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NEW CHARACTERIZATIONS OF LINEAR WEINGARTEN

HYPERSURFACES IMMERSED IN THE HYPERBOLIC SPACE

Cícero P. Aquino and Henrique F. de Lima

Abstract. In this paper, we deal with complete linear Weingarten hypersur-
faces immersed in the hyperbolic space Hn+1, that is, complete hypersurfaces
of Hn+1 whose mean curvature H and normalized scalar curvature R satisfy
R = aH + b for some a, b ∈ R. In this setting, under appropriate restrictions
on the mean curvature and on the norm of the traceless part of the second
fundamental form, we prove that such a hypersurface must be either totally
umbilical or isometric to a hyperbolic cylinder of Hn+1. Furthermore, a rigidity
result concerning the compact case is also given.

1. Introduction and statements of the main results

Many authors have approached the problem of characterizing hypersurfaces
immersed with constant mean curvature or with constant scalar curvature in a real
space form Qn+1

c of constant sectional curvature c. For instance, Cheng and Yau [6]
classified closed hypersurfaces Mn with constant normalized scalar curvature R
satisfying R ≥ c and nonnegative sectional curvature immersed in Qn+1

c . Later
on, Li [7] extended the results due to Cheng and Yau [6] in terms of the squared
norm of the second fundamental form of the hypersurface. In [13], Shu used the
so-called generalized maximum principle of Omori-Yau [11, 14] to prove that a
complete hypersurface in the hyperbolic space Hn+1 with constant normalized scalar
curvature and nonnegative sectional curvature must be either totally umbilical
or isometric to a hyperbolic cylinder Sn−1(c1) × H1(c2), where c1 > 0, c2 < 0
and 1

c1
+ 1
c2

= −1. In [8], Li studied the rigidity of compact hypersurfaces with
nonnegative sectional curvature immersed in a unit sphere with scalar curvature
proportional to mean curvature.

More recently, Li et al. [9] studied the so-called linear Weingarten hypersurfaces
immersed in a unit sphere, that is, hypersurfaces of Sn+1 whose mean curvature
H and normalized scalar curvature R satisfy R = aH + b, for some a, b ∈ R. In
this setting, they showed that if Mn is a compact linear Weingarten hypersurface
with nonnegative sectional curvature immersed in Sn+1, such that R = aH + b
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with (n− 1)a2 + 4n(b− 1) ≥ 0, then Mn is either totally umbilical or isometric to
Sn−k(c1)×Sk(c2), where 1 ≤ k ≤ n−1, c1, c2 > 0 and 1

c1
+ 1
c2

= 1. Afterwards, the
authors [3] investigated the geometry of complete linear Weingarten hypersurfaces
with nonnegative sectional curvature immersed in the hyperbolic space. In this
setting, under the assumption that the mean curvature attains its maximum, they
showed that such a hypersurface must be either totally umbilical or isometric to a
hyperbolic cylinder.

Here, motivated by the works described above, we study the geometry of complete
linear Weingarten hypersurfaces immersed in the hyperbolic space Hn+1. First we
apply a suitable extension of a generalized maximum principle at the infinity of
Yau [15] due to Caminha in [4] (cf. Lemma 3.3) in order to obtain the following
characterization result:

Theorem 1.1. Let Mn be a complete linear Weingarten hypersurface immersed
in Hn+1 such that R = aH + b with H2 ≥ 1 and (n− 1)a2 + 4n(b+ 1) > 0. If H is
bounded, ∇H has integrable norm on Mn and
(1.1) |Φ| ≤ R+

H ,

where Φ stands for the traceless part of the second fundamental form of Mn and

R+
H = 1

2

√
n

n− 1

(√
n2H2 − 4(n− 1)− (n− 2)H

)
,

then Mn is either totally umbilical or isometric to a hyperbolic cylinder Sn−1(c1)×
H1(c2), if R > 0, or is isometric to S1(c1) × Hn−1(c2), if R < 0, where c1 > 0,
c2 < 0 and 1

c1
+ 1
c2

= −1.

We want to point out that, from Example (H-5) in Section 4 of [1] it is not
difficult to verify that |Φ| ≡ R+

H in the hyperbolic cylinders Sn−1(c1)×H1(c2) and
S1(c1)×Hn−1(c2). In this sense, since |Φ| ≡ 0 in the totally umbilical hypersurfaces,
we have that inequality (1.1) is a mild hypothesis and that Theorem 1.1 can be
regarded as a gap result.

Afterwards, we also get the following rigidity result related to the compact case:

Theorem 1.2. Let Mn be a compact linear Weingarten hypersurface immersed
in Hn+1 such that R = aH + b with H2 > 1 and (n − 1)a2 + 4n(b + 1) ≥ 0. If
inequality (1.1) is strict, then Mn is isometric to Sn, up to scaling.

The proofs of Theorems 1.1 and 1.2 are given in Section 3.

2. A Simons-type formula in the hyperbolic space

Let Mn be an orientable and connect n-dimensional hypersurface immersed
in the (n + 1)-dimensional hyperbolic space Hn+1. We choose a local field of
orthonormal frame {eA}1≤A≤n+1 in Hn+1, with dual coframe {ωA}1≤A≤n+1, such
that, at each point of Mn, e1, . . . , en are tangent to Mn and en+1 is normal to
Mn. We will use the following convention for the indices:

1 ≤ A,B,C, . . . ≤ n+ 1 , 1 ≤ i, j, k, . . . ≤ n .
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Denoting by {ωAB} the connection forms of Hn+1, we have that the structure
equations of Hn+1 are given by:

dωA =
∑
i

ωAi ∧ ωi + ωAn+1 ∧ ωn+1 , ωAB + ωBA = 0 ,

dωAB =
∑
C

ωAC ∧ ωCB −
1
2
∑
C,D

KABCDωC ∧ ωD ,

KABCD = −(δACδBD − δADδBC) .

Next, we restrict all the tensors to Mn. First of all, ωn+1 = 0 on Mn, so∑
i ωn+1i ∧ ωi = dωn+1 = 0 and we can use Cartan’s Lemma [5] to write

ωn+1i =
∑
j

hijωj , hij = hji .

This gives the second fundamental form of Mn, B =
∑
ij hijωiωjen+1. Further-

more, the mean curvature H of Mn is defined by H = 1
n

∑
i hii.

The structure equations of Mn are given by

dωi =
∑
j

ωij ∧ ωj , ωij + ωji = 0 ,

dωij =
∑
k

ωik ∧ ωkj −
1
2
∑
k,l

Rijklωk ∧ ωl .

Using the structure equations we obtain the Gauss equation

(2.1) Rijkl = −(δikδjl − δilδjk) + (hikhjl − hilhjk) ,

where Rijkl are the components of the curvature tensor of Mn.
The Ricci curvature and the normalized scalar curvature of Mn are given,

respectively, by

Rij = −(n− 1)δij + nHhij −
∑
k

hikhkj(2.2)

and

R = 1
n(n− 1)

∑
i

Rii .(2.3)

From (2.2) and (2.3) we obtain

|B|2 = n2H2 − n(n− 1)(R+ 1)

= nH2 + n(n− 1)(H2 −H2) ,(2.4)

where |B|2 =
∑
i,j h

2
ij is the square of the length of the second fundamental form

B of Mn, and H2 = 2
n(n−1)S2 denotes the mean value of the second elementary

symmetric function S2 on the eigenvalues of B. In particular, since (from the
Cauchy-Schwarz inequality) H2 −H2 ≥ 0, it follows from (2.4) that Mn is totally
umbilical if, and only if, |B|2 = nH2.
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The components hijk of the covariant derivative ∇B satisfy∑
k

hijkωk = dhij +
∑
k

hikωkj +
∑
k

hjkωki .

The Codazzi equation and the Ricci identity are, respectively, given by

hijk = hikj(2.5)

and

hijkl − hijlk =
∑
m

hmjRmikl +
∑
m

himRmjkl ,(2.6)

where hijk and hijk denote the first and the second covariant derivatives of hij .
The Laplacian ∆hij of hij is defined by ∆hij =

∑
k

hijkk. From equations (2.5)

and (2.6), we obtain that

(2.7) ∆hij =
∑
k

hkkij +
∑
k,l

hklRlijk +
∑
k,l

hliRlkjk .

Since ∆|B|2 = 2
(∑

i,j hij∆hij +
∑
i,j,k h

2
ijk

)
, from (2.7) we get

1
2∆|B|2 = |∇B|2 +

∑
i,i,k

hijhkkij +
∑
i,j,k,l

hijhlkRlijk

+
∑
i,j,k,l

hijhilRlkjk .(2.8)

Consequently, taking a (local) orthonormal frame {e1, . . . , en} on Mn such that
hij = λiδij , from equation (2.8) we obtain the following Simons-type formula

(2.9) 1
2∆|B|2 = |∇B|2 +

∑
i

λi(nH),ii + 1
2
∑
i,j

Rijij(λi − λj)2 .

3. Proofs of Theorems 1.1 and 1.2

In order to prove our results, we will quote some key lemmas. The first one
is a classic algebraic lemma due to M. Okumura in [10], and completed with the
equality case proved in [2] by H. Alencar and M. do Carmo.

Lemma 3.1. Let µ1, . . . , µn be real numbers such that
∑
i

µi = 0 and
∑
i

µ2
i = β2,

where β ≥ 0. Then

(3.1) − (n− 2)√
n(n− 1)

β3 ≤
∑
i

µ3
i ≤

(n− 2)√
n(n− 1)

β3 ,

and equality holds if, and only if, either at least (n− 1) of the numbers µi are equal.

The next result corresponds to Lemma 3.1 of [3].



NEW CHARACTERIZATIONS OF LINEAR WEINGARTEN HYPERSURFACES 205

Lemma 3.2. Let Mn be a linear Weingarten hypersurface in Hn+1, such that
R = aH + b for some a, b ∈ R. Suppose that

(3.2) (n− 1)a2 + 4n(b+ 1) ≥ 0 .

Then

(3.3) |∇B|2 ≥ n2|∇H|2 .

Moreover, if the inequality (3.2) is strict and equality holds in (3.3) on Mn, then
H is constant on Mn.

In the paper [15], Yau established the following version of Stokes’ Theorem on an
n-dimensional, complete noncompact Riemannian manifold Mn: if ω ∈ Ωn−1(M)
is an integrable (n− 1)-differential form on Mn, then there exists a sequence Bi of
domains on Mn such that Bi ⊂ Bi+1, Mn =

⋃
i≥1 Bi and

lim
i→+∞

∫
Bi

dω = 0 .

Suppose that Mn is oriented by the volume element dM . If ω = ιXdM is the
contraction of dM in the direction of a smooth vector field X on Mn, then Caminha
(see Proposition 2.1 of [4]) obtained a suitable consequence of Yau’s result, which
is described below. In what follows, L1(M) and divMX stand, respectively, for the
space of Lebesgue integrable functions and the divergence of a smooth vector field
X on Mn.

Lemma 3.3. Let X be a smooth vector field on the n-dimensional complete
oriented Riemannian manifold Mn such that divMX does not change sign on Mn.
If |X| ∈ L1(M), then divMX = 0.

Now, we can proceed with the proof of Theorem 1.1.

Proof of Theorem 1.1.
Let φ =

∑
i,j φijωi ⊗ ωj be a symmetric tensor on Mn defined by

(3.4) φij = nHδij − hij .

Following Cheng-Yau [6], we consider an operator � associated to φ acting on any
smooth function f by

(3.5) �f =
∑
i,j

φijfij =
∑
i,j

(nHδij − hij)fij .
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Setting f = nH in (3.5) and taking a local frame field {e1, . . . , en} on Mn such
that hij = λiδij , from equation (2.4) we obtain the following:

�(nH) = nH∆(nH)−
∑
i

λi(nH),ii

= 1
2∆(nH)2 −

∑
i

(nH)2
,i −

∑
i

λi(nH),ii

= n(n− 1)
2 ∆R+ 1

2∆|B|2 − n2|∇H|2 −
∑
i

λi(nH),ii .

Consequently, taking into account equation (2.9), we get

(3.6) �(nH) = n(n− 1)
2 ∆R+ |∇B|2 − n2|∇H|2 + 1

2
∑
i,j

Rijij(λi − λj)2 .

Now, we will introduce the following Cheng-Yau’s modified operator

(3.7) L = �− n− 1
2 a∆ .

Let us choose a (local) orthonormal frame {e1, . . . , en} on Mn such that hij =
λiδij . Since R = aH + b, from (3.6) and (3.7) we have that

(3.8) L(nH) = |∇B|2 − n2|∇H|2 + 1
2
∑
i,j

Rijij(λi − λj)2 .

Thus, since from (2.1) we have that Rijij = λiλj − 1, from (3.8) we get

(3.9) L(nH) = |∇B|2 − n2|∇H|2 + n2H2 − n|B|2 − |B|4 + nH
∑
i

λ3
i .

Now, set Φij = hij −Hδij . We will consider the following symmetric tensor

Φ =
∑
i,j

Φijωi ⊗ ωj .

Let |Φ|2 =
∑
i,j

Φ2
ij be the square of the length of Φ. It is easy to check that Φ is

traceless and

(3.10) |Φ|2 = |B|2 − nH2 .

With respect to the frame field {e1, . . . , en} on Mn, we have that Φij = µiδij and,
with a straightforward computation, we verify that

(3.11)
∑
i

µi = 0,
∑
i

µ2
i = |Φ|2 and

∑
i

µ3
i =

∑
i

λ3
i − 3H|Φ|2 − nH3 .

Thus, using the Gauss equation (2.1) jointly with (3.11) in (3.9), we get

(3.12) L(nH) = |∇B|2 − n2|∇H|2 + nH
∑
i

µ3
i + |Φ|2(−|Φ|2 + nH2 − n) .
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By applying Lemmas 3.1 and 3.2, from (3.12) we have

(3.13) L(nH) ≥ |Φ|2
(
− |Φ|2 − n(n− 2)√

n(n− 1)
H|Φ|+ nH2 − n

)
= |Φ|2PH

(
|Φ|
)
,

where

(3.14) PH (|Φ|) = −|Φ|2 − n(n− 2)√
n(n− 1)

H|Φ|+ nH2 − n .

Since we are supposing that H2 ≥ 1, from (3.14) it is easy to verify that PH(|Φ|)
has two real roots R−H and R+

H given by

R−H = −1
2

√
n

n− 1

(√
n2H2 − 4(n− 1) + (n− 2)H

)
and

R+
H = 1

2

√
n

n− 1

(√
n2H2 − 4(n− 1)− (n− 2)H

)
.

Consequently, we have that
(3.15) PH (|Φ|) =

(
|Φ| − R−H

)(
R+
H − |Φ|

)
.

Thus, from (1.1) and (3.15) we conclude that PH (|Φ|) ≥ 0. Hence, from (3.13) we
get
(3.16) L(nH) ≥ |Φ|2PH (|Φ|) ≥ 0 .

On the other hand, from (3.5) and (3.7), we have no difficult to verify that
(3.17) L(nH) = divM (P (∇H)),

where P =
(
n2H + n(n−1)

2 a
)
I − nB and I denotes the identity in the algebra of

smooth vector fields on Mn.
Moreover, since R = aH + b and H is bounded on Mn, from equation (2.4) we

have that B is bounded on Mn. Consequently, the operator P is bounded and,
since we are also assuming that |∇H| ∈ L1(M), we obtain that
(3.18) |P (∇H)| ∈ L1(M).

Thus, from (3.16), (3.17), (3.18), we can apply Lemma 3.3 to obtain that
L(nH) = 0 on Mn. Consequently, taking into account that all the inequalities that
we have obtained are, in fact, equalities, from (3.8) we have that |∇B|2 = n2|∇H|2.
Since (n− 1)a2 + 4n(b+ 1) > 0, we can apply once more Lemma 3.2 to get that H
is constant on Mn. Thus, it follows that |Φ| is also constant on Mn.

If |Φ| < R+
H , then from (3.16) we have that |Φ| = 0 and, hence, Mn is totally

umbilical. If |Φ| = R+
H , since equality holds in (3.1) of Lemma 3.1, we conclude that

Mn is either totally umbilical or an isoparametric hypersurface with two distinct
principal curvatures, one of which is simple. Therefore, from the classification of
the complete isoparametric hypersurfaces having at most two distinct principal
curvatures due to Ryan [12] (see also Theorem 5.1 of [1]), we conclude that Mn
is either totally umbilical or isometric to a hyperbolic cylinder Sn−1(c1)×H1(c2),
if R > 0, or is isometric to S1(c1)×Hn−1(c2), if R < 0, where c1 > 0, c2 < 0 and
1
c1

+ 1
c2

= −1. �
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We close our paper by presenting the proof of Theorem 1.2.

Proof of Theorem 1.2.
Since the symmetric tensor φ defined in (3.4) is divergence-free, it follows from [6]

that the operator � is self-adjoint relative to the L2 inner product of Mn, that is,∫
M

f�g =
∫
M

g�f ,

for any smooth functions f and g on Mn. Hence, the operator L is also self-adjoint
relative to the L2 inner product of Mn. Thus, from (3.16) we have that

(3.19) 0 =
∫
M

L(nH)dM =
∫
M

{
|Φ|2PH (|Φ|)

}
dM ≥ 0 .

Consequently, since we are assuming that |Φ| < R+
H , from (3.19)) we have that

|Φ| = 0 on Mn. Therefore, Mn is totally umbilical and, hence, from the classification
of the totally umbilical hypersurfaces of Hn+1 we conclude that Mn must be
isometric to Sn(r), for some r > 0. �
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