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ON A GENERALIZATION OF A THEOREM OF BURNSIDE

Jiangtao Shi, Yantai

(Received August 12, 2012)

Abstract. A theorem of Burnside asserts that a finite group G is p-nilpotent if for some
prime p a Sylow p-subgroup of G lies in the center of its normalizer. In this paper, let G be
a finite group and p the smallest prime divisor of |G|, the order of G. Let P ∈ Sylp(G). As
a generalization of Burnside’s theorem, it is shown that if every non-cyclic p-subgroup of G

is self-normalizing or normal in G then G is solvable. In particular, if P ≇ 〈a, b ; ap
n−1

= 1,

b2 = 1, b−1ab = a1+pn−2

〉, where n > 3 for p > 2 and n > 4 for p = 2, then G is p-nilpotent
or p-closed.

Keywords: non-cyclic p-subgroup; p-nilpotent; self-normalizing subgroup; normal sub-
group
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1. Introduction

Recall that a finite group G is said to be p-nilpotent if the Sylow p-subgroup P

of G has a normal complement in G. For criteria for p-nilpotence of finite groups,

a classical result is due to Burnside:

Theorem 1.1 ([2], Theorem 10.1.8). If for some prime p a Sylow p-subgroup P

of G lies in the center of its normalizer, then G is p-nilpotent.

Following Burnside’s theorem, a well-known result for p-nilpotence of finite

groups is:
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Theorem 1.2 ([2], Theorem 10.1.9). Let p be the smallest prime divisor of |G|,

the order of G. If the Sylow p-subgroup of G is cyclic, then G is p-nilpotent.

Let G be a finite group and H a subgroup of G. By NG(H) we denote the

normalizer of H in G. It is obvious that the following inequality holds for any

subgroup H of G:

H 6 NG(H) 6 G.

If H = NG(H) then H is said to be self-normalizing in G. And if NG(H) = G

then H is said to be normal in G.

As a generalization of Theorems 1.1 and 1.2, consider finite groups with every

non-cyclic p-subgroup being self-normalizing or normal. Then we have the following

result, the proof of which is given in Section 2.

Theorem 1.3. LetG be a finite group and p the smallest prime divisor of |G|. Let

P ∈ Sylp(G). If every non-cyclic p-subgroup of G is self-normalizing or normal in G,

then G is solvable. In particular, if P ≇ 〈a, b ; ap
n−1

= 1, b2 = 1, b−1ab = a1+pn−2

〉,

where n > 3 for p > 2 and n > 4 for p = 2, then G is p-nilpotent or p-closed (that

is, P is normal in G).

Remark 1.4. (1) The group in Theorem 1.3 may be non-supersolvable, even if we

assume that every non-cyclic subgroup of G of prime-power order is self-normalizing

or normal. For example, every non-cyclic subgroup of A4 of prime-power order is

normal but A4 is non-supersolvable.

(2) In Theorem 1.3, the hypothesis that p is the smallest prime divisor of |G|

cannot be removed. For example, take p = 3, it is obvious that A5 satisfies the

hypothesis since A5 has no non-cyclic 3-subgroups. However, A5 is non-solvable.

(3) In Theorem 1.3, if we assume that every non-abelian p-subgroup of G is self-

normalizing or normal, we cannot conclude that G is solvable. For example, it is

obvious that A5 satisfies the hypothesis since A5 has no non-abelian 2-subgroups.

However, A5 is non-solvable.

(4) In Theorem 1.3, if we assume that every abelian non-cyclic p-subgroup of G

is self-normalizing or normal, we cannot claim that G is solvable. For example, it is

obvious that SL2(5) satisfies the hypothesis since SL2(5) has no abelian non-cyclic

2-subgroups. However, SL2(5) is non-solvable.
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2. Proof of Theorem 1.3

P r o o f. (1) We first prove that G is solvable. Let G be a counterexample of

minimal order. It follows that G is a minimal non-solvable group. Then G/Φ(G) is

a minimal non-abelian simple group, where Φ(G) is the Frattini subgroup of G. Let

P ∈ Sylp(G).

(i) Claim: P is non-cyclic. Otherwise, assume that P is cyclic. Since p is the

smallest prime divisor of |G|, G is p-nilpotent by [2], Theorem 10.1.9. Then P has

a normal complement N in G. It follows that NΦ(G)/Φ(G) is a nontrivial normal

subgroup of G/Φ(G), a contradiction. So P is non-cyclic.

(ii) Claim: Every maximal subgroup of P is cyclic. Otherwise, assume that P1 is

a non-cyclic maximal subgroup of P . It is obvious that P1 is not self-normalizing

in G since P 6 NG(P1). By the hypothesis, P1 E G. Since G/Φ(G) is a non-abelian

simple group, P1Φ(G)/Φ(G) is a trivial normal subgroup of G/Φ(G). It follows that

P1 6 Φ(G). It is obvious that P � Φ(G). Then the Sylow p-subgroup of G/Φ(G) has

order p. It follows that G/Φ(G) is p-nilpotent by [2], Theorem 10.1.9, a contradiction.

So every maximal subgroup of P is cyclic.

(iii) Claim: Every proper subgroup of G is p-nilpotent. Otherwise, G has a proper

subgroupM such thatM is a minimal non-p-nilpotent group. By [2], Theorems 9.1.9

and 10.3.3,M = P2⋊Q, where P2 ∈ Sylp(M) and Q ∈ Sylq(M), p 6= q. It is obvious

that P2 is non-cyclic. By (i) and (ii), we can assume P = P2. Then P < M 6 NG(P ).

By the hypothesis, P E G. It follows that PΦ(G)/Φ(G) is a nontrivial normal

subgroup of G/Φ(G), a contradiction. So every proper subgroup of G is p-nilpotent.

(iv) Final conclusion. It follows that G is a minimal non-p-nilpotent group. By [2],

Theorem 10.3.3, any minimal non-p-nilpotent group is a minimal non-nilpotent

group. Then any minimal non-p-nilpotent group is solvable by [2], Theorem 9.1.9,

a contradiction. So G is solvable.

(2) In the sequel, suppose P ≇ 〈a, b ; ap
n−1

= 1, b2 = 1, b−1ab = a1+pn−2

〉, where

n > 3 for p > 2 and n > 4 for p = 2. Assume that G is neither p-nilpotent nor

p-closed. It follows that there exists a subgroup M of G such that M is a minimal

non-p-nilpotent group. By [2], Theorems 9.1.9 and 10.3.3, M = P3 ⋊ Q, where

P3 ∈ Sylp(M) and Q ∈ Sylq(M), p 6= q. Since M is non-p-nilpotent, P3 is non-cyclic

by [2], Theorem 10.1.9. Let P ∈ Sylp(G) be such that P3 6 P .

(i) Suppose P3 = P . Then P < M 6 NG(P ). By the hypothesis, we have P E G,

that is G is p-closed, a contradiction.

(ii) Suppose P3 < P . Then P3 < NP (P3) 6 NG(P3). By the hypothesis, one

has P3 E G. Similarly, we have that every non-cyclic maximal subgroup of P is

normal in G. Let P have at least two non-cyclic maximal subgroups. Suppose

that they are P4 and P5. Then P = P4P5 E G, a contradiction. Thus, P has
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a unique non-cyclic maximal subgroup. It follows that P must have at least one

cyclic maximal subgroup. Then by [1], Chapter I, Theorem 14.9, we can easily get

that P ∼= 〈a, b ; ap
n−1

= 1, b2 = 1, b−1ab = a1+pn−2

〉, where n > 3 for p > 2 and

n > 4 for p = 2, a contradiction.

So G is p-nilpotent or p-closed. �

3. Some remarks

In this section, we give some remarks on two simple propositions.

Proposition 3.1. Let G be a finite group and p the smallest prime divisor of |G|.

If every non-cyclic p-subgroup of G is self-normalizing in G, then G is p-nilpotent.

P r o o f. Let G be a counterexample of minimal order. Then G is a minimal non-

p-nilpotent group. By [2], Theorems 9.1.9 and 10.3.3, one has G = P ⋊ Q, where

P ∈ Sylp(G) and Q ∈ Sylq(G), p 6= q. Since G is non-p-nilpotent, P is non-cyclic

by [2], Theorem 10.1.9. Then by the hypothesis, P = NG(P ). However, this is

a contradiction since NG(P ) = G > P . So G is p-nilpotent. �

Remark 3.2. (1) In Proposition 3.1, the hypothesis that p is the smallest prime

divisor of |G| cannot be removed. For example, taking p = 3, it is obvious that A5

satisfies the hypothesis since every 3-subgroup of A5 is cyclic. However, A5 is non-

3-nilpotent.

(2) In Proposition 3.1, if we assume that every non-abelian p-subgroup of G is

self-normalizing in G, we cannot claim that G is p-nilpotent. For example, every

non-abelian 2-subgroup of the symmetric group S4 is self-normalizing but S4 is non-

2-nilpotent.

(3) In Proposition 3.1, if we assume that every abelian non-cyclic p-subgroup of G

is self-normalizing in G, we cannot claim that G is p-nilpotent. For example, it is

obvious that SL2(3) satisfies the hypothesis since SL2(3) has no abelian non-cyclic

2-subgroups. However, SL2(3) is non-2-nilpotent.

Proposition 3.3. Let G be a finite group and p the smallest prime divisor of |G|.

If every non-cyclic p-subgroup of G is normal in G, then G is p-nilpotent or p-closed.

P r o o f. Let P ∈ Sylp(G). If P is cyclic, then G is p-nilpotent by [2], Theo-

rem 10.1.9. If P is non-cyclic, then P E G by the hypothesis. That is, G is p-closed.

�
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Remark 3.4. (1) In Proposition 3.3, the hypothesis that p is the smallest prime

divisor of |G| cannot be removed. For example, taking p = 3, it is obvious that A5

satisfies the hypothesis since A5 has no non-cyclic 3-subgroups. However, A5 is

neither 3-nilpotent nor 3-closed.

(2) In Proposition 3.3, if we assume that every non-abelian p-subgroup of G is

normal in G, we cannot assert that G is p-nilpotent or p-closed. For example, it is

obvious that A5 satisfies the hypothesis since A5 has no non-abelian 2-subgroups.

However, A5 is neither 2-nilpotent nor 2-closed.

(3) In Proposition 3.3, if we assume that every abelian non-cyclic p-subgroup of G

is normal in G, we cannot assert that G is p-nilpotent or p-closed. For example, it is

obvious that SL2(5) satisfies the hypothesis since SL2(5) has no abelian non-cyclic

2-subgroups. However, SL2(5) is neither 2-nilpotent nor 2-closed.
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