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FINITE-TIME ADAPTIVE OUTER SYNCHRONIZATION
BETWEEN TWO COMPLEX DYNAMICAL NETWORKS
WITH NONIDENTICAL TOPOLOGICAL STRUCTURES

Jie Wu, Yong-zheng Sun and Dong-hua Zhao

In this paper, we investigate the finite-time adaptive outer synchronization between two
complex dynamical networks with nonidentical topological structures. We propose new adaptive
controllers, with which we can synchronize two complex dynamical networks within finite time.
Sufficient conditions for the finite-time adaptive outer synchronization are derived based on
the finite-time stability theory. Finally, numerical examples are examined to demonstrate the
effectiveness and feasibility of the theoretical results.

Keywords: complex networks, outer synchronization, finite-time, adaptive feedback con-
trollers

Classification: 34D06, 05C82

1. INTRODUCTION

Recently, complex networks have been investigated across many fields of the real world,
such as Internet, traffic networks, biological networks [18], population evolution [27],
communication networks, electrical power grids, neural networks [17, 30], neighborhood
relationship [26], World Wide Web [9], and so on. Normally, a dynamical complex
network is made of a large set of interconnected nodes in which a node is a fundamental
unit with specific contents, and the edges connecting the nodes represent the interactions
among the individual unit. Because the ways of connection are different, and whether
there are weights or not between these nodes, we can get many different types of complex
networks, such as directed weighted network, directed unweighted network, etc.

However, the complex networks’ structure performs the network dynamical behav-
iors and results in considerable important research problems. Particularly, one interest-
ing and significant investigation is the synchronization of complex dynamical networks,
which not only can explain many real natural phenomena, but also has many potential
applications in secure communication, information processing, biological system, control
processing, chemical reactions, etc. [1, 4, 5, 14, 32, 34, 37].

In the past few years, various cases of synchronization in complex networks have
been extensively studied. In Ref. [15], Lü and Chen introduced a time-varying complex
dynamical network model and studied its controlled synchronization criteria. In Ref. [12],
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the authors investigated the synchronization in general complex dynamical networks
with coupling delays. The cluster synchronization under the influence of advection was
investigated in [7]. The synchronization investigated in the above references is called
“inner synchronization”, which is concerned with the synchronization among the nodes
within one network. Compared with the inner synchronization, the synchronization
between two or more complex networks regardless of the inner network is called “outer
synchronization”, which exists in our daily lives. In Ref. [13], the authors firstly explored
the “outer synchronization”. Later on, various patterns of outer synchronization have
been studied [19, 20, 22, 24, 25, 31]. In Ref. [31], the authors investigated the outer
synchronization between drive-response networks with nonidentical nodes and unknown
parameters. The impulsive synchronization of a nonlinear coupled complex network with
a delay node was explored in [19]. In Ref. [20], the authors discussed the generalized
outer synchronization between two uncertain dynamical networks. In Ref. [22], the
generalized outer synchronization between two complex dynamical networks with time
delay and noise perturbation was investigated. Lag synchronization and mixed outer
synchronization were investigated in Refs. [24, 25].

It is worth noting that most of previous works on network synchronization focused on
the asymptotical synchronization, which meant that synchronization of complex dynam-
ical networks can not occur in a finite time. However, in the actual information networks,
complex ecological networks, and many others, it is often necessary to achieve synchro-
nization within a limited period of time, which is called the finite-time synchronization.
Due to its significant applications in many areas, the finite-time synchronization of com-
plex dynamical networks have received considerable attention among many researchers
in recent years [16, 21, 23, 33]. In Ref. [16], the finite-time synchronization between
two complex networks with delayed coupling was analyzed by using the impulsive and
periodically intermittent control. In Refs. [21, 23], the finite-time stochastic outer syn-
chronization between two different complex dynamical networks was investigated. In
Ref. [33], the finite-time synchronization of complex networks with complex-variable
chaotic systems was explored. As we all known, a focused problem in the study of finite-
time synchronization is how to design a physically available and simple controller to
guarantee the realization of the synchronization. Most of finite-time controllers usually
contain a linear coupling part [35, 36]. However, it is very difficult to find the suitable
coupling constant. Fortunately, the adaptive feedback control method can solve the
problem perfectly [8], and this technique has been profoundly reflected in this article.

In this paper, inspired by the above analyses, we investigate the finite-time adaptive
outer synchronization between two complex dynamical networks with nonidentical topo-
logical structures. The main contribution of this paper is to propose adaptive feedback
controllers which are constructed combining the finite-time control and adaptive control
methods. Using the finite-time adaptive controllers, we can synchronize two different
complex dynamical networks in finite time and do not need to give the exact value of
the coupling strength. Based on the finite-time stability theory, analytical sufficient
conditions for the finite-time outer synchronization are derived. Finally, two numerical
examples are examined to illustrate the usefulness and effectiveness of the theoretical
results. Especially, the simulation results for the networks with small-world topologies
show that the small-word networks with large average degree has a faster convergence
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rate.
The rest of this paper is outlined as follows. Problem statement and preliminaries

are given in Section 2. In Section 3, base on the finite-time stability theory, sufficient
conditions for the finite-time outer synchronization are derived. In Section 4, two nu-
merical simulations are given to show the usefulness and effectiveness of the theoretical
results. Finally, some conclusions are given in Section 5.

2. PROBLEM STATEMENT AND PRELIMINARIES

Consider a dynamical network consisting of N linear coupled nodes, which can be de-
scribed as follows:

ẋi(t) = f(xi(t)) +
N∑
j=1

cijΓxj , i = 1, 2, . . . , N, (1)

where xi(t) = (xi1, . . . , xin)T ∈ Rn is the state vector of the ith node, f : R×Rn → Rn is
a smooth nonlinear vector function. Γ is a constant matrix linking the coupled variables
and C = (cij)N×N is the coupling configuration matrix of the complex network. The
entries cij are defined as follows: if there exists a link from node j to node i (i 6= j) then
we set cij > 0, otherwise we set cij = 0(i 6= j), and cii = −

∑N
j=1,j 6=i cij , i = 1, 2, . . . , N.

To investigate the finite-time outer synchronization between two complex networks
with nonidentical topological structures, we take the above network (1) as the driving
network, and the following model with an adaptive control scheme as the response
network, which is given by

ẏi(t) = f(yi(t)) +
N∑
j=1

dijΓyj + ui(t), i = 1, 2, . . . , N, (2)

where yi(t) = (yi1, . . . , yin)T ∈ Rn is the state vector of the ith node, D is the cou-
pling configuration matrix of network (2), ei(t) = yi(t) − xi(t)(i = 1, 2, . . . , N) are the
synchronization errors between the driving network (1) and the response network (2).
Adaptive controllers ui are designed as follows:

ui =

{
−εiei − k[sign(ei) + |εi−ξ|ei

‖e‖2 ] +
∑N
j=1(cij − dij)Γxj(t), if ‖ei‖ 6= 0;

0, if ‖ei‖ = 0,
(3)

where the constants k, ξ > 0, the adaptive law of εi is ε̇i(t) = eTi (t) ei(t).

Remark 2.1. The first term of controllers ui(t) in Eq. (3) is based on the adaptive
control method. The adaptive control method has been extensively used to investigated
inner synchronization problems of complex networks. For example, the adaptive syn-
chronization of an uncertain complex dynamical network was investigated in Ref. [38].
The pinning adaptive synchronization of a general complex dynamical network was dis-
cussed in Ref. [39]. However, the first term of controllers ui(t) can only ensure the
infinite-time synchronization of complex networks. The second term of ui(t) is based on
the finite-time control technology which can synchronize networks in finite time. The
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previous finite-time controllers usually contain a linear coupling part [35, 36]. And it
is very difficult to find the suitable coupling constant. Here, we solve the difficulty by
combining the adaptive control and finite-time control methods. The last term of ui(t) is
due to the structure difference between the networks (1) and (2), which is not necessary
when networks (1) and (2) have the same structures.

Remark 2.2. Throughout this paper, the configuration matrices C and D of the driv-
ing network (1) and the response network (2) are not necessary to be symmetric or
irreducible. Namely, driving network (1) and response network (2) can be directed or
not, and they may also have isolated nodes and clusters.

For getting our main results in the next section, we state here an assumption on
nonlinear function f(x), a definition of finite-time outer synchronization and a necessary
lemma.

Assumption 2.3. For nonlinear function f(x), there exists a constant l > 0 such that

[x(t)− y(t)]T [f(x(t))− f(y(t))] ≤ [x(t)− y(t)]T l[x(t)− y(t)],∀x, y ∈ Rn. (4)

Definition 2.4. The driving network (1) and response network (2) are said to achieve
outer synchronization in finite time. If, for arbitrary solutions of networks (1) and (2)
denoted by xi(t) = (xi1, . . . , xin)T and yi(t) = (yi1, . . . , yin)T with different initial states
xi(0), yi(0), there exists a finite time function T0 > 0, such that

lim
t→T0

||xi(t, xi(0))− yi(t, yi(0))|| = 0,

and T0 = inf{T : ||xi(t, xi(0)) − yi(t, yi(0))|| ≡ 0, ∀t ≥ T, i = 1, 2, . . . , n} is called
settling time.

Lemma 2.5. (Vincent and Guo [28]) Assume that a continuous, positive-definite func-
tion V (t) satisfies the following differential inequality:

V̇ (t) ≤ −ρV η(t), ∀t ≥ t0, V (t0) ≥ 0,

where ρ > 0, 0 < η < 1 are all constants. Then, for any given t0, V (t) satisfies the
following inequality:

V 1−η(t) ≤ V 1−η(t0)− λ(1− η)(t− t0), t0 ≤ t ≤ t1,

and
V (t) = 0, ∀t ≥ t1,

with t1 given by

t1 = t0 +
V 1−η(t0)
ρ(1− η)

.

Lemma 2.6. (M. P. Aghababa and H. P. Aghababa [2, 3]) For x1, x2, . . . , xn ∈ R, the
following inequality holds:

|x1|+ |x2|+ · · ·+ |xn| ≥
√
x2

1 + x2
2 + · · ·+ x2

n.
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3. MAIN RESULTS

In this section, we will focus on the sufficient conditions for the finite-time adaptive outer
synchronization between networks (1) and (2), and the main results are summarized in
the following theorem.

Theorem 3.1. Suppose that Assumption 2.3 holds and there exists a sufficiently large
positive constant ξ such that ξ > l + λmax(Ds), where D = D ⊗ Γ,Ds = D+DT

2 . Then,
under the set of controllers (3), networks (1) and (2) can reach finite-time outer syn-
chronization.

P r o o f . From networks (1) and (2), the error system can be described by

ėi(t) = f(yi)− f(xi) +
N∑
j=1

dijΓej(t)− εiei − k
[
sign(ei) +

|εi − ξ|ei
‖e‖2

]
, i = 1, 2, . . . , N. (5)

Thus, according to the Assumption 2.3 the above error system (5) for any initial data
ei(0) = yi(0)−xi(0) possesses a unique global solution ei(t, ei(0)) on t ≥ 0, and ei(t, 0) ≡
0 is a trivial solution of the error dynamics (5). Apparently, outer synchronization
between networks (1) and (2) could be realized in finite time if this trivial solution is
finite-time stable.

Let e(t) = (eT1 (t), eT2 (t), . . . , eTN (t))T , and take the following Lyapunov function:

V =
1
2

N∑
i=1

eTi (t) ei(t) +
1
2

N∑
i=1

(εi − ξ)2.

Then, we get the derivative of V along the error system (5) gives

V̇ =
N∑
i=1

eTi (t)
{
f(yi)− f(xi) +

N∑
j=1

dijΓej(t)− εiei − k
[
sign(ei) +

|εi − ξ|ei
‖e‖2

]}

+
N∑
i=1

(εi − ξ) eTi (t) ei(t). (6)

From the Assumption 2.3, we obtain

V̇ ≤ l

N∑
i=1

eTi (t) ei(t) +
N∑
i=1

eTi (t)
N∑
j=1

dijΓej(t)−
N∑
i=1

eTi (t)εiei(t)− k
[ N∑
i=1

eTi (t)sign(ei)

+
N∑
i=1

eTi (t)
|εi − ξ|ei
‖e‖2

]
+

N∑
i=1

(εi − ξ) eTi (t) ei(t).

Since
N∑
i=1

eTi (t) ei

‖e‖2 = 1 is always satisfied, one has

V̇ ≤ (l − ξ)
N∑
i=1

eTi (t) ei(t) +
N∑
i=1

eTi (t)
N∑
j=1

dijΓej(t)− k
( N∑
i=1

|ei|+
N∑
i=1

|εi − ξ|
)
.
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Noting that

N∑
i=1

eTi (t)
N∑
j=1

dijΓej(t) = eT (t)D ⊗ Γe(t)

≤ λmax(Ds) eT (t) e(t), (7)

we obtain

V̇ ≤ (l − ξ + λmax(Ds))
N∑
i=1

eTi (t) ei(t)− k
( N∑
i=1

|ei|+
N∑
i=1

|εi − ξ|
)
.

If
ξ > l + λmax(Ds), (8)

then we get

V̇ ≤ −k
( N∑
i=1

|ei|+
N∑
i=1

|εi − ξ|
)
.

By Lemma 2.6, we have

V̇ ≤ −k
[ N∑
i=1

eTi (t) ei(t) +
N∑
i=1

(εi − ξ)2
] 1

2

= −k(2V )
1
2 .

According to the Lemma 2.5, the trivial solution of the error system (5) is finite-time
stable. Therefore, for any arbitrary initial conditions, networks (1) and (2) can realize
finite-time outer synchronization, and it’s easy to obtain an estimation of the settling
time

t1 = t0 +
√

2
k
V

1
2 (t0).

The proof is completed. �

If the networks (1) and (2) have the same structures, the last term of the controllers
in (3) is no longer required. Thus, we have the following corollary.

Corollary 3.2. Suppose that Assumption 2.3 holds. If the networks (1) and (2) have
the same structures, i. e. C=D, then the two networks can realize finite-time outer syn-
chronization under the following adaptive control scheme:

ui =

{
−εiei − k[sign(ei) + |εi−ξ|ei

‖e‖2 ], if ‖ei‖ 6= 0;
0, if ‖ei‖ = 0,

where the constants k, ξ > 0, the adaptive law of εi is ε̇i(t) = eTi (t) ei(t).
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4. SIMULATION RESULTS

In this section, a three-dimensional chaotic system and a four-dimensional hyperchaotic
system are performed to verify the feasibility and effectiveness of the above synchro-
nization scheme. In the simulations, all equations are integrated with step 0.01 and the
initial values are taken randomly from the interval [−4, 4]. For simplicity, we always
assume that Γ = I.

Example 4.1. In the first example, we take the three-dimensional Genesio system [6]
as the node dynamics of driving and response networks which can be described by:

ẋ = f(x) =

 0 1 0
0 0 1
α β λ

 x1

x2

x3

+

 0
0
x2

1

 , Ax+ g(x), (9)

where x = (x1, x2, x3)T ∈ R3 is the state vector, α, β, and λ are real constants. The
Genesio system has a chaotic attractor when α = −6, β = −2.92, and λ = −1.2. It is
easy to compute that λmax(A+AT ) = 5.6297, and the Assumption 2.3 is satisfied.

Here, we adopt the configuration matrix for the driving network (1) as follows:

C =



−3 1 0 0 0 1 0 0 1 0
1 −2 0 0 1 0 0 0 0 0
0 1 −4 0 0 1 0 1 0 1
0 0 1 −3 0 0 1 0 1 0
0 1 0 1 −3 0 0 1 0 0
0 0 0 1 1 −3 0 0 0 1
0 0 0 0 1 0 −2 0 1 0
0 0 0 1 0 0 1 −2 0 0
0 1 0 1 0 0 0 1 −3 0
1 0 1 1 0 1 0 0 0 −4


,

and the configuration matrix for the response network (2) as follows:

D =



−2 1 0 0 0 0 0 0 1 0
0 −1 0 0 1 0 0 0 0 0
0 1 −2 0 0 1 0 0 0 0
0 0 0 −2 0 0 1 0 1 0
0 1 0 0 −2 0 0 1 0 0
0 0 0 1 1 −2 0 0 0 0
0 0 0 0 0 0 −1 0 1 0
0 0 0 1 0 0 0 −1 0 0
0 1 0 1 0 0 0 0 −2 0
1 0 1 0 0 0 0 0 0 −2


.

It is easy to compute that λmax(Ds) = 0.2891. Figures 1 (a) and (b) show the syn-
chronization error trajectories eij(t) (i = 1, 2, . . . , 10; j = 1, 2, 3) and the total synchro-
nization error trajectory δ(t), where δ(t) = ‖e(t)‖. Figures 1 (c) and (d) show the time
response of the adaptive controllers (3) and the corresponding feedback strengths εi
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Fig. 1. Synchronization error trajectories

eij(t)(i = 1, 2, . . . , 10; j = 1, 2, 3) (a) and the total synchronization

error trajectory δ(t) (b) between the driving network (1) and response

network (2) with 10 nodes under the adaptive controllers (3). Time

response of the adaptive controllers (c) and feedback strengths εi (d)

of adaptive controllers (3) for the networks (1) and (2).

which reach certain constants. From Figure 1 (b), we can see that the outer synchro-
nization is realized at t = 1.2109. Therefore, the numerical results fully support the
theoretical analysis.

Example 4.2. To show the generality of the present method, we take the hyperchaotic
Rössler system [10, 11] as the second example. The hyperchaotic Rössler system can be
described by a four-dimensional differential equation as follows:

ẋ = f(x) =


0 −1 −1 0
1 ϑ 0 1
0 0 0 0
0 0 −ν ς




x1

x2

x3

x4

+


0
0

x1x3 + %
0

 , (10)

where x = (x1, x2, x3, x4)T ∈ R4 is the state vector, ϑ, %, ν, and ς are real constants.
When ϑ = 0.25, % = 3, ν = 0.5, and ς = 0.05, system (10) has a hyperchaotic attractor.
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Fig. 2. (a) Synchronization error trajectories

eij(t)(i = 1, 2, . . . , 100; j = 1, 2, 3, 4) between the small-word networks

(1) and (2) with 100 nodes and the average degree 〈d〉 = 3. (b) The

total synchronization error trajectories between the small-word

networks (1) and (2) with different average degrees 〈d〉 = 3, 6, 10.

Some real networks often have complex topology, and the network topology may play
a vital role in synchronization. In this example, we demonstrate the effectiveness of the
theoretical results on small-world networks. We assume that networks (1) and (2) are
small-world networks. To construct a small-world network we use the algorithm proposed
by Watts and Strogatz [29]. The algorithm starts from a regular lattice with N nodes
and with a certain probability p each link is rewired to another node randomly chosen
from all possible nodes that avoid self-loops and link duplications. First, we generate a
small-world network with N = 100, p = 0.5 and the average degree 〈d〉 = 3. Figures 2 (a)
and (b) show the synchronization error trajectories eij(t) (i = 1, 2, . . . , 100; j = 1, 2, 3, 4)
and the total synchronization error trajectories δ(t). From Figure 2 (b), we can easily
make an important observation that the outer synchronization is realized in finite time.
Therefore, the simulations correspond to the theoretical analysis successfully. Next, we
consider the impact of the average degree on the convergence rate. Figure 2 (b) shows
the total synchronization errors δ(t) with the different average degrees 〈d〉 = 3, 6, 10
respectively. From Figure 2 (b), one can easily see that the small-word networks with
large average degree has a faster convergence rate.

5. CONCLUSIONS

In this paper, we have investigated the finite-time adaptive outer synchronization be-
tween two complex dynamical networks with nonidentical topological structures. By
applying the finite-time stability theory and proposing an adaptive control method for
synchronization between two complex dynamical networks, sufficient conditions are ob-
tained to ensure the finite-time outer synchronization. It is worth noting that the cou-
pling configuration matrix is not necessary to be symmetric or irreducible. The con-
trollers in our paper can also be used to investigate the inner or outer synchronization
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of time-varying complex networks. In addition, for large scale networks, time delay and
noise perturbation are unavoidable and should be taken into account due to the finite
information transmission and processing speeds among the network nodes. Therefore,
it is important to study the finite-time adaptive synchronization of complex networks
with time delay and noise perturbation. These are our next research topics.
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