫ b

ti

Sα(b − s)g(s, xs) dW (s)

−
∫ b

ti

∫

Z

Sα(b − s)h(s, xs, η)Ñ(ds, dη),

t ∈ (ti, ti+1], i = 1, 2, . . . ,m.

Let x(t;ϕ, u) denote the state value of system (1.1) at time t corresponding to the

control u ∈ LF
2 (J, U). In particular, the state of system (1.1) at t = b, x(b;ϕ, u)
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is called the terminal state with control u. The set R(b;ϕ, u) = {x(b;ϕ, u) : u ∈
LF
2 (J, U)} is called the reachable set of system (1.1).

Definition 2.8. System (1.1) is approximately controllable on J if R(b;ϕ, u) =

L2(Ω,F, H), where R(b;ϕ, u) is the closure of the reachable set.

To prove our main results, we need the following basic assumptions.

(H1) If α ∈ (0, 1) and A ∈ A
α(θ0, w0), then for any x ∈ H , t > 0, from Theorems 3.3

and 3.4 in [24], we have ‖Tα(t)‖ 6 MT and ‖Sα(t)‖ 6 tα−1MS.

(H2) The nonlinear functions f , g satisfy the Lipschitz condition and there exist

positive constants Mf , Mg such that

E‖f(t, x)− f(t, y)‖2H 6 Mf‖x− y‖2Cv
,

E‖g(t, x)− g(t, y)‖2Q 6 Mg‖x− y‖2Cv
, for all x, y ∈ Cv, t ∈ J.

(H3) For each i = 1, 2, . . . ,m, there exists Mi > 0 such that

E‖Ii(x) − Ii(y)‖2H 6 Mi‖x− y‖2H for all x, y ∈ H.

(H4) The nonlinear function h satisfies the Lipschitz condition and there exist pos-

itive constants Mh, Lh such that

∫

Z

E‖h(t, x, η)− h(t, y, η)‖2H λ̂(dη) dt 6 Mh‖x− y‖2Cv
,

∫

Z

E‖h(t, x, η)− h(t, y, η)‖4H λ̂(dη) dt 6 Lh‖x− y‖4Cv
, for all x, y ∈ Cv.

Lemma 2.9 ([20]). Let H be a Banach space. Let E be a bounded, closed, and

convex subset of H and let Ψ1,Ψ2 be maps from E into H such that Ψ1x+Ψ2x ∈ E,

for every pair x, y ∈ E. If Ψ1 is contraction and Ψ2 is compact and continuous, then

the equation Ψ1x+Ψ2x = x has a solution on E.

3. Existence of mild solutions

Taking into account the above notations, definitions and lemmas, we shall derive

the existence of solutions for the nonlinear fractional stochastic system (1.1) by

using the contraction mapping principle and Krasnoselskii’s fixed-point theorem.

The existence of solutions to system (1.1) is a natural premise to carry out the

approximate controllability results.
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Theorem 3.1. If assumptions (H1)–(H4) are satisfied with A ∈ A
α(θ0, w0), then

system (1.1) has a unique mild solution, provided that

max
16i6m

6
(
1 + 5

M2
BM

4
S

λ

(ti+1 − ti)
4α−3

4α− 3

)
(3.1)

×
(
M2

T (1 +Mi) +M2
Sl
((ti+1 − ti)

2α

α2
Mf +

(ti+1 − ti)
2α−1

2α− 1
Mg

+
(ti+1 − ti)

2α

α2
[Mh +

√
Lh]

))
< 1

with α 6= 1

2
,
3

4
.

P r o o f. Define the operator Θ: Cb → Cb by

(Θx)(t) =





ϕ(t), t ∈ (−∞, 0],
∫ t

0

Sα(t− s)Bu(s) ds+

∫ t

0

Sα(t− s)f(s, xs) ds

+

∫ t

0

Sα(t− s)g(s, xs) dW (s)

+

∫ t

0

∫

Z

Sα(t− s)h(s, xs, η)Ñ(ds, dη), t ∈ [0, t1],

Tα(t− ti)(x(t
−

i ) + Ii(x(t
−

i ))) +

∫ t

ti

Sα(t− s)Bu(s) ds

+

∫ t

ti

Sα(t− s)f(s, xs) ds+

∫ t

ti

Sα(t− s)g(s, xs) dW (s)

+

∫ t

ti

∫

Z

Sα(t− s)h(s, xs, η)Ñ(ds, dη),

t ∈ (ti, ti+1], i = 1, 2, . . . ,m.

For ϕ ∈ Cv, define

y(t) =

{
ϕ(t), t ∈ (−∞, 0],

0, t ∈ J,

then y0 = ϕ. Next we define the function

z(t) =

{
0, t ∈ (−∞, 0],

z(t), t ∈ J,
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for each z ∈ C(J,R) with z(0) = 0. If x(·) satisfies (2.1), then x(t) = y(t) + z(t) for

t ∈ J , which implies xt = yt + zt for t ∈ J and the function z(·) satisfies

z(t) =





∫ t

0

Sα(t− s)Bu(s) ds+

∫ t

0

Sα(t− s)f(s, ys + zs) ds

+

∫ t

0

Sα(t− s)g(s, ys + zs) dW (s)

+

∫ t

0

∫

Z

Sα(t− s)h(s, ys + zs, η)Ñ(ds, dη), t ∈ [0, t1],

Tα(t− ti)((y(t
−

i ) + z(t−i )) + Ii(y(t
−

i ) + z(t−i ))) +

∫ t

ti

Sα(t− s)Bu(s) ds

+

∫ t

ti

Sα(t− s)f(s, ys + zs) ds+

∫ t

ti

Sα(t− s)g(s, ys + zs) dW (s)

+

∫ t

ti

∫

Z

Sα(t− s)h(s, ys + zs, η)Ñ(ds, dη),

t ∈ (ti, ti+1], i = 1, 2, . . . ,m.

Set C0
b = {z ∈ Cb, such that z0 = 0} and for any z ∈ C0

b , we have

‖z‖C0
b
= ‖z0‖Cv

+ sup
t∈J

(E‖z(t)‖2)1/2 = sup
t∈J

(E‖z(t)‖2)1/2,

thus (C0
b , ‖·‖C0

b
) is a Banach space. Define the operator Φ: C0

b → C0
b by

(Φz)(t) =





∫ t

0

Sα(t− s)Bu(s) ds+

∫ t

0

Sα(t− s)f(s, ys + zs) ds

+

∫ t

0

Sα(t− s)g(s, ys + zs) dW (s)

+

∫ t

0

∫

Z

Sα(t− s)h(s, ys + zs, η)Ñ(ds, dη), t ∈ [0, t1],

Tα(t− ti)(z(t
−

i ) + Ii(z(t
−

i ))) +

∫ t

ti

Sα(t− s)Bu(s) ds

+

∫ t

ti

Sα(t− s)f(s, ys + zs) ds+

∫ t

ti

Sα(t− s)g(s, ys + zs) dW (s)

+

∫ t

ti

∫

Z

Sα(t− s)h(s, ys + zs, η)Ñ(ds, dη),

t ∈ (ti, ti+1], i = 1, 2, . . . ,m.
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In order to prove the existence results, it is enough to show that Φ has a unique fixed

point. Let z1, z2 ∈ C0
b . Then for all t ∈ [0, t1], we have

E‖(Φz1)(t)− (Φz2)(t)‖2

6 4E

∥∥∥∥
∫ t

0

Sα(t− s)(f(s, ys + z1,s)− f(s, ys + z2,s)) ds

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ t

0

Sα(t− s)(g(s, ys + z1,s)− g(s, ys + z2,s)) dW (s)

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ t

0

∫

Z

Sα(t− s)(h(s, ys + z1,s, η)− h(s, ys + z2,s, η))Ñ(ds, dη)

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ t

0

Sα(t− s)BB⋆S⋆
α(t1 − s)R(λ,Γt1

0 )

×
{∫ t1

0

Sα(t1 − s)(f(s, ys + z1,s)− f(s, ys + z2,s)) ds

+

∫ t1

0

Sα(t1 − s)(g(s, ys + z1,s)− g(s, ys + z2,s)) dW (s)

+

∫ t1

0

∫

Z

Sα(t1 − s)(h(s, ys + z1,s, η)− h(s, ys + z2,s, η))Ñ(ds, dη)

}
ds

∥∥∥∥
2

6 4M2
S

∫ t

0

(t− s)α−1 ds

∫ t

0

(t− s)α−1[Mf‖z1,s − z2,s‖2Cv
] ds

+ 4M2
S Tr(Q)

∫ t

0

(t− s)2(α−1)[Mg‖z1,s − z2,s‖2Cv
] ds+ 4M2

S

∫ t

0

(t− s)α−1 ds

×
∫ t

0

∫

Z

(t− s)α−1E‖h(s, ys + z1,s, η)− h(s, ys + z2,s, η)‖2λ̂(dη) ds

+

∫ t

0

(t− s)α−1

(∫

Z

E‖h(s, ys + z1,s, η)− h(s, ys + z2,s, η)‖4λ̂(dη)
)1/2

ds

+ 12
M2

BM
4
S

λ

t4α−3
1

4α− 3

×
[
M2

S

∫ t1

0

(t1 − s)α−1 ds

∫ t1

0

(t1 − s)α−1[Mf‖z1,s − z2,s‖2Cv
] ds

+M2
S Tr(Q)

∫ t1

0

(t1 − s)2(α−1)[Mg‖z1,s − z2,s‖2Cv
] ds

+M2
S

∫ t1

0

(t1 − s)α−1 ds

×
∫ t1

0

∫

Z

(t1 − s)α−1E‖h(s, ys + z1,s, η)− h(s, ys + z2,s, η)‖2λ̂(dη) ds

+

∫ t1

0

(t1 − s)α−1

(∫

Z

E‖h(s, ys + z1,s, η)− h(s, ys + z2,s, η)‖4λ̂(dη)
)1/2

ds

]
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6 4M2
Sl
(
1 + 3

M2
BM

4
S

λ

t4α−3
1

4α− 3

)

×
( t2α1
α2

Mf +
t2α−1
1

2α− 1
Mg +

t2α1
α2

[
Mh +

√
Lh

])
‖z1 − z2‖2C0

b
.

For t ∈ (t1, t2], we have

E‖(Φz1)(t)− (Φz2)(t)‖2 6 6
(
1 + 5

M2
BM

4
S

λ

(t2 − t1)
4α−3

4α− 3

)

×
(
M2

T (1 +M1) +M2
Sl
((t2 − t1)

2α

α2
Mf +

(t2 − t1)
2α−1

2α− 1
Mg

+
(t2 − t1)

2α

α2
[Mh +

√
Lh]

))
‖z1 − z2‖2C0

b
.

Similarly, when t ∈ (ti, ti+1], i = 2, . . . ,m, we get

E‖(Φz1)(t)− (Φz2)(t)‖2 6 6
(
1 + 5

M2
BM

4
S

λ

(ti+1 − ti)
4α−3

4α− 3

)

×
(
M2

T (1 +Mi) +M2
Sl
((ti+1 − ti)

2α

α2
Mf

+
(ti+1 − ti)

2α−1

2α− 1
Mg +

(ti+1 − ti)
2α

α2
[Mh +

√
Lh]

))
‖z1 − z2‖2C0

b
.

Therefore, we conclude from (3.1) that Φ is a contraction mapping on C0
b . Then the

mapping Φ has a unique fixed point z(·) ∈ C0
b , which is the mild solution of (1.1). �

Now, we prove another existence result of mild solutions for system (1.1), addi-

tionally we assume the following hypotheses:

(H5) The nonlinear functions f, g are continuous and there exist continuous functions

µ1, µ2 : J → (0,∞) such that

E‖f(t, x)‖2H 6 µ1(t)‖x‖2Cv
, E‖g(t, x)‖2Q 6 µ2(t)‖x‖2Cv

, for all x ∈ Cv, t ∈ J,

where µ⋆
1 = sup

s∈[0,t]

µ1(t) and µ⋆
2 = sup

s∈[0,t]

µ2(t).

(H6) The function Ii : H → H , i = 1, 2, . . . ,m, is continuous and there exists Λ > 0

such that Λ = max
16i6m,x∈Cq

(E‖Ii(x)‖2), where Cq = {y ∈ C0
b , ‖y‖2C0

b

6 q, q > 0}.
(H7) The nonlinear function h is continuous and there exist continuous functions

µ3, µ4 : J → (0,∞) such that
∫

Z

E‖h(t, x, η)‖2λ̂(dη) dt 6 µ3(t)‖x‖2Cv
,

∫

Z

E‖h(t, x, η)‖4λ̂(dη) dt 6 µ4(t)‖x‖4Cv
, for every x ∈ Cv,

where µ⋆
3 = sup

s∈[0,t]

µ3(t) and µ⋆
4 = sup

s∈[0,t]

µ4(t).
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(H8) ([16], [23]) The linear system of (1.1) is approximately controllable on J , that

is, equivalent to λR(λ,Γb
0) = λ(λI+Γb

0)
−1 → 0, as λ → 0 in the strong operator

topology.

The set Cq is clearly a bounded closed convex set in C0
b for each q and for each y ∈ Cq.

From Lemma 2.1, we have

‖yt + zt‖2Cv
6 2(‖yt‖2Cv

+ ‖zt‖2Cv
) 6 4

(
l2 sup

t∈[0,t]

E‖y(t)‖2H + ‖y0‖2Cv

)

+ 4
(
l2 sup

t∈[0,t]

E‖z(t)‖2H + ‖z0‖2Cv

)
6 4(l2q + ‖ϕ‖2Cv

).

Theorem 3.2. Assume that hypotheses (H1)–(H7) hold. Then the fractional

stochastic control system (1.1) has at least one mild solution on J , provided that

q > 5
M2

BM
4
S

λ

t4α−3
i+1

4α− 3
‖xti+1

‖2 + 5
(
1 + 5

M2
BM

4
S

λ

t4α−3
i+1

4α− 3

)
MT (q + Λ)

+ 20M2
S

(
1 + 5

M2
BM

4
S

λ

t4α−3
i+1

4α− 3

)

×
( t2αi+1

α2
µ⋆
1 +

t2α−1
i+1

2α− 1
µ⋆
2 +

t2αi+1

α2
[µ⋆

3 +
√
µ⋆
4]
)
(‖ϕ‖2Cv

+ l2q)

and

max
16i6m

(
4
(
1 + 5

M2
BM

4
S

λ

t4α−3
i+1

4α− 3

)(
M2

T (1 +Mi) +M2
Sl

t2αi+1

α2
Mf

)
(3.2)

+ 5
M2

BM
4
S

λ

t4α−3
i+1

4α− 3
M2

Sl
( t2α−1

i+1

2α− 1
Mg +

t2αi+1

α2
[Mh +

√
Lh]

))
< 1

with α 6= 1

2
,
3

4
.

P r o o f. Let Ψ1 : Cq → Cq and Ψ2 : Cq → Cq be defined as

(Ψ1z)(t) =





∫ t

0

Sα(t− s)Bu(s) ds+

∫ t

0

Sα(t− s)f(s, ys + zs) ds, t ∈ [0, t1],

Tα(t− ti)(z(t
−

i ) + Ii(z(t
−

i ))) +

∫ t

ti

Sα(t− s)Bu(s) ds

+

∫ t

ti

Sα(t− s)f(s, ys + zs) ds, t ∈ (ti, ti+1], i = 1, 2, . . . ,m,
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(Ψ2z)(t) =

∫ t

0

Sα(t− s)g(s, ys + zs) dW (s)

+

∫ t

0

∫

Z

Sα(t− s)h(s, ys + zs, η)Ñ(ds, dη), t ∈ J.

In order to prove the existence of solutions to (1.1), it is enough to show that Ψ1+Ψ2

has a fixed point on Cq, which is then a solution of system (1.1). We prove that
Ψ1z +Ψ2z ∈ Cq for z ∈ Cq. For t ∈ [0, t1], we have

E‖(Ψ1z)(t) + (Ψ2z)(t)‖2

6 4E

∥∥∥∥
∫ t

0

Sα(t− s)BB⋆S⋆
α(t1 − s)R(λ,Γt1

0 )

×
{
xt1 −

∫ t1

0

Sα(t1 − s)f(s, ys + zs) ds−
∫ t1

0

Sα(t1 − s)g(s, ys + zs) dW (s)

−
∫ t1

0

∫

Z

Sα(t1 − s)h(s, ys + zs, η)Ñ(ds, dη)

}
ds

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ t

0

Sα(t− s)f(s, ys + zs) ds

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ t

0

Sα(t− s)g(s, ys + zs) dW (s)

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ t

0

∫

Z

Sα(t− s)h(s, ys + zs, η)Ñ(ds, dη)

∥∥∥∥
2

6 4
M2

BM
4
S

λ

t4α−3
1

4α− 3
‖xt1‖2 + 16M2

S

(
1 + 4

M2
BM

4
S

λ

t4α−3
1

4α− 3

)

×
( t2α1
α2

µ⋆
1 +

t2α−1
1

2α− 1
µ⋆
2 +

t2α1
α2

[µ⋆
3 +

√
µ⋆
4]
)
(‖ϕ‖2Cv

+ l2q) 6 q.

For t ∈ (ti, ti+1], i = 1, 2, . . . ,m, we have

E‖(Ψ1z)(t) + (Ψ2z)(t)‖2 6 5E‖Tα(t− ti)(z(t
−

i ) + Ii(z(t
−

i )))‖2

+ 5E

∥∥∥∥
∫ t

0

Sα(t− s)BB⋆S⋆
α(ti+1 − s)R(λ,Γb

0)

×
{
xti+1

− Tα(ti+1 − ti)(z(t
−

i ) + Ii(z(t
−

i ))) −
∫ ti+1

0

Sα(ti+1 − s)f(s, ys + zs) ds

−
∫ ti+1

0

Sα(ti+1 − s)g(s, ys + zs) dW (s)

−
∫ ti+1

0

∫

Z

Sα(ti+1 − s)h(s, ys + zs, η)Ñ(ds, dη)

}
ds

∥∥∥∥
2

+ 5E

∥∥∥∥
∫ t

0

Sα(t− s)f(s, ys + zs) ds

∥∥∥∥
2

+ 5E

∥∥∥∥
∫ t

0

Sα(t− s)g(s, ys + zs) dW (s)

∥∥∥∥
2

+ 5E

∥∥∥∥
∫ t

0

∫

Z

Sα(t− s)h(s, ys + zs, η)Ñ(ds, dη)

∥∥∥∥
2
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6 5
M2

BM
4
S

λ

t4α−3
i+1

4α− 3
‖xti+1

‖2 + 5
(
1 + 5

M2
BM

4
S

λ

t4α−3
i+1

4α− 3

)
MT (q + Λ)

+ 20M2
S

(
1 + 5

M2
BM

4
S

λ

t4α−3
i+1

4α− 3

)

×
( t2αi+1

α2
µ⋆
1 +

t2α−1
i+1

2α− 1
µ⋆
2 +

t2αi+1

α2
[µ⋆

3 +
√
µ⋆
4]
)
(‖ϕ‖2Cv

+ l2q) 6 q.

Next, we prove that Ψ1 is a contraction mapping. For any z1, z2 ∈ Cq and t ∈ [0, t1],

we have

E‖(Ψ1z1)(t)− (Ψ1z2)(t)‖2

6 2E

∥∥∥∥
∫ t

0

Sα(t− s)(f(s, ys + z1,s)− f(s, ys + z2,s)) ds

∥∥∥∥
2

+ 2E

∥∥∥∥
∫ t

0

Sα(t− s)BB⋆S⋆
α(t1 − s)R(λ,Γt1

0 )

×
{∫ t1

0

Sα(t1 − s)(f(s, ys + z1,s)− f(s, ys + z2,s)) ds

+

∫ t1

0

Sα(t1 − s)(g(s, ys + z1,s)− g(s, ys + z2,s)) dW (s)

+

∫ t1

0

∫

Z

Sα(t1 − s)(h(s, ys + z1,s, η)− h(s, ys + z2,s, η))Ñ(ds, dη)

}
ds

∥∥∥∥
2

6

((
1 + 3

M2
BM

4
S

λ

t4α−3
1

4α− 3

)
2M2

Sl
t2α1
α2

Mf + 6
M2

BM
4
S

λ

t4α−3
1

4α− 3
M2

Sl

×
( t2α−1

1

2α− 1
Mg +

t2α1
α2

[Mh +
√
Lh]

))
‖z1 − z2‖2C0

b
.

For any z1, z2 ∈ Cq and t ∈ (ti, ti+1], i = 1, 2, . . . ,m, we have

E‖(Ψ1z1)(t)− (Ψ1z2)(t)‖2 6 4‖Tα(t− ti)‖2E‖z1(t−i )− z2(t
−

i )‖2

+ 4‖Tα(t− ti)‖2E‖Ii(z1(t−i ))− Ii(z2(t
−

i ))‖2

+ 4E

∥∥∥∥
∫ t

0

Sα(t− s)(f(s, ys + z1,s)− f(s, ys + z2,s)) ds

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ t

0

Sα(t− s)BB⋆S⋆
α(ti+1 − s)R(λ,Γb

0)

×
{
Tα(ti+1 − ti)(z1(t

−

i )− z2(t
−

i )) + Tα(ti+1 − ti)(Ii(z1(t
−

i ))− Ii(z2(t
−

i )))
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+

∫ ti+1

0

Sα(ti+1 − s)(f(s, ys + z1,s)− f(s, ys + z2,s)) ds

+

∫ ti+1

0

Sα(ti+1 − s)(g(s, ys + z1,s)− g(s, ys + z2,s)) dW (s)

+

∫ ti+1

0

∫

Z

Sα(ti+1 − s)(h(s, ys + z1,s, η)− h(s, ys + z2,s, η))Ñ (ds, dη)

}
ds

∥∥∥∥
2

6

(
4
(
1 + 5

M2
BM

4
S

λ

t4α−3
i+1

4α− 3

)(
M2

T (1 +Mi) +M2
Sl

t2αi+1

α2
Mf

)

+ 5
M2

BM
4
S

λ

t4α−3
i+1

4α− 3
M2

Sl
( t2α−1

i+1

2α− 1
Mg +

t2αi+1

α2
[Mh +

√
Lh]

))
‖z1 − z2‖2C0

b
.

By inequality (3.2), it follows that Ψ1 is a contraction mapping for t ∈ J . Now,

we prove that Ψ2 is continuous and compact. First we show that Ψ2 is continuous.

Let {zn}∞n=1 be a sequence in Cq with lim zn → z ∈ Cq. Since the functions g

and h are continuous, for all ε > 0, there exists N such that for n > N , we have

E‖g(s, ys + zns ) − g(s, ys + zs)‖2 < ε and E‖h(s, ys + zns , η) − h(s, ys + zs, η)‖2 < ε.

Now, for all t ∈ J , we obtain

E‖(Ψ2z
n)(t)− (Ψ2z)(t)‖2

6 2E

∥∥∥∥
∫ t

0

Sα(t− s)(g(s, ys + zns )− g(s, ys + zs)) dW (s)

∥∥∥∥
2

+ 2E

∥∥∥∥
∫ t

0

∫

Z

Sα(t− s)(h(s, ys + zns , η)− h(s, ys + zs, η))Ñ(ds, dη)

∥∥∥∥
2

< ε.

Now, we prove that Ψ2(Cq) is equicontinuous. The functions {(Ψ2z); z ∈ Cq} are
equicontinuous at t = 0. For any z ∈ Cq and 0 < t1 < t2 6 b, we have

E‖(Ψ2z)(t2)− (Ψ2z)(t1)‖2

6 4E

∥∥∥∥
∫ t1

0

[Sα(t2 − s)− Sα(t1 − s)]g(s, ys + zs) dW (s)

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ t2

t1

Sα(t2 − s)g(s, ys + zs) dW (s)

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ t1

0

∫

Z

[Sα(t2 − s)− Sα(t1 − s)]h(s, ys + zs, η)Ñ(ds, dη)

∥∥∥∥
2

+ 4E

∥∥∥∥
∫ t2

t1

∫

Z

Sα(t2 − s)h(s, ys + zs, η)Ñ(ds, dη)

∥∥∥∥
2
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6 16Tr(Q)

∫ t1

0

‖Sα(t2 − s)− Sα(t1 − s)‖2µ⋆
2(‖ϕ‖2Cv

+ l2q) ds

+ 16Tr(Q)M2
S

(t2 − t1)
2α−1

2α− 1
µ⋆
2(‖ϕ‖2Cv

+ l2q)

+ 16

∫ t1

0

‖Sα(t2 − s)− Sα(t1 − s)‖2(µ⋆
3 +

√
µ⋆
4)(‖ϕ‖2Cv

+ l2q) ds

+ 16M2
S

(t2 − t1)
2α

α2
(µ⋆

3 +
√
µ⋆
4)(‖ϕ‖2Cv

+ l2q).

The above inequality tends to 0 by the continuity of the function t → ‖Sα(t)‖ as
t1 → t2. Therefore, the right-hand side of the above inequality tends to 0 as t1 → t2.

This implies that {(Ψ2z); z ∈ Cq} is a family of equicontinuous functions. Finally, we
prove the compactness ofΨ2. To prove this, we first prove that the set {(Ψ2z); z ∈ Cq}
is relatively compact in H . Subsequently, we show that {(Ψ2z); z ∈ Cq} is uniformly
bounded. We have that

E‖(Ψ2z)(t)‖2 6 8
(
Tr(Q)M2

S

b2α−1

2α− 1
µ⋆
2 +M2

S

b2α

α2
(µ⋆

3 +
√
µ⋆
4)
)
(‖ϕ‖2Cv

+ l2q) < ∞.

Therefore, the set {(Ψ2z); z ∈ Cq} is uniformly bounded. Hence, in view of Arzelà-
Ascoli theorem, Ψ2 is compact. Thus, the Krasnoselskii fixed-point theorem allows

us to conclude that the system (1.1) has at least one mild solution on J . �

4. Approximate controllability

Theorem 4.1. Assume that the hypotheses (H1)–(H8) hold, the functions f, g,

and h are uniformly bounded inH,L(K,H), andH , respectively. Then the fractional

stochastic control system (1.1) is approximately controllable on J .

P r o o f. Let xλ(·) be a fixed point of Ψ1 + Ψ2. By using the stochastic Fubini

theorem, any fixed point of Ψ1 + Ψ2 is a mild solution of (1.1), if the control u
λ(t)

satisfies

(4.1) xλ(b) = xb − λR(λ,Γb
0)p(x

λ(·)),
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where

p(xλ(·)) =





xt1 −
∫ t1

0

Sα(t1 − s)f(s, xλ
s ) ds−

∫ t1

0

Sα(t1 − s)g(s, xλ
s ) dW (s)

−
∫ t1

0

∫

Z

Sα(t1 − s)h(s, xλ
s , η)Ñ(ds, dη), t ∈ [0, t1],

xti+1
− Tα(b− ti)(x

λ(t−i ) + Ii(x
λ(t−i )))−

∫ b

ti

Sα(b− s)f(s, xλ
s ) ds

−
∫ b

ti

Sα(b − s)g(s, xλ
s ) dW (s)

−
∫ b

ti

∫

Z

Sα(b− s)h(s, xλ
s , η)Ñ(ds, dη),

t ∈ (ti, ti+1], i = 1, 2, . . . ,m.

Moreover, by assumption, f, g, and h are uniformly bounded on J . Then there

is a subsequence, still denoted by {f(s, xλ
s )}, {g(s, xλ

s )} and {h(s, xλ
s , η)}, which

converges weakly to, say, f(s), g(s) and h(s, η) in H,L(K,H), and H , respectively.

Denote

ŵ =





xt1 −
∫ t1

0

Sα(t1 − s)f(s) ds−
∫ t1

0

Sα(t1 − s)g(s) dW (s)

−
∫ t1

0

∫

Z

Sα(t1 − s)h(s, η)Ñ(ds, dη), t ∈ [0, t1],

xti+1
− Tα(b − ti)(x(t

−

i ) + Ii(x(t
−

i )))−
∫ b

ti

Sα(b − s)f(s) ds

−
∫ b

ti

Sα(b− s)g(s) dW (s)−
∫ b

ti

∫

Z

Sα(b− s)h(s, η)Ñ(ds, dη),

t ∈ (ti, ti+1], i = 1, 2, . . . ,m.

It follows that for t ∈ [0, t1] and t ∈ (ti, ti+1], we have

(4.2) E‖p(xλ)− ŵ‖2 = E

∥∥∥∥
∫ b

0

Sα(b− s)[f(s, xλ
s )− f(s)] ds

+

∫ b

0

Sα(b− s)[g(s, xλ
s )− g(s)] dW (s)

+

∫ b

0

∫

Z

Sα(b− s)[h(s, xλ
s , η)− h(s, η)]Ñ(ds, dη)

+ Tα(b − ti)
(
(xλ(t−i )− x(t−i )) + Ii(x

λ(t−i )− x(t−i ))
)∥∥∥∥

2

.

By using the infinite-dimensional version of the Arzelà-Ascoli theorem, one can show

that the operator l̂(·) →
∫ ·

0
Sα(·−s)l̂(s) ds : L2(J ;H) → C(J ;H) is compact. Hence,
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for all t ∈ J , we obtain that E‖p(xλ) − ŵ‖2 → 0 as λ → 0+. Moreover, from (4.1)

we get

E‖xλ(b)− xb‖2 6 E‖λR(λ,Γb
0)(ŵ)‖2 + E‖λR(λ,Γb

0)‖2E‖p(xλ)− ŵ‖2.

It follows from hypothesis (H8) and estimation of (4.2) that E‖xλ(b)− xb‖2 → 0 as

λ → 0+. This proves the approximate controllability of the system (1.1). �

5. Example

In this section, we consider some applications for our theoretical results. Let

H = L2([0, π]) and define the operator A : H → H by Ay = y′′ with domain

D(A) = {y ∈ H : y′′ ∈ H, y(0) = y(π) = 0}. Then A generates an analytic

semigroup {T (t), t > 0} in H , given by T (t)y =
∞∑
n=1

e−n2t〈y, en〉en, y ∈ H, where

en(x) = (2/π)1/2 sinnx, n = 1, 2, . . ., is the orthogonal set of eigenvectors of A. From

these expressions, it follows that (T (t))t>0 in H is uniformly bounded and compact

semigroup, so R(λ̃, A) = (λ̃ − A)−1 is a compact operator for all λ̃ ∈ ̺(A), that

is, A ∈ A
α(θ0, w0). It follows from [24] that the α-resolvent operator Sα(t) and the

solution operator Tα(t) satisfy the hypothesis (H1). Define an infinite-dimensional

space U by

U =

{
u : u =

∞∑

n=2

unen with

∞∑

n=2

u2
n < ∞

}
.

The norm in U is defined by ‖u‖U =
( ∞∑
n=2

u2
n

)1/2
.

Let B be the bounded linear operator from U to H defined by

Bu = 2u2e1 +

∞∑

n=2

unen for u =

∞∑

n=2

unen ∈ U.

Let {q̂(t), t ∈ J} be the Poisson point process (independent of the Brownian motion)
taking values in the space K = [0,∞) with a σ-finite intensity measure λ̂(dη). Let

us denote by N(ds, dη) be the Poisson counting measure, which is induced by q̂(·),
and the compensating martingale measure by Ñ(ds, dη) = N(ds, dη)− λ̂(dη) ds.
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E x am p l e 5.1. Consider the impulsive fractional stochastic partial differential

equation with infinite delay and Poisson jumps in the following form:

(5.1) Dα
t y(t, x) =

∂2

∂x2
y(t, x) + ν(t, x) +

∫ t

−∞

a1(t, x, s− t)a2(y(s, x)) ds

+

(∫ t

−∞

e4(s−t)y(s, x) ds

)
dβ(t)

dt

+

∫

Z

η

(∫ t

−∞

a3(s− t)y(s, x) ds

)
Ñ(dt, dη),

0 6 x 6 π, t ∈ J := [0, b], t 6= ti,

y(t, 0) = y(t, π) = 0,

y(t, x) = ϕ(t, x), t ∈ (−∞, 0], x ∈ [0, π],

∆y(ti)(x) =

∫ ti

−∞

di(ti − s)y(s, x) ds, x ∈ [0, π],

where β(t) denotes a standard one-dimensional Wiener process in H = L2([0, π])

defined on a stochastic space (Ω,F, P ), Dα
t is the Caputo fractional derivative of

order 0 < α < 1, 0 < t1 < t2 < . . . < tn < b are prefixed numbers, and ϕ ∈ Cv.
Define the bounded linear operator B : U → H by Bu(t)(x) = ν(t, x), 0 6 x 6 π,

u ∈ U . Now, we present a special phase space Cv. Let v(s) = e2s, s < 0. Then

l =
∫ 0

−∞
v(s) ds = 1/2. Let ‖ϕ‖Cv

=
∫ 0

−∞
v(s) sup

s6θ60
(E|ϕ(θ)|2)1/2 ds (see [12]). For

(t, ϕ) ∈ J × Cv, where ϕ(θ)(x) = ϕ(θ, x), (θ, x) ∈ (−∞, 0] × [0, π], and define the

functions f : J × Cv → H , g : J × Cv → LQ(H) and h : J × Cv → H for the infinite

delay as follows:

f(t, ϕ)(x) =

∫ 0

−∞

a1(t, x, θ)a2(ϕ(θ)(x)) dθ,

g(t, ϕ)(x) =

∫ 0

−∞

e4θ(ϕ(θ)(x)) dθ,

h(t, ϕ)(x) =

∫ 0

−∞

a3(θ)(ϕ(θ)(x)) dθ,

Ii(ϕ)(x) =

∫ 0

−∞

di(−θ)(ϕ(θ)(x)) dθ.

Moreover, we assume that

a) the function a1(t, x, θ) > 0 is continuous in J × [0, π]× (−∞, 0] and

∫ 0

−∞

a1(t, x, θ) dθ = p1(t, x) < ∞,
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b) the function a2(·) is continuous, 0 6 a2(z(θ, x)) 6 Φ(
∫ 0

−∞
e2s‖z(s, ·)‖L2

ds)

for (θ, x) ∈ (−∞, 0] × [0, π], where Φ(·) : [0,∞) → (0,∞) is continuous and non-

decreasing.

Thus under the hypotheses as above, we have

E‖f(t, ϕ)‖L2
=

[∫
π

0

{∫ 0

−∞

a1(t, x, θ)a2(ϕ(θ)(x)) dθ

}2

dx

]1/2

6

[∫
π

0

{∫ 0

−∞

a1(t, x, θ)Φ

(∫ 0

−∞

e2s‖ϕ(s)(·)‖L2
ds

)
dθ

}2

dx

]1/2

6

[∫
π

0

{∫ 0

−∞

a1(t, x, θ)Φ

(∫ 0

−∞

e2s sup ‖ϕ(s)(·)‖L2
ds

)
dθ

}2

dx

]1/2

6

[∫
π

0

(∫ 0

−∞

a1(t, x, θ) dθ

)2
dx

]1/2
Φ(‖ϕ‖Cv

)

6

(∫
π

0

p21(t, x) dx

)1/2
Φ(‖ϕ‖Cv

)

6 P(t)Φ(‖ϕ‖Cv
), where P(t) =

(∫
π

0

p21(t, x) dx

)1/2
.

E‖g(t, ϕ)‖L2
=

[∫
π

0

{∫ 0

−∞

e4θϕ(θ)(x) dθ

}2

dx

]1/2

6

{∫ 0

−∞

e4θ dθ

}1/2[∫ π

0

∫ 0

−∞

e4θϕ2(θ)(x) dθ dx

]1/2

6
1

2

{∫ 0

−∞

e4θ
∫

π

0

ϕ2(θ)(x) dxdθ

}1/2

6
1

2

{∫ 0

−∞

e4θ‖ϕ(θ)‖2L2
dθ

}1/2

6
1

2

{∫ 0

−∞

e4θ
[

sup
θ6s60

‖ϕ(s)‖L2

]2
dθ

}1/2

6
1

2

∫ 0

−∞

e2θ sup
θ6s60

‖ϕ(s)‖L2
dθ

6
1

2
‖ϕ‖Cv

.

Therefore, the nonlinear functions f , g satisfy the hypothesis (H5). Similarly, the

functions Ii, h also satisfy the hypotheses (H6), (H7), assuming that
∫
Z η2λ̂(dη) < ∞,∫

Z
η4λ̂(dη) < ∞. Following the same argument as in [16], [23], we can prove that (H8)

is valid and that the corresponding linear system (5.1) is approximately controllable

on J . Then, we can rewrite the system (5.1) in the abstract form of (1.1). All
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conditions stated in Theorems 3.2 and 4.1 are satisfied, therefore the system (5.1) is

approximately controllable on J.

E x am p l e 5.2. Consider the fractional stochastic partial differential equation

with infinite delay and Poisson jumps in the following form:

(5.2) Dα
t y(t, x) =

∂2

∂x2
y(t, x) +Bu(t, x) +

(∫ 0

−∞

â(s) sin y(t+ s, x) ds

)
dβ(t)

dt

+

∫

Z

η

(∫ 0

−∞

ǎeξsy(t+ s, x) ds

)
Ñ(dt, dη),

0 6 x 6 π, t ∈ J := [0, b],

y(t, 0) = y(t, π) = 0,

y(t, x) = ϕ(t, x), t ∈ (−∞, 0], x ∈ [0, π],

whereDα
t is the Caputo fractional derivative of order 0 < α < 1. Define the operators

g : J × Cv → LQ(H) and h : J × Cv → H for the infinite delay as follows:

g(t, ϕ)(x) =

∫ 0

−∞

â(θ) sin(ϕ(θ)(x)) dθ,

h(t, ϕ)(x) =

∫ 0

−∞

ǎeξθϕ(θ)(x) dθ,

where ǎ > 0, ξ > 0 and
∫ 0

−∞
‖â(θ)‖2 dθ < ∞. Moreover,

E‖g(t, ϕ1)− g(t, ϕ2)‖2 6

∫ 0

−∞

‖â(θ)‖2 dθE‖ϕ1 − ϕ2‖2Cv
,

and E‖g(t, ϕ1)‖2 6

∫ 0

−∞

‖â(θ)‖2 dθ for any ϕ1, ϕ2 ∈ Cv.

Therefore, the nonlinear functions g, h satisfy the hypotheses (H2), (H4). Then, the

system (5.2) can be written in the abstract form (1.1), by setting f = 0 and without

the impulsive term. All the conditions stated in Theorems 3.1 and 4.1 have been

satisfied for the system (5.2) and so, the system (5.2) is approximately controllable.
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