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KYBER NET IKA — VOLUM E 5 1 ( 2 0 1 5 ) , NUMBE R 4 , P AGES 6 6 7 – 6 7 7

SEMI-T-OPERATORS ON A FINITE TOTALLY ORDERED
SET

Yong Su and Hua-wen Liu

Recently, Drygaś generalized nullnorms and t-operators and introduced semi-t-operators
by eliminating commutativity from the axiom of t-operators. This paper is devoted to the
study of the discrete counterpart of semi-t-operators on a finite totally ordered set. A char-
acterization of semi-t-operators on a finite totally ordered set is given. Moreover, The rela-
tions among nullnorms, t-operators, semi-t-operators and pseudo-t-operators (i. e., commutative
semi-t-operators) on a finite totally ordered set are shown.

Keywords: fuzzy connectives, finite chain, t-operator, semi-t-operator, pseudo-t-operator

Classification: 03E72

1. INTRODUCTION

Nullnorms and t-operators were introduced in [3, 10], respectively, which are also gen-
eralizations of the notions of t-norms and t-conorms. It is pointed out that nullnorms
and t-operators are equivalent since they have the same block structures in [0, 1]2 (see
[11] for detail). The t-operators have the same properties that t-norms and t-conorms
but without boundary conditions, i. e., the existence of any identity is not required
and this condition is substituted simply by continuity on boundary. It is reasoned in
[17] that exactly these properties are adequated for operators that have to be used in
fuzzy preorders. Recently, Drygaś generalized nullnorms and t-operators and introduced
semi-t-operators [4] by eliminating commutativity from the axiom of t-operators.

Qualitative information is often interpreted to take values in a finite scale like:

L = {Extremely Good,Very Good,Good,Fair,Bad,Very Bad,Extremely Bad}.

In these cases, a finite totally ordered set L is usually considered and several researchers
have developed an extensive study of aggregation functions on L, usually called discrete
aggregation functions. Dealing with discrete operators, the smoothness condition is
usually considered as the discrete counterpart of continuity. Thus, many classes of
discrete aggregation functions with some smoothness condition have been studied and
characterized. For instance, smooth discrete t-norms and t-conorms were characterized
in [12, 13], see also [1], uninorms in Umin and Umax and nullnorms in [9], nullnorms
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without the commutative property in [5], idempotent discrete uninorms in [2], uninorms
with smooth underlying operators in [8, 15] and weighted means in [7].

In the framework of [0, 1], t-operators are continuous on boundary and not continuous
on [0, 1]. “t-operators” on a finite totally ordered set, as the discrete counterpart of t-
operators, shall be smooth on the boundary and not be smooth on the global domain.
In this paper, we introduce the definition of semi-t-operators on a finite totally ordered
set L by eliminating commutativity and another property smoothness on the boundary
trying to retain the idea of border continuity. This paper is organized as follows. Section
2, we recall some operators on a finite totally ordered set L. In section 3, the main results
are present. We introduce the notion of semi-t-operators, which is a generalization of
t-operators and give out a characterization of this kind of these operators.

2. PRELIMINARIES

We assume that the reader is familiar with the classical results concerning basic fuzzy
connectives. To make this work self-contained, we recall some concepts and results used
in the rest of the paper.

Definition 2.1. (Drygaś [4], Klemenet et al. [6]) A semi-t-norm T is an increasing,
associative operation T : [0, 1]2 → [0, 1] with neutral element 1.

A semi-t-conorm S is an increasing, associative operation S : [0, 1]2 → [0, 1] with
neutral element 0.

A t-norm T is a commutative semi-t-norm.
A t-conorm S is a commutative semi-t-conorm.

Definition 2.2. (Calvo et al. [3]) Operation V : [0, 1]2 → [0, 1] is called nullnorm if it
is commutative, associative, increasing, has a zero element k ∈ [0, 1] and that satisfies

V (0, x) = x for all x ≤ k, (1)
V (1, x) = x for all x ≥ k. (2)

By definition, the case k = 0 leads back to t-norms, while the case k = 1 leads back
to t-conorms (cf. [6]). The next theorem shows that it is built up from a t-norm, a
t-conorm and the zero element.

Theorem 2.3. (Calvo et al. [3]) Let k ∈ (0, 1). A binary operation V is a nullnorm
with zero element k if and only if there exist a t-norm T and a t-conorm S such that

F (x, y) =


kS
(
x
k ,

y
k

)
if x, y ∈ [0, k],

k + (1− k)T
(
x−k
1−k ,

y−k
1−k

)
if x, y ∈ [k, 1],

k otherwise.

(3)

Definition 2.4. (Mas et al. [9]) Operation F : [0, 1]2 → [0, 1] is called t-operator if it
is commutative, associative, increasing and such that

F (0, 0) = 0, F (1, 1) = 1, and (4)
F0 and F1 are continuous, where F0(x) = F (0, x), F1(x) = F (1, x). (5)
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It has been pointed out that nullnorms and t-operators are equivalent ([11]).

Definition 2.5. (Drygaś [4]) Operation F : [0, 1]2 → [0, 1] is called semi-t-operator if
it is associative, increasing, fulfils (4) and such that the functions F0, F1, F 0, F 1 are
continuous, where F0(x) = F (0, x), F1(x) = F (1, x), F 0(x) = F (x, 0) and F 1(x) =
F (x, 1).

Denote Fa,b the family of all semi-t-operators, such that F (0, 1) = a and F (1, 0) = b.

Theorem 2.6. (Drygaś [4]) Let F : [0, 1]2 → [0, 1], F (0, 1) = a and F (1, 0) = b.
Operation F ∈ Fa,b if and only if there exist semi-t-norm TF and semi-t-conorm SF
such that

F (x, y) =



aSF

(
x
a ,

y
a

)
if x, y ∈ [0, a],

b+ (1− b)TF
(
x−b
1−b ,

y−b
1−b

)
if x, y ∈ [b, 1],

a if x ≤ a ≤ y,
b if y ≤ b ≤ x,
x if a ≤ x ≤ b,

(6)

when a ≤ b and

F (x, y) =



bSF

(
x
b ,

y
b

)
if x, y ∈ [0, b],

a+ (1− a)TF
(
x−a
1−a ,

y−a
1−a

)
if x, y ∈ [a, 1],

a if x ≤ a ≤ y,
b if y ≤ b ≤ x,
y if b ≤ y ≤ a,

(7)

when b ≤ a.

Let L be the set given by,

L = {x0 ≺ x1 ≺ · · · ≺ xn ≺ xn+1}.

We use the notation 0 := x0 and 1 := xn+1 in the sequel. For any xi, xj ∈ L, xi � xj
let us define

〈xi, xj〉 = {xk ∈ L | xi � xk � xj}

which can be considered as the “closed interval” of points in L between xi and xj . Note
that xi and xj are always in 〈xi, xj〉.

In the sequel, unless otherwise stated, L always represents any given finite totally
ordered set with maximal element 1 and minimal element 0.

Definition 2.7. (Fodor [5]) Let F be a binary operator on L. We say that F is smooth
in the first place if

F (xi, xj) = xk and F (xi−1, xj) = xl, imply k − 1 ≤ l ≤ k. (8)

For any xi, xj , xi−1, xk, xl ∈ L.
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Definition 2.8. (Fodor [5]) Let F be a binary operator on L. We say that F is smooth
in the second place if

F (xi, xj) = xk and F (xi, xj−1) = xm, imply k − 1 ≤ m ≤ k. (9)

For any xi, xj , xj−1, xk, xm ∈ L.

A binary operator F on L is said to be smooth if it is smooth in each place (see
[5] for detail). In [9], a smooth binary operator is also said to verify the 1-smoothness
condition.

Definition 2.9. (Torrens [16], Mas et al. [9]) Let (L,�) be a finite totally ordered
set with minimum and maximum which will be represented by 0 and 1, respectively. A
triplet (T, S,N) defines a “directed algebra structure” on L, or (L,�, T, S,N) is said to
be a “directed algebra” if it verifies:

(a) T and S are binary operations on L associative, commutative, and such that
T (1, 1) = 1 and S(0, 0) = 0;

(b) N : L → L is an involution such that N(T (x, y)) = S(N(x), N(y));

(c) x � y iff there exists z ∈ L such that x = T (y, z)
iff there exists w ∈ L such that y = S(x,w).

In that case the operator T will be called an AND operator and the operator S an
OR operator of the directed algebra on L. We will also say that N is a negation on L
and that S and T are N -dual operators.

Remark 2.10. (i) In [16], it is shown that T , S, N preserve the main properties of t-
norms, t-conorms, and strong negations, respectively. Namely, N must be a decreasing
bijection, such that N(0) = 1 and N(1) = 0. T must be nondecreasing, must have
1 as neutral and 0 as absorbing elements, and for all i, j = 0, 1, ..., n + 1 it verifies
T (xi, xj) � xi, xj . Dual properties are also valid for S.

(ii) Mas et al. [9] showed that if (L,�, T, S,N) is a directed algebra, then T and S
verify 1-smoothness.

A semi-t-norm (semi-t-conorm) on L is a non-commutative t-norm (t-conorm) on L.

Definition 2.11. (Mas et al. [9]) A binary operator F : L × L → L verifying 1-
smoothness is said to be a t-operator on L if it is associative, commutative, and such
that F (0, 0) = 0, F (1, 1) = 1. (Recall that 1-smoothness directly implies that F is
nondecreasing in each place.)

Theorem 2.12. (Mas et al. [9]) F : L × L → L is a t-operator on L if and only if
there exists an OR operator S of directed algebra on L0,xk

= {0 = x0, x1, ..., xk} and
an AND operator T of directed algebra on Lxk,1 = {xk, xk+1, ..., 1}, where xk = F (0, 1)
such that

F (x, y) =

 S(x, y) if x, y ∈ L0,xk
,

T (x, y) if x, y ∈ Lxk,1,
xk otherwise.

(10)
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Fodor [5] studied smooth associative operations on L and give a characterization as
follows:

Theorem 2.13. (Fodor [5]) Suppose a function M with properties M(0, 0) = 0 and
M(1, 1) = 1. Let λ := M(1, 0), µ := M(0, 1) and suppose λ � µ. If M is associative,
increasing, and smooth, then M is of the following form:

M(x, y) =


S〈0,λ〉(x, y) if x, y ∈ 〈0, λ〉,
λ if x ∈ 〈λ, 1〉, y ∈ 〈0, λ〉,
y if x ∈ L, y ∈ 〈λ, µ〉,
µ if x ∈ 〈0, µ〉, y ∈ 〈µ, 1〉,
T〈µ,1〉(x, y) if x, y ∈ 〈µ, 1〉,

(11)

where T〈µ,1〉 is a smooth t-norm on 〈µ, 1〉 and S〈0,λ〉 is a smooth t-conorm on 〈0, λ〉.
Conversely, if λ, µ ∈ L are such that λ � µ, T〈µ,1〉 is a smooth t-norm on 〈µ, 1〉, S〈0,λ〉

is a smooth t-conorm on 〈0, λ〉 and M is defined by formula (11), then M is associative,
increasing and smooth with M(0, 0) = 0, M(1, 1) = 1, M(1, 0) = λ, M(0, 1) = µ.

Theorem 2.14. (Fodor [5]) Suppose a function M with properties M(0, 0) = 0 and
M(1, 1) = 1. Let λ := M(1, 0), µ := M(0, 1) and suppose µ � λ. If M is associative,
increasing, and smooth, then M is of the following form:

F (x, y) =


S〈0,µ〉(x, y) if x, y ∈ 〈0, µ〉,
µ if x ∈ 〈0, µ〉, y ∈ 〈µ, 1〉,
x if x ∈ 〈µ, λ〉, y ∈ L,
λ if x ∈ 〈λ, 1〉, y ∈ 〈0, λ〉,
T〈λ,1〉(x, y) if x, y ∈ 〈λ, 1〉,

(12)

where T〈λ,1〉 is a smooth t-norm on 〈λ, 1〉 and S〈0,µ〉 is a smooth t-conorm on 〈0, µ〉.
Conversely, if λ, µ ∈ L are such that µ � λ, T〈λ,1〉 is a smooth t-norm on 〈λ, 1〉, S〈0,µ〉

is a smooth t-conorm on 〈0, µ〉 and M is defined by formula (12), then M is associative,
increasing and smooth with M(0, 0) = 0, M(1, 1) = 1, M(1, 0) = λ, M(0, 1) = µ.

Riera and Torrens introduced nullnorms on L and give a characterisation of this kind
of operators.

Definition 2.15. (Riera and Torrens [14]) A nullnorm on L is a two-place function
G : L × L → L which is associative, increasing in each place, commutative, and such
that there exists some element k ∈ L, called absorbing element, such that G(k, x) = k
for all x ∈ L, and satisfies

G(0, x) = x for all x � k,
G(1, x) = x for all x � k.

Theorem 2.16. (Riera and Torrens [14]) A binary operation G : L × L → L is a
nullnorm if and only if there exist k ∈ L, a t-conorm S on [0, k] and a t-norm T on [k, n]
such that for all x, y ∈ L, G is given by

G(x, y) =

 S(x, y) if x, y ∈ 〈0, k〉,
T (x, y) if x, y ∈ 〈k, 1〉,
k otherwise.

(13)

Moreover, G is smooth if and only if T and S are smooth.
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Remark 2.17. By Theorems 2.12 and 2.16, we know that:

(i) On L, nullnorms and t-operators are not equivalent.

(ii) On L, t-operators are smooth nullnorms.

3. SEMI-T-OPERATORS ON L

Obviously, t-operators F on L verify 1-smoothness on L, however, counterparts of t-
operators on [0, 1], do not need to satisfy continuous condition on [0, 1]. Note that
1-smoothness is a global notion. As a counterpart of t-operators on [0, 1], t-operators
on L shall be smooth on the boundary. Below, we give first the notion of smoothness
on segments.

Definition 3.1. Let F be a binary operator on L and xi, xj ∈ L.

(i) We say that F (·, xj) is smooth if

F (xs, xj) = xu and F (xs−1, xj) = xv, imply u− 1 ≤ v ≤ u (14)

for any xs, xs−1 ∈ L.

(ii) We say that F (xi, ·) is smooth if

F (xi, xk) = xl and F (xi, xk−1) = xm, imply l − 1 ≤ m ≤ l (15)

for any xk, xk−1 ∈ L.

Now we establish equivalent formulations of (14) and (15) in the following lemma.

Lemma 3.2. Let F be a binary operator on L and xi, xj ∈ L. Then:

(i) F (xi, ·) is smooth if and only if the following property holds:

F (xi, xs) � xl � F (xi, xt)⇔ ∃xm ∈ L, s.t., xs � xm � xt and xl = F (xi, xm)

for any xs, xt ∈ L.

(ii) F (·, xj) is smooth if and only if the following property holds:

F (xu, xj) � xl � F (xv, xj)⇔ ∃xk ∈ L, s.t., xu � xk � xv and xl = F (xk, xj)

for any xu, xv ∈ L.

P r o o f . We refer to the proof of Theorem 2 in [5]. �

The commutativity property is not desired for these aggregation operators in a lot of
cases, for instance when not all the inputs to be aggregated have the same reliability.
In this way, we want to study a new family of operators on L: those like t-operators
by deleting the commutative property and substituting the global smoothness (or 1-
smoothness) by the smoothness on the boundary.



Semi-t-operators on a finite totally ordered set 673

Definition 3.3. A binary operator F : L×L → L is said to be a semi-t-operator on L
if it is associative, nondecreasing in each place, and such that F (0, 0) = 0, F (1, 1) = 1
and F (0, ·), F (·, 0), F (1, ·) F (·, 1) are smooth.

Now we are able to give a characterization of semi-t-operators on L similar to the
one for [0, 1]. Denote λ := F (1, 0) and µ := F (0, 1). Since λ, µ ∈ L, there are two cases:
either λ � µ or µ � λ. We consider only the first case in detail, the second one can be
studied in a similar way.

Theorem 3.4. Suppose F is a semi-t-operator on L. Let λ = F (1, 0), µ = F (0, 1) and
λ � µ. Then there exist a semi-t-norm T〈µ,1〉 on 〈µ, 1〉 and a semi-t-conorm S〈0,λ〉 on
〈0, λ〉 such that F is of the following form:

F (x, y) =


S〈0,λ〉(x, y) if x, y ∈ 〈0, λ〉,
λ if x ∈ 〈λ, 1〉, y ∈ 〈0, λ〉,
y if x ∈ L, y ∈ 〈λ, µ〉,
µ if x ∈ 〈0, µ〉, y ∈ 〈µ, 1〉,
T〈µ,1〉(x, y) if x, y ∈ 〈µ, 1〉.

(16)

Conversely, if λ, µ ∈ L are such that λ � µ, T〈µ,1〉 is a semi-t-norm on 〈µ, 1〉, S〈0,λ〉 is a
semi-t-conorm on 〈0, λ〉 and F is defined by formula (16), then F is a semi-t-operator.

P r o o f . Suppose F is a semi-t-operator on L. Let λ = F (1, 0), µ = F (0, 1) and λ � µ.
• The first step is to show that F (λ, 0) = F (1, λ) = λ and F (0, µ) = F (µ, 1) = µ.
By F (1, 0) = λ and F (0, 0) = 0, we have F (λ, 0) = F (F (1, 0), 0) = F (1, F (0, 0)) =

F (1, 0) = λ. In a similar way, we can show that F (1, λ) = λ and F (a, µ) = F (µ, b) = µ.
• Secondly, we will prove that F (x, y) = λ for all (x, y) ∈ 〈λ, 1〉×〈0, λ〉 and F (x, y) = µ

for all (x, y) ∈ 〈0, µ〉 × 〈µ, 1〉.
For any (x, y) ∈ 〈λ, 1〉 × 〈0, λ〉, by monotonicity of F , λ = F (0, λ) � F (x, y) �

F (1, λ) = λ, i. e., F (x, y) = λ. In an analogous way, we can show that F (x, y) = µ for
all (x, y) ∈ 〈0, µ〉 × 〈µ, 1〉.
• Thirdly, we will prove that F is a semi-t-conorm on 〈0, λ〉.
Let us take any x ∈ 〈0, λ〉. From F (0, 0) = 0, F (λ, 0) = λ, Lemma 3.2 and Definition

3.3, there exists x
′ ∈ 〈0, λ〉 such that x = F (x

′
, 0). Thus, F (x, 0) = F (F (x

′
, 0), 0) =

F (x
′
, F (0, 0)) = F (x

′
, 0) = x for all x ∈ 〈0, λ〉. Let us take any y ∈ 〈0, µ〉. It follows

from F (0, 0) = 0, F (0, µ) = µ, Lemma 3.2 and Definition 3.3 that there exists y
′ ∈ 〈0, µ〉

such that y = F (0, y
′
). Thus, F (0, y) = F (0, F (0, y

′
)) = F (0, y

′
) = y for all y ∈ 〈0, µ〉.

From Definition 3.3, we know that F is a semi-t-conorm on 〈0, λ〉.
• The fourth step is to show that F (x, y) = y for all (x, y) ∈ L × 〈λ, µ〉.
Let us take any y ∈ 〈λ, µ〉. It follows from F (1, λ) = λ, F (1, 1) = 1 Lemma 3.2

and Definition 3.3 that there exists y
′ ∈ 〈λ, 1〉 such that y = F (1, y

′
). Thus, F (1, y) =

F (1, F (1, y
′
)) = F (1, y

′
) = y for all y ∈ 〈λ, 1〉. So, for any (x, y) ∈ L × 〈λ, µ〉, y =

F (0, y) � F (x, y) � F (1, y) = y, i.e, F (x, y) = y.
• Finally, we will prove that F is a semi-t-norm on 〈µ, 1〉.
From the fourth step and Definition 3.3, we only need to prove F (x, 1) = x for all

x ∈ 〈µ, 1〉. Let us take any x ∈ 〈µ, 1〉. It follows from F (µ, 1) = 1, F (1, 1) = 1,
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Lemma 3.2 and Definition 3.3 that there exists x
′ ∈ 〈µ, 1〉 such that x = F (x

′
, 1). Thus,

F (x, 1) = F (F (x
′
, 1), 1) = F (x

′
, 1) = x for all x ∈ 〈µ, 1〉.

The second part can be justified by easy computations. �

We have above considered semi-t-operators when λ � µ, however, when µ � λ, the
results of semi-t-operators would be listed in what follows since their proofs are similar.

Theorem 3.5. Suppose F is a semi-t-operator on L. Let λ = F (1, 0), µ = F (0, 1) and
µ � λ. Then there exist a semi-t-norm T〈λ,1〉 on 〈λ, 1〉 and a semi-t-conorm S〈0,µ〉 on
〈0, µ〉 such that F is of the following form:

F (x, y) =


S〈0,µ〉(x, y) if x, y ∈ 〈0, µ〉,
µ if x ∈ 〈0, µ〉, y ∈ 〈µ, 1〉,
x if x ∈ 〈µ, λ〉, y ∈ L,
λ if x ∈ 〈λ, 1〉, y ∈ 〈0, λ〉,
T〈λ,1〉(x, y) if x, y ∈ 〈λ, 1〉.

(17)

Conversely, if λ, µ ∈ L are such that µ � λ, T〈λ,1〉 is a semi-t-norm on 〈λ, 1〉, S〈0,µ〉 is a
semi-t-conorm on 〈0, µ〉 and F is defined by formula (17), then F is a semi-t-operator.

Fig. 1. Structure of F from Theorems 3.4 and 3.5 (left (17), right (16))

0 µ λ 1

µ

λ

1

S〈0,µ〉

x

T〈λ,1〉
µ

λ

0 λ µ 1

λ

µ

1

S〈0,λ〉

T〈µ,1〉

y

µ

λ

Remark 3.6. (i) By comparison, the different point between our work and Fodor’s work
[5] and the work of Mas et al. [9] is that we do not demand that the binary operator is
smooth on L.

(ii) Without the smoothness, we cannot get the commutativity of S〈0,λ〉, T〈µ,1〉 in
Theorem 3.4 (or S〈0,µ〉, T〈λ,1〉 in Theorem 3.5). Example 3.7 demonstrates these.

Example 3.7. Let L8 = {0 ≺ x1 ≺ · · · ≺ x6 ≺ 1}. Definite a binary operator F on L
as follows:

1 x5 x5 x5 x5 x5 x5 x6 1
x6 x5 x5 x5 x5 x5 x5 x6 x6

x5 x5 x5 x5 x5 x5 x5 x5 x5

x4 x4 x4 x4 x4 x4 x4 x4 x4

x3 x3 x3 x3 x3 x4 x4 x4 x4

x2 x2 x3 x3 x3 x4 x4 x4 x4

x1 x1 x1 x2 x3 x4 x4 x4 x4

0 0 x1 x2 x3 x4 x4 x4 x4

F 0 x1 x2 x3 x4 x5 x6 1
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Routine calculation shows that F is a semi-t-operator on L8. However, F (x1, x1) = x1

and F (x1, x2) = x3, we know that F is not smooth on L8. Moreover, F (x1, x2) = x3 6=
x2 = F (x2, x1), i. e., F is non-commutative.

Example 3.8. Let L8 = {0 ≺ x1 ≺ · · · ≺ x6 ≺ 1}. Definite a binary operator F on L
as follows:

1 x4 x4 x4 x4 x4 x5 x6 1
x6 x4 x4 x4 x4 x4 x5 x6 x6

x5 x4 x4 x4 x4 x4 x5 x5 x5

x4 x4 x4 x4 x4 x4 x4 x4 x4

x3 x3 x3 x3 x3 x4 x4 x4 x4

x2 x2 x3 x3 x3 x4 x4 x4 x4

x1 x1 x1 x2 x3 x4 x4 x4 x4

0 0 x1 x2 x3 x4 x4 x4 x4

F 0 x1 x2 x3 x4 x5 x6 1

Routine calculation shows that F is a semi-t-operator with F (0, 1) = F (1, 0) = x4 on
L8. However, F (x1, x1) = x1 and F (x1, x2) = x3, we know that F is not smooth on L8.
Moreover, F (x1, x2) = x3 6= x2 = F (x2, x1), i. e., F is non-commutative.

Definition 3.9. A semi-t-operator is called pseudo-t-operator if it is commutative.

Corollary 3.10. Suppose F is a pseudo-t-operators on L. Let λ = F (1, 0), µ = F (0, 1).
Then k := λ = µ and there exist a t-norm T〈k,1〉 on 〈k, 1〉 and a t-conorm S〈0,k〉 on 〈0, k〉
such that F is of the following form:

F (x, y) =

 S〈0,k〉(x, y) if x, y ∈ 〈0, k〉,
T〈k,1〉(x, y) if x, y ∈ 〈k, 1〉,
k otherwise.

(18)

Conversely, if k ∈ L, T〈k,1〉 is a t-norm on 〈k, 1〉, S〈0,k〉 is a t-conorm on 〈0, k〉 and F is
defined by formula (18), then F is a pseudo-t-operator.

Fig. 2. Structure of F from Corollary 3.8 (Operator (18))

0 k 1

k

1

S〈0,k〉

T〈k,1〉k

k

Remark 3.11. (i) From Theorem 2.16 and Corollary 3.10, we can see that nullnorms
and pseudo-t-operators are equivalent on L.
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(ii) Denote NULL, ST OPER, PT OPER and T OPER the class of all nullnorms,
the class of semi-t-operators, the class of pseudo-t-operators and the class of t-operators
on L, respectively. Then

T OPER $ NULL ≡ PT OPER $ ST OPER.

4. CONCLUSIONS

In this paper, we have introduced semi-t-operators on a finite totally ordered set L,
which is a generalization of t-operators. A characterization of semi-t-operators on a
finite totally ordered set is given. The relations among nullnorms, t-operators, pseudo-
t-operators and semi-t-operators on a finite totally ordered set have been shown.
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