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Abstract. Let X be a Stein manifold of complex dimension n > 2 and Ω ⋐ X be
a relatively compact domain with C2 smooth boundary in X. Assume that Ω is a weakly
q-pseudoconvex domain in X. The purpose of this paper is to establish sufficient conditions
for the closed range of ∂ on Ω. Moreover, we study the ∂-problem on Ω. Specifically, we use
the modified weight function method to study the weighted ∂-problem with exact support
in Ω. Our method relies on the L2-estimates by Hörmander (1965) and by Kohn (1973).
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1. Introduction

The solution of the ∂-Neumann problem has many important applications in the

theory of several complex variables and in partial differential equations, particulary

in the study of the ∂-problem with exact support. On domains with certain geometric

conditions on the boundary, the question of existence of a solution to the ∂-Neumann

problem was settled through the works of Hörmander [10] and Kohn [11], [12]. In

fact, Hörmander’s results in [10] imply that there exists a bounded operator N

on L2
r,s(Ω), which inverts the complex Laplacian under the assumption that Ω is

a bounded, pseudoconvex domain.

Following Hörmander [10], the ∂-problem can be solved in L2 if ∂ satisfies Z(q). As

shown in Theorem 1.9.9 in [18], q-pseudoconvexity implies that for L2
0,s+1-forms f

in the kernel of ∂, there exists an L2
0,s-form u solving the ∂-problem ∂u = f . It

has been proved recently, by several authors including Harrington-Raich [8], that N

exists on q-forms in a q-pseudoconvex domain. Establishing the existence of the

∂-Neumann operator leads to a particular solution to the ∂-problem with support
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condition. Here, we are interested in the existence of such an L2-solution u for given

data f . More precisely, we prove the following result:

Theorem 1.1. Let Ω ⋐ X be a weakly q-pseudoconvex domain with C2 boundary

bΩ in a Stein manifold X of complex dimension n > 2. For any q 6 s 6 n and for

f ∈ L2
r,s(Ω), supp f ⊂ Ω̄, satisfying ∂f = 0 in the distribution sense in X , there

exists u ∈ L2
r,s−1(Ω), suppu ⊂ Ω̄ such that ∂u = f in the distribution sense in X .

The ∂-problem with exact support was considered by Derridj [6], [7] using Carle-

man type estimates for smooth domains with plurisubharmonic defining functions.

Shaw [17] has obtained a solution to this problem in a pseudoconvex domain Ω

with C1 boundary in C
n. If Ω is locally Stein in the complex projective space,

Cao-Shaw-Wang [2] obtained a solution to this problem in Ω.

Also, in the setting of strictly q-convex (or concave) domains, the ∂-problem with

exact support has been studied by Sambou in his thesis, where he proves some

Dolbeault isomorphism between the tangential Cauchy-Riemann cohomology groups

of smooth forms and currents on hypersurfaces (see [16]). Abdelkader and Saber [1]

studied this problem on strictly q-convex domains in a complex manifold. Saber [15]

(respectively [14]) studied this problem on a weakly q-pseudoconvex domain with

C1-smooth boundary (respectively with Lipschitz boundary) in C
n.

2. Notation and definitions

Let X be a complex manifold of complex dimension n with a Hermitian metric g.

Let Ω ⋐ X be an open submanifold with smooth boundary bΩ and defining func-

tion ̺. Denote by L1, L2, . . . , Ln a C
∞ special boundary coordinate chart in a small

neighborhood U of some point z0 ∈ bΩ, i.e., Li ∈ T 1,0 on U ∩ Ω̄ with Li tangential

for 1 6 i 6 n − 1 and 〈Li, Lj〉 = δij , where δij is the Kronecker symbol. Denote

L̄1, L̄2, . . . , L̄n the conjugate of L1, L2, . . . , Ln, respectively; these form an orthonor-

mal basis of T 1,0 on U . The dual basis of (1, 0) forms are ω1, . . . , ωn =
√
2∂̺. The

Levi form associated to ̺ is defined by

̺jk = 〈Lj ∧ L̄k, ∂∂̺〉, j, k = 1, 2, . . . , n− 1.

Let
(

∂2̺(z)/∂zj∂zk
)n−1

j,k=1
be the matrix of the Levi form ∂∂̺(z) in the complex tan-

gential direction at z. Let λ1(z) 6 . . . 6 λn−1(z) be the eigenvalues of (̺jk(z))
n−1
j,k=1.

A complex-valued differential form u of type (r, s) on X can be expressed as

u =
∑

I,J

uI,J dz
I ∧ dzJ , where I and J are strictly increasing multi-indices with

lengths r and s, respectively. Let C∞
r,s(X) be the space of complex-valued differential
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forms of class C∞ and of type (r, s) on X . For u, v ∈ C∞
r,s(X), we define a local inner

product (u, v) induced by the Hermitian metric by (u, v) =
∑

I,J

uI,JvI,J .

The Hodge star operator ⋆ is a linear map ⋆ : C∞
r,s(X) → C∞

n−s,n−r(X) which

satisfies ⋆u = ⋆ū (that is, ⋆ is a real operator) and ⋆⋆u = (−1)r+su; for the proof

cf. [13], Theorem 2.1. Let C∞
0 (Ω) be the space of C∞-functions with compact support

in Ω. Let C∞
r,s(Ω̄) = {u|Ω̄ ; u ∈ C∞

r,s(X)} be the subspace of C∞
r,s(Ω) whose elements

can be extended smoothly up to the boundary bΩ. Let L2
r,s(Ω) be the space of (r, s)-

forms on Ω with square-integrable coefficients. If ϕ is a smooth function in Ω, the

weighted L2-inner product and norms are defined by

〈u, v〉ϕ =

∫

Ω

(u, v)e−ϕ dV and ‖u‖2ϕ = 〈u, u〉ϕ,

where dV is the volume element. We write

dϕ =

n
∑

j=1

Lj(ϕ)ωj +

n
∑

j=1

L̄j(ϕ)ωj .

Then one defines

∂ϕ =

n
∑

j=1

Lj(ϕ)ωj and ∂ϕ =

n
∑

j=1

L̄j(ϕ)ωj .

We denote by ϕjk the coefficients in ∂∂ϕ =
∑

jk

ϕjkωj ∧ ωk, that is,

ϕjk = 〈Lj ∧ L̄k, ∂∂ϕ〉, j, k = 1, 2, . . . , n.

The Cauchy-Riemann operator ∂ : C∞
r,s−1(Ω) → C∞

r,s(Ω) satisfies

(2.1) ∂u =
∑

I,J

n
∑

k=1

L̄kuIJω
k ∧ ωI ∧ ωJ + . . . ,

where the dots refer to terms of order zero in u. Let Dr,s(U) be the space of

(r, s)-forms u on U such that

(2.2) uI,J = 0 on bΩ when n ∈ J.

Then, for forms u ∈ Dr,s(U), we have

(2.3) ∂⋆
ϕu = (−1)r−1

∑

I,K

n
∑

j=1

δϕj uIjKωI ∧ ωK + . . . ,
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where δϕj = eϕLj(e
−ϕ) and the dots refer to terms of order zero in u. Let ∂ : dom ∂ ⊂

L2
r,s(Ω) → L2

r,s+1(Ω) be the maximal closure of the Cauchy-Riemann operator and

∂∗
ϕ be its Hilbert space adjoint of ∂. For 1 6 s 6 n, we denote by �ϕ = ∂∂∗

ϕ +

∂∗
ϕ∂ : dom�ϕ → L2

r,s(Ω) the Laplace-Beltrami operator, where dom�ϕ = {u ∈
dom ∂ ∩ dom∂∗

ϕ ; ∂u ∈ dom ∂∗
ϕ and ∂∗

ϕu ∈ dom ∂}. Thus

Hϕ(Ω) = {u ∈ dom(�ϕ) ; ∂u = ∂∗
ϕu = 0}.

Then Hϕ(Ω) is a closed subspace of dom(�ϕ) since �ϕ is a closed operator. One

defines the ∂-Neumann operator Nϕ : L2
r,s(Ω) → L2

r,s(Ω) as the inverse of the re-

striction of �ϕ to (Hϕ(Ω))
⊥.

Definition 2.1. We say that u ∈ L2
r,s(Ω) is supported in Ω̄ (supp u ⊂ Ω̄) or u

vanishes to infinite order at the boundary of Ω if u vanishes on bΩ.

Definition 2.2 (Ho [9]). We say that Ω is weakly q-pseudoconvex domain (q > 1)

if at every point x0 ∈ bΩ we have

∑

|K|

′ ∑

j,k

∂2̺

∂zj∂zk
ujK ūkK > 0 for every (0, q)-form u =

∑

|J|=q

uJ dzJ

such that
n
∑

j=1

(∂̺/∂zj)ujK = 0 for all |K| = q − 1.

Definition 2.3. A complex manifold X is said to be a Stein manifold if there

exists an exhaustion function µ ∈ C2(X,R) such that i∂∂µ > 0 on X .

Remark 2.4. If we take ϕt = tµ, t > 0 and use the notation ‖·‖t = ‖·‖ϕt
,

〈, 〉t = 〈, 〉ϕt
and ∂⋆

t = ∂⋆
ϕt
, �ϕt

= �t, Nϕt
= N t and Hϕt

(Ω) = Ht(Ω), it is known

that dom ∂⋆
t = dom ∂⋆ (e.g., [3], Chapter 4). In that case 〈f, g〉t denotes 〈f, g〉ϕt

,

that is, we use subscripts t instead of ϕt. The inner product 〈f, g〉t and the norm
‖f‖2t , in L2

p,q(Ω), are denoted by

〈f, g〉t =
∫

Ω

f ∧ ⋆tg and ‖f‖2t = 〈f, f〉t, where ⋆t = e−ϕt⋆ = ⋆e−ϕt .

Lemma 2.5. Let Ω ⋐ X be a smooth domain in a Stein manifold X and ̺ be its

defining function. The following two conditions are equivalent:

(i) Ω is weakly q-pseudoconvex.

(ii) For any z ∈ bΩ the sum of any q eigenvalues ̺i1 , . . . , ̺iq , with distinct subscripts,

of the Levi-form at z satisfies
q
∑

j=1

̺ij > 0.
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3. Closed range for ∂

The purpose of this section is to establish sufficient conditions for the closed range

of ∂ on not necessarily pseudoconvex domains (and their boundaries) in Stein man-

ifolds.

Theorem 3.1 (cf. Zampieri [18]). Let Ω ⋐ X be the same as in Theorem 1. If

ϕt = tµ, t > 0, for any (r, s)-form u ∈ dom ∂ ∩ dom ∂⋆
t , q 6 s 6 n, we have

(3.1) ‖∂u‖2t + ‖∂∗
tu‖2t > C0t‖u‖2t .

From (3.1), we get
√
t‖u‖t . ‖�tu‖t; thus �t has closed range and there is well

defined a continues inverse operatorNt. Moreover, ∂Nt and ∂
⋆Nt are also continuous.

Finally, for ∂f = 0 in degree > q+1, the form u := ∂⋆Ntf is the L
2(Ω, ϕt)-canonical

solution of the equation ∂u = f , that is, the one orthogonal to ker∂. More precisely,

we have the following theorem:

Theorem 3.2 (cf. Chen-Shaw [3], Demailly [4], [5]). Let Ω ⋐ X be the same as in

Theorem 1.1. For t sufficiently large, and for any q 6 s 6 n, we have the following:

(1) Ht(Ω) is finite dimensional,

(2) the Laplace-Beltrami operator �t has closed range in L2
r,s(Ω),

(3) the ∂-Neumann operator N t : L2
r,s(Ω) → L2

r,s(Ω) exists and is bounded,

(4) RanN t ⊂ dom�t, N t�t = I on dom�t,

(5) for f ∈ L2
r,s(Ω), we have f = ∂∂⋆

tN
tf ⊕ ∂⋆

t∂N
tf ,

(6) ∂N t = N t∂, q 6 s 6 n− 1 and ∂⋆
tN

t = N t∂⋆
t , q + 1 6 s 6 n,

(7) the operator ∂ has closed range in L2
r,s(Ω) and L2

r,s+1(Ω),

(8) the operator ∂⋆
t has closed range in L2

r,s(Ω) and L2
r,s−1(Ω),

(9) the canonical solution operators to ∂ given by ∂⋆
tN

t : L2
r,s(Ω) → L2

r,s−1(Ω) and

N t∂⋆
t : L2

r,s+1(Ω) → L2
r,s(Ω) are continuous,

(10) the canonical solution operators to ∂⋆
t given by ∂N

t : L2
r,s(Ω) → L2

r,s+1(Ω) and

N t∂ : L2
r,s−1(Ω) → L2

r,s(Ω) are continuous,

(11) for any f ∈ L2
r,s(Ω), where q 6 s 6 n, such that ∂f = 0 in Ω, there exists

u ∈ L2
r,s−1(Ω) satisfying ∂u = f with ‖u‖t . ‖f‖t.
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4. Proof of Theorem 1.1

Following Theorem 3.2, N t exists for forms in L2
n−r,n−s(Ω). Thus, we can define

u ∈ L2
r,s−1(Ω) by

(4.1) u = − ⋆(t) ∂N
t
n−r,n−s ⋆(−t) f.

Thus suppu ⊂ Ω̄. Thus, u vanishes on bΩ. Now, we extend u to X by defining u = 0

in X \ Ω. We want to prove that the extended form u satisfies the equation ∂u = f

in the distribution sense in X .

For η ∈ L2
n−r,n−s−1(Ω) ∩ dom ∂, we have

〈∂η, ⋆−tf〉(t)Ω =

∫

Ω

∂η ∧ ⋆t(⋆−tf) = (−1)r+s

∫

Ω

∂η ∧ f = (−1)(r+s)(r+s−1)

∫

Ω

f ∧ ∂η

=

∫

Ω

f ∧ ∂η = (−1)r+s〈f, ⋆−t∂η〉(t)Ω = (−1)r+s〈f, ⋆−t∂η〉(t)X ,

because supp f ⊂ Ω̄. Since ∂⋆
t = eϕtϑe−ϕt = −⋆−t∂⋆t and ϑ|Ω = ∂⋆|Ω, when ϑ acts

in the distribution sense (see [10]), we obtain

〈∂η, ⋆−tf〉(t)Ω = 〈f, ϑ ⋆−t η〉(t)X = 〈∂f, ⋆−tη〉(t)X = 0.

It follows that ∂⋆
t (⋆−tf) = 0 on Ω. Using Theorem 3.2, we have

(4.2) ∂⋆
tN

t(⋆(−t)f) = N t∂⋆
t (⋆(−t)f) = 0.

Thus, from (4.1), and (4.2), we obtain

∂u = − ∂ ⋆t ∂N t
n−r,n−s ⋆−t f = (−1)r+s+1⋆t ⋆−t ∂ ⋆t ∂N t

n−r,n−s ⋆−t f

= (−1)r+s⋆t∂⋆
t∂N

t
n−r,n−s ⋆−t f = (−1)r+s⋆t(∂⋆

t∂ + ∂∂⋆
t )N

t
n−r,n−s ⋆−t f

= (−1)r+s⋆t ⋆−t f = f

in the distribution sense in Ω. Since u = 0 in X \ Ω, then for v ∈ L2
r,s(X) ∩ dom∂⋆

t ,

we obtain

〈u, ∂⋆
t v〉(t)X = 〈u, ∂⋆

t v〉(t)Ω = 〈⋆∂⋆
t v, ⋆−tu〉(t)Ω = (−1)r+s〈∂ ⋆t v, ⋆−tu〉(t)Ω

= (−1)r+s〈⋆v, ∂⋆ ⋆−t u〉(t)Ω = 〈⋆v, ⋆−t∂u〉(t)Ω = 〈f, v〉(t)Ω = 〈f, v〉(t)X ,

where the third equality holds since ⋆−tu ∈ dom ∂⋆
t . Thus ∂u = f in the distribution

sense in X . �
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