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Abstract. The paper deals with the analysis and the numerical solution of the topology
optimization of system governed by variational inequalities using the combined level set
and phase field rather than the standard level set approach. The standard level set method
allows to evolve a given sharp interface but is not able to generate holes unless the topological
derivative is used. The phase field method indicates the position of the interface in a blurry
way but is flexible in the holes generation. In the paper a two-phase topology optimization
problem is formulated in terms of the modified level set function and regularized using
the Cahn-Hilliard based interfacial energy term rather than the standard perimeter term.
The derivative formulae of the cost functional with respect to the level set function is
calculated. Modified reaction-diffusion equation updating the level set function is derived.
The necessary optimality condition for this optimization problem is formulated. The finite
element and finite difference methods are used to discretize the state and adjoint systems.
Numerical examples are provided and discussed.

Keywords: topology optimization; unilateral problem; level set approach; phase field
method
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1. Introduction

Shape and/or topology optimization problems of systems governed by PDEs arise

in many applications. Examples include various branches of industry, biology or im-

age processing [1], [2], [6], [8], [23]. The present paper is concerned with the topology

optimization problem for an elastic body in unilateral contact with a rigid founda-

tion. The contact phenomenon with Tresca friction is governed by the second order

elliptic variational inequality [11], [21]. The structural optimization problem consists

in finding the material distribution in a given design domain occupied by the body

such that the normal contact stress along the boundary of the body is minimized.
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Shape and/or topology optimization problems have been studied in literature from

the analytical as well as numerical point of view. Topology optimization problems

are usually ill-posed and require regularization [5], [7], [15], [16], [18], [19], [21], [25].

Existence results for this class of optimization problems may be found in [5]. The

material derivative [21] or topology derivative methods [20] are employed to calculate

the derivatives of the cost functional with respect to the shape boundary variations or

to the insertion or removal of a void (hole) from the material of the body, respectively,

and to formulate a necessary optimality condition.

Many successful numerical methods have been proposed to solve shape or topol-

ogy optimization problems. For the review of these methods see [8], [23]. Especially,

Simple Isotropic Material Penalization method, Evolutionary Structural Optimiza-

tion approach [8] or topology derivative method [20] are the main methods used to

solve topology optimization problems. Recently the use of the level set methods [17]

and the phase field methods [4] has been proposed to solve the topology optimiza-

tion problems [3]–[5], [7], [13], [14], [16], [18], [22]–[25]. In numerical algorithms of

structural optimization the level set method is employed for capturing the evolution

of the domain boundary on a fixed mesh and finding an optimal domain [1], [2]. It is

based on the implicit representation of the boundaries of the optimized structure. It

introduces a continuous auxiliary function over the whole global domain and embeds

the optimized domain interface as the zero level set of this higher dimensional func-

tion. Phase field models in the form of Cahn-Hilliard or Allen-Hilliard equations [4]

have been first introduced in metallurgy to describe phase separation in binary alloy

systems. Next, these approaches have been used to provide mathematical models in

different areas, including crack propagation, image processing, tumor growth. The

basic concept of the phase field model is the representation of two fluid or material

phases by two minima of a double-well potential with a smooth transition region rep-

resenting the interface. The evolution equations for the smooth fields corresponding

to the phase field variable are obtained using a variational approach associated with

searching minimum of the corresponding free energy or entropy. The topology op-

timization problem in multiphase setting can be transformed further into a phase

field problem where the optimal topology is characterized as the steady state of the

phase transition.

The standard level set method is capable of precisely locating the position of the

subdomains interfaces but cannot generate voids. It requires the use of the topol-

ogy derivative method to indicate the voids areas. Moreover, this method requires

reinitialization of the level set function. On the other hand, the phase field method

is capable of generating voids but cannot precisely determine the position of the

interfaces. The phase field method has many similarities with the level set approach

and can be viewed as a physically motivated level set method. In the paper, taking
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into account the similarity of these two approaches, we merge them into one hybrid

level set phase field method. Using the suitable features of both approaches the

hybrid method is capable of generating voids and sharply locating the position of

subdomains interfaces. This method does not require the topological derivative to

indicate the void area.

The paper is concerned with the analysis and numerical solution of the topology

optimization of systems governed by the elliptic variational inequalities modeling the

elastic unilateral contact problem with Tresca friction using the combined level set

and phase field rather than the standard level set approach. The aim of the opti-

mization problem is to find the distribution of the material of the body in unilateral

contact with the rigid foundation that minimizes the normal contact stress. Two-

phase topology optimization problem is formulated in terms of the modified level

set function. This optimization problem is regularized using the Cahn-Hilliard inter-

face energy term rather than the perimeter term. Derivatives formulae of the cost

functional with respect to the modified level set function are calculated. Interface

evolution is governed by the modified gradient flow equation of reaction-diffusion

type. The necessary optimality condition for this optimization problem is formu-

lated. The numerical implementation issues are described. Numerical examples are

provided and discussed.

2. Problem formulation

Consider deformations of an elastic body occupying a two-dimensional do-

main Ω with a smooth boundary Γ (see Figure 1). Assume Ω ⊂ D where D
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Figure 1. Initial domain Ω.

421



is a bounded smooth hold-all subset of R2. The body is subject to body forces

f(x) = (f1(x), f2(x)), x ∈ Ω. Moreover, surface tractions p(x) = (p1(x), p2(x)),

x ∈ Γ, are applied to a portion Γ1 of the boundary Γ. We assume that the body is

clamped along the portion Γ0 of the boundary Γ, and that the contact conditions are

prescribed on the portion Γ2, where Γi∩Γj = ∅, i 6= j, i, j = 0, 1, 2, Γ = Γ0∪Γ1∪Γ2.

Let ̺ = ̺(x) : Ω → R denote the material density function at any generic point x

in the design domain Ω. It is a phase field variable taking values close to 1 in the

presence of material, while ̺ = 0 corresponds to regions of the domain Ω where

the material is absent, i.e. there is a void. The phase field approach assumes that

between the material and the void there is a diffusive interfacial layer of a thickness

proportional to a small length scale parameter ε > 0. At this interface the phase

field variable ̺ rapidly but smoothly changes its value [3], [4], [19]. We require that

0 6 ̺ 6 1. The ̺ values outside this range do not seem to correspond to admissible

material distributions. The elastic tensor A of the material body is assumed to be

a function depending on the density function ̺:

(2.1) A = g(̺)A0, A0 = {aijkl}
2
i,j,k,l=1

and g(̺) is a suitably chosen function [5], [20]. We denote by u = (u1, u2), u = u(x),

x ∈ Ω, the displacement of the body and by σ(x) = {σij(u(x))}, i, j = 1, 2, the stress

field in the body. We consider elastic bodies obeying Hooke’s law, i.e., for x ∈ Ω and

i, j, k, l = 1, 2

(2.2) σij(u(x)) = g(̺)aijkl(x)ekl(u(x)).

We use here and throughout the paper the summation convention over repeated

indices [11]. The strain ekl(u(x)), k, l = 1, 2, is defined by:

(2.3) ekl(u(x)) =
1

2
(uk,l(x) + ul,k(x)),

where uk,l(x) = ∂uk(x)/∂xl. The stress field σ satisfies the system of equations in

the domain Ω [11]

(2.4) −σij(x),j = fi(x), x ∈ Ω, i, j = 1, 2,

where σij(x),j = ∂σij(x)/∂xj , i, j = 1, 2. The following boundary conditions are

imposed on the boundary ∂Ω:

ui(x) = 0 on Γ0, i = 1, 2,(2.5)

σij(x)nj = pi on Γ1, i, j = 1, 2,(2.6)

uN 6 0, σN 6 0, uNσN = 0 on Γ2,(2.7)

|σT | 6 1, uTσT + |uT | = 0 on Γ2,(2.8)
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where n = (n1, n2) is the unit outward versor to the boundary Γ. Here uN = uini and

σN = σijninj , i, j = 1, 2, represent the normal components of displacement u and

stress σ, respectively. The tangential components of displacement u and stress σ are

given by (uT )i = ui − uNni and (σT )i = σijnj − σNni, i, j = 1, 2, respectively. |uT |

denotes the Euclidean norm in R
2 of the tangent vector uT . The results concerning

the existence of unique solutions to (2.4)–(2.8) can be found in [11], [21].

2.1. Variational formulation of contact problem. Let us formulate the con-

tact problem (2.4)–(2.8) in the variational form. Denote by Vsp and K the space and

the set of kinematically admissible displacements:

Vsp = {z ∈ [H1(Ω)]2 : zi = 0 on Γ0, i = 1, 2},(2.9)

K = {z ∈ Vsp : zN 6 0 on Γ2},(2.10)

where H1(Ω) denotes the Sobolev space of square integrable functions and their first

derivatives [11], [21] and [H1(Ω)]2 = H1(Ω)×H1(Ω). Denote also by Λ the set

Λ = {ζ ∈ L2(Γ2) : |ζ| 6 1}.

The variational formulation of problem (2.4)–(2.8) has the form: find a pair (u, λ) ∈

K × Λ satisfying

∫

Ω

g(̺)aijkleij(u)ekl(ϕ− u) dx−

∫

Ω

fi(ϕi − ui) dx(2.11)

−

∫

Γ1

pi(ϕi − ui) ds+

∫

Γ2

λ(ϕT − uT ) ds > 0, ϕ ∈ K,

∫

Γ2

(ζ − λ)uT ds 6 0, ζ ∈ Λ,(2.12)

i, j, k, l = 1, 2. The function λ is interpreted as a Lagrange multiplier corresponding

to the term |uT | in the equality constraint in (2.8) [11]. This function is equal to the

tangent stress along the boundary Γ2, i.e., λ = σT|Γ2
. The function λ belongs to the

space H−1/2(Γ2), i.e., the space of traces on the boundary Γ2 of functions from the

space H1(Ω). Here, following [11], the function λ is assumed to be more regular, i.e.

λ ∈ L2(Γ2). The results concerning the existence of solutions to system (2.11)–(2.12)

under the assumptions introduced can be found, among others, in [11], [21]:
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Theorem 2.1. There exists a unique solution (u, λ) ∈ K × Λ to system

(2.11)–(2.12).

2.2. Topology optimization problem. Before formulating a structural opti-

mization problem for (2.11)–(2.12) let us introduce the set Uad of admissible domains.

Denote by Vol(Ω) the volume of the domain Ω equal to

(2.13) Vol(Ω) =

∫

Ω

̺(x) dx.

Domain Ω is assumed to satisfy the volume constraint of the form

(2.14) Vol(Ω)−Volgiv 6 0,

where the constant Volgiv = C0 > 0 is given. In the case when the shape optimization

for problem (2.11)–(2.12) is considered the domain Ω is assumed to satisfy volume

constraint (2.14) as equality. In the case of the topology optimization Volgiv is

assumed to be the initial domain volume and (2.14) is satisfied in the form Vol(Ω) =

rfr Vol
giv with rfr ∈ (0, 1), see [20]. The set Uad has the form

Uad = {Ω: E ⊂ Ω ⊂ D ⊂ R
2 : Ω is Lipschitz continuous,(2.15)

Ω satisfies condition (2.14)},

where E ⊂ R
2 is a given domain such that Ω as well as all of its perturbations satisfy

E ⊂ Ω. The constant C1 > 0 is assumed to exist. The set Uad is assumed to be

nonempty. In order to define a cost functional we shall also need the set M st of

auxiliary functions

M st = {η = (η1, η2) ∈ [H1(D)]2 : ηi 6 0 on D, i = 1, 2, ‖η‖[H1(D)]2 6 1},(2.16)

where the norm is ‖η‖[H1(D)]2 =
( 2∑
i=1

‖ηi‖2H1(D)

)1/2
. Recall from [13], [15], [16] the

cost functional approximating the normal contact stress on the contact boundary

(2.17) Jη(u(Ω)) =

∫

Γ2

σN (u)ηN (x) ds,

depending on the given auxiliary bounded function η(x) ∈ M st. The functions σN
and ηN are the normal components of the stress field σ corresponding to a solution u

satisfying system (2.11)–(2.12) and the auxiliary function η, respectively.
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Consider the following structural optimization problem: for a given function η ∈

M st, find a domain Ω⋆ ∈ Uad such that

(2.18) Jη(u(Ω
⋆)) = min

Ω∈Uad

Jη(u(Ω)).

Adding to (2.15) a perimeter constraint PD(Ω) 6 C1, where PD(Ω) =
∫
Γ
dx is

a perimeter of a domain Ω in D [16], [21] and C1 > 0 is a given constant the existence

of an optimal domain Ω⋆ ∈ Uad to the problem (2.18) is ensured (see [5], [21]).

Theorem 2.2. Assume the number of connected components of the complement

set Ωc of domain Ω with respect to D ⊂ R
2 is bounded. There exists a solution to

Ω̂ ⊂ Uad to the problem (2.18).

P r o o f. The class of admissible domains is endowed with the complementary

Hausdorff topology that guarantees the class itself to be compact. The existence of

an optimal domain Ω⋆ ∈ Uad to the topology optimization problem (2.18) follows

from Šverák’s theorem and arguments provided in [5]. �

The optimization problem (2.18) has been analysed and numerically solved using

either the classical level set approach [16] or the phase field approach [13]. Let us

recall the main features of these approaches.

2.3. Level set based topology optimization. Let t ∈ [0, t0), t0 > 0 given,

denote the artificial time variable, V = V (t, x) ∈ C2(0, t0;C
2(D;R2)) a velocity field

and I the identity operator. Consider the evolution of a domain Ω under a velocity

field V in time t. Under a suitable regular mapping T (t, V ) we have [24]

Ωt = T (t, V )(Ω) = (I + tV )(Ω), t > 0.

By Ω−

t (Ω
+
t ) we denote the interior (exterior) of the domain Ωt. The domain Ωt and

its boundary ∂Ωt are defined by a function φ = φ(t, x) : [0, t)× R
2 → R satisfying

φ(t, x) = 0 if x ∈ ∂Ωt, φ(t, x) < 0 if x ∈ Ω−

t ,(2.19)

φ(t, x) > 0 if x ∈ Ω+
t .

Function φ satisfying (2.19) is called the level set function [17]. The gradient of this

function is defined as ∇φ =
(
∂φ/∂x1, ∂φ/∂x2

)
, the local unit outward normal n to

the boundary ∂tΩ is equal to n = ∇φ/|∇φ| and the mean curvature is κ = ∇ · n.

In the level set approach the Heaviside function H(φ) and the Dirac function δ(φ)
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are used to transform integrals on the domain Ω onto domain D, see [17]. These

functions are defined in [17] as

H(φ) = 1 if φ > 0, H(φ) = 0 if φ < 0, δ(x) = H ′(φ)|∇φ(x)|.(2.20)

Since in one spatial dimension the Dirac function δ(φ) = H ′(φ) is identically zero

everywhere except at φ = 0 it allows to rewrite the function δ(x) using the one-

dimensional Dirac function δ(φ), i.e.

(2.21) δ(x) = δ(φ(x))|∇φ(x)|, x ∈ D.

Using (2.20) and (2.21) we can write

∫

Ω

f(x) dx =

∫

D

f(x)H(φ) dx and

∫

∂Ω

f(x) ds =

∫

D

f(x)δ(φ)|∇φ| ds.(2.22)

Assume that the velocity field V = V (t, x) is known for every point x lying on the

boundary ∂Ωt, i.e., such that φ(t, x) = 0. Therefore the equation governing the

evolution of the interface ∂Ωt in [0, t0]×D, known as the Hamilton-Jacobi equation,

has the form [1], [17]

(2.23)
∂φ(t, x)

∂t
+ V (t, x) · ∇xφ(t, x) = 0, φ(0, x) = φ0(x),

where φ0(x) is a given signed distance function of the set Ωt. The velocity field V

in (2.23) is chosen as the shape derivative of the cost functional (2.17) with respect to

the boundary variations of the domain. Topological derivative of this cost functional

is used to indicate the areas of voids or weak material inside domain Ω. The shape

and topology derivatives of the cost functional (2.17) are provided and a necessary

optimality condition is shown in [16]. For other applications of the standard level

set approach to analyse and solve numerically structural optimization problems see

[1], [7], [23].

2.4. Phase field based topology optimization. The phase field approach

is based on the assumption that the material occupying the domain Ω consists of

two phases, i.e. strong and weak materials, see [1]. The weak material distribution

corresponds to voids. The concentration of the phases is described by the material

density function 0 6 ̺ 6 1. While in the domain Ω the concentration of one of the

phases is ̺ the other phase is obtained as 1−̺. The function ̺ is used to describe the

phase transition, see [19]. To indicate the evolution of the material density function

̺ let us assume this function depends not only on x ∈ Ω but also on the artificial time
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variable t ∈ [0, t0), t0 > 0 given, i.e. ̺ = ̺(t, x). Let us introduce the regularized

cost functional J(̺, u) in the form

(2.24) J(̺, u) = Jη(u) + E(̺),

where the functional Jη(u) is given by (2.17) with u = u(̺) and the Ginzburg-Landau

free energy term E(̺) and the total free energy function ψ(̺) are given by [4], [5],

[23], [24]

(2.25) E(̺) =

∫

Ω

ψ(̺) dΩ, ψ(̺) =
γε

2
|∇̺|2 +

γ

ε
ψB(̺),

where γ > 0 is a constant, ε > 0 is a parameter related to the interfacial energy

density and ψB(̺) is a double-well potential which characterizes the two phases, see

[4], [5]. Usually it is taken as an even-order polynomial of the form, see [12],

(2.26) ψB(̺) = ̺2(1 − ̺2).

The first term in the total free energy function ψ(̺) is called the interface energy.

It represents [4], [10], [25] a measure of the perimeter of the interfaces between the

phases and in this sense it is the relaxed version of the global perimeter constraint.

The term (2.26) is called the bulk energy. It is a non-convex smooth function attain-

ing minimum in the pure phases ̺ = 0 and ̺ = 1. The values assumed by ψB(̺) for

intermediate values of ̺ are larger than for pure phases and are not preferred in the

optimization process. Parameter ε measures the width of the transition zone. The

structural optimization problem (2.18) in terms of the function ̺ takes the form:

find ̺⋆ ∈ U̺
ad such that

(2.27) J(̺⋆, u⋆) = min
̺∈U̺

ad

J(̺, u),

where u⋆ = u(̺⋆) denotes a solution to the state system (2.11)–(2.12) in domain D

rather than Ω depending on ̺⋆. The set U̺
ad = {̺ : Vol(Ω) = Volgiv} denotes the set

of admissible material density functions.

The definition of the phase transition model is based on the concept of the flow

of the gradient ∂L/∂̺ of the Lagrangian L of the optimization problem (2.27) with

respect to ̺ in the norm of a suitable chosen Hilbert space H :

(2.28)
∂̺

∂t
(t, x) = −

∂L

∂̺
(̺) in Ω, t ∈ [0, T ), ̺(0, x) = ̺0(x), x ∈ D,

where ̺0(x) is a given function. Selecting the space H , see [4], as the subspace of

a space [H1(Ω)]′ dual to H1(Ω) (2.28) leads to a necessary optimality condition in

the form of the modified Cahn-Hilliard equation. For details see [13].
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3. Hybrid approach to topology optimization

The level set and the phase field approaches are well-known due to their topological

flexibility [3], [6], [9], [19], [25]. Both the approaches are very flexible and allow a wide

range of extensions for model-based matching, registration and segmentation, optical

flow with discontinuities, fluid flow. In these methodologies the process of splitting

a curve into several curves is a smooth one. However, these two approaches differs

significantly in the representation of the discontinuity set. The level set method

allows to represent trace and evolve a given sharp interface. This fits very well to

the framework of the calculus of shape derivatives in which the current interface is

given precisely. On the other hand, the phase field function is able to indicate the

position of a interface in a blurry way only determined by the order of a grid size.

The classical level set framework is restricted to closed curves and thus it does not

allow to represent crack tips or to generate a hole using a single level set function.

Topological derivative is used to generate holes in the framework of the level set

method [20]. On the other hand, the phase field method appears to be more flexible

and practicable for these applications. The phase field representation is global by

definition and respects the features of the topology in the entire domain occupied by

a structure without requiring any initialization.

Taking into account the similarity of these two approaches, hybrid interface track-

ing methods are combining within one approach elements of the level set and the

phase field approaches. Using the suitable features of both approaches the hybrid

method is able to generate voids and to sharply locate the position of subdomains

interfaces. This method does not require the topological derivative to indicate the

void area. The hybrid method developed in the paper is based on the definition

of a modified level set function indicating subdomains of the different phases simi-

larly to the material density function in the phase field method and regularizes the

original topology optimization problem using the terms of Ginzburg-Landau free en-

ergy term. Therefore the regularized topology optimization problem is formulated

in terms of the modified level set function only.

Structural optimization problems with a level set function and different phase

field like gradient flow equations are considered in [7], [19], [22], [25]. The relation

between phase field and sharp interface tracking models in optimal control problems

is considered in [3]. Using the method of the matched asymptotic expansions it is

shown that for the compliance topology optimization problem in linear elasticity

the sharp interface limit of the necessary optimality condition for the phase field

model when the interface width parameter is passing to zero coincides with the

necessary optimality condition for this optimization problem obtained by the shape

calculus [1].

428



3.1. Hybrid formulation of the topology optimization problem. Consider

a slightly modified level set function φ as compared to the standard one (2.19),

0 < φ(x) 6 1 for x ∈ Ω \ ∂Ω, φ(x) = 0 for x ∈ ∂Ω,(3.1)

−1 6 φ(x) < 0 for x ∈ D \ Ω.

Note that the level set function (3.1) is close to the phase field function ̺ governing

the evolution of phases in the phase field method or to the so-called binary level set

method [19]. This function is bounded and takes values close to +1 or −1 in regions

sufficiently distant from the interfaces. Consider the regularized cost functional (2.17)

(3.2) JR(φ) = Jη(u(φ)) + ER(φ), ER(φ) =
1

2
τ

∫

D

|∇φ|2 dΩ,

where τ > 0 is a regularization parameter. The structural optimization problem

(2.18) takes the form: find φ ∈ Uφ
ad such that:

(3.3) min
φ∈Uφ

ad

JR(φ),

where the admissible set Uφ
ad (2.15) in terms of φ has the form:

(3.4) Uφ
ad =

{
φ ∈ H1(D) : Vol(φ) =

∫

D

H(φ) dx−Volgiv 6 0

}
.

A pair (u, λ) ∈ K × Λ solves the state system (2.11)–(2.12) in the domain D rather

than Ω:

∫

D

H(φ)aijkleij(u)ekl(ϕ − u) dx−

∫

D

H(φ)fi(ϕi − ui) dx(3.5)

−

∫

Γ1

pi(ϕi − ui) ds+

∫

Γ2

λ(ϕT − uT ) ds > 0, ϕ ∈ K,

∫

Γ2

(ζ − λ)uT ds 6 0, ζ ∈ Λ.(3.6)

The existence of a unique solution to (3.5)–(3.6) follows from Theorem 2.1.
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4. Necessary optimality condition

So let us formulate the necessary optimality condition for problem (3.3)–(3.6). In

order to do it we introduce the Lagrangian L(φ, λ̃) : H1(D)× R → R by

L(φ, λ̃) = L(φ, uε, λε, p
a, qa, λ̃)(4.1)

= JR(φ) +

∫

D

H(φ)aijkleij(uε)ekl(p
a) dx−

∫

D

H(φ)fi(p
a
i ) dx

−

∫

Γ1

pip
a
i ds+

∫

Γ2

λε(p
a
T ) ds+

∫

Γ2

qauεT ds+ λ̃c(φ) +
1

2µ
c2(φ),

where λ̃ ∈ R, c(φ) = [Vol(φ)], µ > 0 is a given real. By (pa, qa) ∈ K1×Λ1 we denote

an adjoint state satisfying the system

∫

D

H(φ)aijkleij(η + pa)ekl(ϕ) dx+

∫

Γ2

qaϕT ds = 0, ϕ ∈ K1,(4.2)

∫

Γ2

ζ(paT + ηT ) ds = 0, ζ ∈ Λ1.(4.3)

The sets K1 and Λ1 are given by

K1 = {ξ ∈ Vsp : ξN = 0 on Ast},(4.4)

Λ1 = {ζ ∈ Λ: ζ(x) = 0 on B1 ∪B2 ∪B
+
1 ∪B+

2 },(4.5)

while the coincidence set is Ast = {x ∈ Γ2 : uN + v = 0}. Moreover B1 = {x ∈ Γ2 :

λ(x) = −1}, B2 = {x ∈ Γ2 : λ(x) = +1}, B̃i = {x ∈ Bi : uN(x) + v = 0}, i = 1, 2,

B+
i = Bi \ B̃i, i = 1, 2. Using (4.2)–(4.5) as well as the results on differentiability of

variational inequalities [21] we obtain [16] the derivative of the Lagrangian L with

respect to φ:

∫

D

∂L

∂φ
(φ, λ̃)ζ dx =

∫

D

[
H(φ)(aijkleij(uε)ekl(p

a + η)(4.6)

−f(pa + η)) + τ∆φ
]
ζ dx+

∫

D

(
λ̃+

1

µ
c(φ)

)
ζ dx, ζ ∈ H1(D).

The necessary optimality condition for problem (3.3)–(3.6) follows by standard ar-

guments [11], [21]:
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Theorem 4.1. If (φ̂, λ̃⋆) ∈ Uφ
ad×R is an optimal solution to problem (3.3)–(3.6)

then

(4.7) L(φ̂, λ̃) 6 L(φ̂, λ̃⋆) 6 L(φ, λ̃⋆), (φ, λ̃) ∈ Uφ
ad × R, λ̃ > 0.

Condition (4.7) implies [11], [21] that for all φ ∈ Uφ
ad and λ̃ ∈ R, λ̃ > 0 we have

(4.8)
∂L(φ̂, λ̃)

∂φ
> 0 and

∂L(φ, λ̃⋆)

∂λ̃
6 0.

5. Implementation issues

Uzawa type algorithm is employed to solve numerically the optimization problem

(3.3). First as in (2.19) we assume that due to the evolution of the subdomains the

function φ is also time dependent. The minimization of the Lagrangian L(φ, λ̃) with

respect to φ is realized by solving the time dependent PDE [17]

∂φ(t, x)

∂t
= ∇φL(φ, λ̃) in (0,∞)×D,(5.1)

φ(0, x) = φ0(x) in D,

∇φ · n = 0 on ∂D

to reach the steady state ∂φ/∂t = 0. It implies the gradient∇φL(φ, λ̃) given by (4.6)

equals zero. φ0(x) is a given function. The explicit Euler scheme [2] is used to solve

numerically the equation (5.1), i.e.,

(5.2) φn+1 = φn +∆tn
∂L(φn, λ̃n)

∂φ
,

where φn = φ(x, tn), ∆tn denotes the nth time step and ∂L(φn, λ̃n)/∂φ is given

by (4.6). To satisfy CFL stability condition the stepsize ∆tn is assumed to satisfy,

see [17],

(5.3) ∆tn =
αh

max
x∈D

∣∣∂L(φn(x), λ̃n)/∂φ
∣∣ ,

where α is a suitable given number and h is the uniform mesh size. The updating

scheme for the Lagrange multiplier λ̃ is as follows:

λ̃n+1 = λ̃n +
1

µn
Vol(φ),(5.4)

with the penalty parameter µn+1 ∈ (0, µn), µ0 > 0 given.
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5.1. Numerical example. The discretized topology optimization problem (3.3)–

(3.6) is solved numerically. As an example a body occupying the 2D domain

Ω = {(x1, x2) ∈ R
2 : 0 6 x1 6 8 ∧ 0 < v(x1) 6 x2 6 4}(5.5)

is considered. The boundary Γ of the domain Ω is divided into three pieces

Γ0 = {(x1, x2) ∈ R
2 : x1 = 0, 8 ∧ 0 < v(x1) 6 x2 6 4},(5.6)

Γ1 = {(x1, x2) ∈ R
2 : 0 6 x1 6 8 ∧ x2 = 4},

Γ2 = {(x1, x2) ∈ R
2 : 0 6 x1 6 8 ∧ v(x1) = x2}.

The domain Ω and the boundary Γ2 depend on the function v. The initial position

of the boundary Γ2 is given as in Figure 1. The computations are carried out for

the elastic body characterized by Poisson’s ratio ν = 0.29, the Young modulus E =

2.1 · 1011N/m2 for the strong phase and the Young modulus E′ = 10−4 · E for the

weak phase. The body is loaded by boundary traction p1 = 0, p2 = −5.6 · 106N

along Γ1, body forces fi = 0, i = 1, 2. An auxiliary function η is selected as piecewise

constant (or linear) on D and is approximated by a piecewise constant (or bilinear)

functions. The computational domain D = [0, 8]× [0, 4] is selected. The domain D

is discretized with a fixed rectangular mesh of 80× 40.

Figure 2 presents the optimal domain obtained by solving the topology optimiza-

tion problem (3.3) in the computational domainD using a Uzawa type algorithm and

employing the optimality condition (4.7). Weak material areas where the material

density function has low values appear in the central part of the body and near the

fixed edges. While for the initial domain the normal contact stress is concentrated

0 1 2 3 4 5 6 7 8
0
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1.5

2

2.5
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3.5

4

Figure 2. Optimal domain Ω⋆.
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in the middle of the contact zone and takes high values the optimal normal con-

tact stress obtained is almost constant and uniformly distributed along the contact

boundary. Moreover, its maximal value has been significantly reduced comparing

to the initial one (see Figure 3). The convergence history and the decrease of the

cost functional value during the computational process is shown in Figure 4. In the

beginning of the computations the cost functional value is rapidly decreasing and

later it is relatively slowly approaching the minimal value.
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Figure 3. Initial and optimal normal contact stress.
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Figure 4. The decrease of the cost functional value during computational process.
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6. Concluding remarks

The topology optimization problem for the elastic contact problem with the pre-

scribed friction is analysed and solved numerically in the paper using the level set

approach combined with the phase field approach. The friction term complicates

both the form of the gradients of the cost functional as well as of the numerical

process. The obtained numerical results seems to be in accordance with physical

reasoning. They indicate that the proposed method allows for significant improve-

ments of the structure from one iteration to the next and is more efficient than the

algorithms based on the standard level set approach. Comparing to the standard

level set approach the proposed approach does not require to solve Hamilton-Jacobi

equation and to perform the reinitialization process of the signed distance function.

Moreover, the proposed method has also hole nucleation capabilities as the topolog-

ical derivative based methods.
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[13] A. Myśliński: Phase field approach to topology optimization of contact problems. Proc. of
the 10th World Congress on Structural and Multidisciplinary Optimization (R.Haftka,
ed.). ISSMO, 2013, Paper 5434, 9 pages.
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