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OSTROWSKTI'S TYPE INEQUALITIES
FOR COMPLEX FUNCTIONS DEFINED ON UNIT CIRCLE
WITH APPLICATIONS FOR UNITARY OPERATORS
IN HILBERT SPACES

S.S. DRAGOMIR

ABSTRACT. Some Ostrowski’s type inequalities for the Riemann-Stieltjes inte-
gral fab f (eit) du (t) of continuous complex valued integrands f: C (0,1) — C
defined on the complex unit circle C (0, 1) and various subclasses of integrators
u: [a,b] C [0,27] — C of bounded variation are given. Natural applications
for functions of unitary operators in Hilbert spaces are provided as well.

1. INTRODUCTION

The problem of approximating the Stieltjes integral f: f (t) du (t) by the quantity
f(x)[u(b) —u(a)], which is a natural generalization of the Ostrowski problem
analyzed in 1937 (see [0]), was apparently first considered in the literature by the
author in 2000 (see [I]) where we obtained the following result:

hN@—M@U@ﬂ—LU@MW®\SHwaﬁgﬂﬂ+@—xY0Uﬂ
[(w=a)+ (b -] [SVE (H+ 5 VE (- Vo

(1.1) < x @) @x)ﬁﬁVﬂﬁ) (V2 ()
it p>1, ,_,_,:1.

gwfaﬂxtmuvmn.

for each x € [a, b], provided f is of bounded variation on [a, b], \/Z (f) is its total
variation on [a, ], while u: [a,b] — R is r — H-Holder continuous, i.e., we recall

that:
(1.2) lu(z) —u(y)| < H|z—y|" foreach z,y¢€[a,b],
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where H > 0 and r € (0, 1].

The dual case, i.e., when the integrand f is ¢ — K-Holder continuous and the
integrator u is of bounded variation was obtained by the author in 2001 and can
be stated as [2]

b 1 a+bne b
(13) [ = u @) @) - [ f@du®] <K[;0-0+ |- 52"V @
for each x € [a, b].
The above inequalities provide, as important consequences, the following mid-
point inequalities:

atb b & (b—a) HV.(f)
(1.4) W@MMf(Q)LJﬁMMMS{;wﬂWKvmw

which can be numerically implemented and provide a quadrature rule for approxi-
mating the Stieltjes integral f: £ () du(t).

Let U be a selfadjoint operator on the complex Hilbert space (H, (-, -)) with the
spectrum Sp (U) included in the interval [m, M| for some real numbers m < M and
let {Ex}, be its spectral family. Then for any continuous function f: [m, M] — R,
it is well known that we have the following spectral representation in terms of the
Riemann-Stieltjes integral:

M

(15) <ﬂmaw=/ FOd(Era,y)) |

m—0
for any «, y € H. The function g, , (A) := (Exx,y) is of bounded variation on the
interval [m, M] and

Gry(m—0)=0 and gg, (M) = (2,y)

for any =,y € H. It is also well known that g, (\) := (E\x,x) is monotonic
nondecreasing and right continuous on [m, M].

On utilizing the spectral representation and the Ostrowski’s type inequa-
lity we obtained the following result for continuous functions of selfadjoint
operators:

Theorem 1 ([4]). Let A be a selfadjoint operator in the Hilbert space H with the
spectrum Sp (A) C [m, M] for some real numbers m < M and let {Ex}, be its
spectral family. If f: [m, M] — R is r — H-Hélder continuous on [m, M], then we
have the inequality

M y

76 () — (F () )] < BN (Boyww)) [5 01 —m) 1 [s - "N

2

1

m+ M
2

(16) < H e ly) [ (M —m) +|s -

for any x, y € H and s € [m, M].
The following dual result also holds:
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Theorem 2 ([3]). Let A be a selfadjoint operator in the Hilbert space H with the
spectrum Sp (A) C [m, M| for some real numbers m < M and let {Ex}, be its
spectral family. If f: [m, M] — R is a continuous function of bounded variation
on [m, M], then we have the inequality

S

1£(5) () = (f (A) 2, 9) | < (B, 2)? (Bay, ) \/ ()
M
+ (L = B w,a)'? (1 — 1/2\/

(1.7) < Jall 1yl ( 2\\/ (D) < llzl Iy \/

for any x, y € H and for any s € [m, M|, where 1H is the identity operator on H.

Motivated by the above results, we investigate in the current paper the magnitude
of the difference

f (e”) [u(b) —u(a)] — / f (e”) du(t) with s € [a,b] C [0, 27]

for continuous complex valued function f: C (0,1) — C defined on the complex unit
circle C (0,1) and various subclasses of functions u: [a,b] C [0, 27] — C of bounded
variation. Natural applications for functions of unitary operators in Hilbert spaces
are provided as well.

2. SCALAR OSTROWSKI'S TYPE INEQUALITIES

Theorem 3. Assume that f: C(0,1) — C satisfies the following Holder’s type
condition

(2.1) If () = f(w)| < H |z —w|
for any w,z € C(0,1), where H > 0 and r € (0,1] are given.

If [a,b] C [0,27] and the function u: [a,b] — C is of bounded variation on [a,b],
then

F(e)[ulb) - u(a)] - / " F(e) duft
sin <S2t> T\b/(u)

for any s € [a,b], where \/ (u) denotes the total variation of w on the interval [a,b].

(2.2) < 2"H max
t€la,b]

Proof. Observe that
b

b
(2.3) I (eis) [u(b) — u(a)] —/ I (e“) du (t) = / [f (eis) - f (e“)} du (t)

a

for any s € [a,b].
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It is known that if p: [¢,d] — C is a continuous function and v: [¢,d] — C is

of bounded variation, then the Riemann-Stieltjes integral f p (t) dv (t) exists and
the following inequality holds

d

(24) / FUIE mas [p (0] \/ (v)

d
where \/ (v) denotes the total variation of v on [, d).

c
Applying the property (2.4) to the identity (2.3) and utilizing the Hélder’s type
condition ([2.1) we have successively

b

’f(eis)[ / F(e™) du(t ’— max | ”) —f(e“)‘\/(u)

t€la,b]
b
2.5 < H is L it|T
(2.5) max |e — e \ (W)
Since

™ — eit‘z = ‘eis’2 —2Re (ei(s_t)) + ’eit‘Q =2 —2cos (s — t) = 4sin? (ST_t)

for any t, s € R, then

T

; T . s—t
2.6 is _ it 27| &i ( )
(2.6) |e e | sin { —
for any ¢, s € R.
Now, by (2.5) and (2.6)) we deduce the desired result ([2.2)). O
Remark 1. If a = 0 and b = 2, then for any s € [0,2n] there exists a unique
t € [0,27] such that 1|t —s| = Z, therefore max,eo 2 [sin (551)] = 1 for all

s € [0,27] and we deduce from (2.2) the following mequahty of interest

(2.7) ‘f (") [u (2m) — u (0)] —/0 ' f(e") du(t) ‘ < 2TH\/ (u)

that holds for each s € [0, 27].

Remark 2. If [a,b] C [0,27] and 0 < b —a < 7 then for all ¢,s € [a
2|t —s| < 3 (b—a) < 5. Since the function sin is increasing on [0,
have successively that

b] we have
J;

7
g then we

tren[’%] sin (%_t)‘ = sin (tlen[;a)g] 3 [t — s ) = sin (% max {b—s,s — a})
(2.8) :sin<i(b—a 2‘ CH_bD

for any s € [a, b].



OSTROWSKI’'S TYPE INEQUALITIES FOR COMPLEX FUNCTIONS 237

Therefore, under the assumptions of Theorem [3| and if [a,b] C [0,27] with
0<b—a<m, then
b

FE )~ ula)) — [ f () du(t)

a

1
(2.9) < 2"H sin” [ (b—a)+ 5‘3—

1 a+b
4 2

b 1 b
H \/ (w) < 2" Hsin” [5 (b—a)} \/ ()
for all s € [a, b].

In particular, the best inequality we can get from (2.9)) is incorporated in
(2.10)

() ) @) [ 1) duo| <2 [fo-a] \i/(u) |

The case when f: C (0,1) — C satisfies the Lipschitz condition |f (z) — f (w)] <
L|z — w| for any w, z € C(0,1), where L > 0 is given, is of interest due to various
examples one can consider. Also in this case we can show that the corresponding
version of the inequality is sharp.

Corollary 1. Assume that f: C(0,1) — C is Lipschitzian with the constant L > 0
on the circle C (0,1). If [a,b] C [0,27] with 0 < b —a < 7 and the function
u: [a,b] — C is of bounded variation on [a,b], then we have

(211) | (™) [u(®) - u (@) - / b

a

(") du(t)‘ < 2Lsin E (b—a)] \b/(u) .

The constant 2 cannot be replaced by a smaller quantity.

Proof. We need to prove only the sharpness of the constant.
If we consider the function f: C — C, f (z) = z, then obviously f is Lipschitzian
with the constant L = 1. Also, consider in (2.11)) a =0 and b = 7 to get

(2.12) ’z [u () — u (0)] — /Oﬂ eltdu (t) ‘ < \/i\ﬂ/ (u) .
0

Utilising the integration by parts formula for the Riemann-Stieltjes integral we
have

/ etdu (1) = et (1) | — i / eitu (t) dt = —u (7)) — u(0) — i / citu (t) dt
0 0 0
and replacing into the inequality (2.12)) we deduce

‘i[u(w) — w(0)] +u (1) +u (0) —l—i/ﬂeitu(t) dt‘ <v2\/ (u)
0 0
which is equivalent with

(2.13) ((z’ —1Du(r)+ (i +1)u(0) — /Tr eu (t) dt‘ <v2\/ (v

0
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that holds for any functions of bounded variation u: [0,7] — C and is of interest
in itself.
Now, assume that there exists a constant C' > 0 such that

(2.14) (i — V) u(m)+ (i +1)u(0) —/ e'tu (t) dt’ <c\/ (v
0 0
for any functions of bounded variation u: [0,7] — C.
Consider the function u: [0,7] — R with
{0 if 0<t<m

u(t) =
®) 1 if t=m.

Then v is of bounded variation, [ e"u (t)dt =0, \/ (u) =1 and from (2.14) we
0

get C' > +/2 showing that (2.14) is sharp and therefore (2.11)) is sharp. g

Remark 3. The case of Riemann integral, namely when w (t) = t, ¢t € [a,b] C
[0, 27], is as follows

T

) 1 b . s—t
s\ __ it T :
(2.15) ‘f (e") b—al f(e") du(t) ’ <2 Hfél[i’é} Sln( 5 )

for any s € [a, b] provided that f: C (0,1) — C satisfies the Holder’s type condition
D).
When w is an integral, then the following weighted integral inequality also holds.

Remark 4. If w: [a,b] C [0,27] — C is Lebesgue integrable on [a, b] and
f:C(0,1) — C satisfies the Holder’s type condition (2.1)), then

‘f (") /abw(t) dt — /abf (e)w (t) dt‘

s—1
. < 2" i
(2.16) 2 Htren[;a,)g]‘sm( 5 )

-
[ o) de
for any s € [a, D]
In particular, if w (t) > 0 for ¢ € [a,b] and f: w (t) dt > 0 then
(2.17) ‘f (e") — _r /bf (e")w(t) dt‘ < 2"H max |sin (S—_t)
[Pw(t)dt Ja =7 telad) 2

Theorem 4. Assume that f: C(0,1) — C is Lipschitzian with the constant L > 0
on the circle C (0,1). If [a,b] C [0, 27] and the function u: [a,b] — C is Lipschitzian
with the constant K > 0 on [a,b], then

‘f (eis) W) ul) - /bf (eit) du (t) ‘ < 4LK[sin2 (%) + sin? (b ; 5)}

a

T

a

for any s € [a, b].

(2.18) < 8LK sin® (b < a)
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for any s € [a, b].

Proof. It is well known that if p: [a,b] — C is a Riemann integrable function and
v: [a,b] — C is Lipschitzian with the constant M > 0, i.e.,

lf(s)—f (@) < Mls—t| for any t,s € [a,b] ,

then the Riemann-Stieltjes integral fab p (t) dv (t) exists and the following inequality
holds

(2.19) ‘/ ) do (t <M/ p(1)] dt .

Utilising the property (2.19 , we have from (2.3)) that
b b
£ () [u(b) - u(@)] —/a F (") dut)] = \/ () = £ ()] dut) |

(2.20) <K/ |f (") — ”)|dt<KL/ e — ™| dt

for any s € [a, b].
Since, by ([2:6), |e’* — '] = 2|sin (%H for any ¢, s € R, then

/|e’5— ”|dt—2/ [sin (25~ ‘dt
o [T (S5 s [ (52 al
RG]

_ h— h—
(2.21) 4{sm (S 4(1) + sin? (Tsﬂ §851n2( 4a)
for any s € [a,b] C [0, 27], and the inequality (2.18)) is proved. O

The best inequality we can get from (2.18]) is incorporated in
Corollary 2. With the assumptions in Theorem [ we have the inequality

(2.22) ’f( ‘””) (b)u(a)}/abf(e“) du(t)’SSLKSinQ(b;a).

The multiplicative constant 8 cannot be replaced by a smaller quantity.

Proof. We need to prove only the sharpness of the constant.
If we consider the function f: C — C, f (z) = z, then obviously f is Lipschitzian
with the constant L = 1. Also, consider in (2.22)) a = 0 and b = 27 to get

27
(2.23) ’7 [u(27) — u (0)] — / eitdu (t)‘ <4K .

0
Utilising the integration by parts formula for the Riemann-Stieltjes integral, we
have

/O%eitdu (t) = e'u(t)

2

—i/o elu(t)dt:u(Zw)—u(O)—i/O citu (t) dt,

0
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which inserted in (2.23) produces the inequality
2
|~ 2[u(2m) —u(0) +i/ u (1) di] < 4K
0
which is equivalent with
27 . 2

(2.24) | / u (1) dt — 2 [u(2r) —u(0)] | < 4K

0 1
that holds for any K-Lipschitzian function w: [0,27] — C and is of interest in

itself.
Now, assume that the inequality (2.24]) holds with a constant D > 0, namely

27
, 2
(2.25) | / éut) di — > Ju(2r) —u(0)] | < DK
0
for any K-Lipschitzian function u: [0,27] — C.
Consider u: [0,27] — R, u (t) = |t — 7|. Then, by the continuity property of the

modulus we have that u is Lipschitzian with the constant K = 1.
We also have that

27 ) 27 ) 2
/ eitu (t) dt:/ et |t — x| dt:/ It — | (cost + isint) dt
0 0 0

2 27
:/ |t—7r\costdt+i/ [t — 7| sintdt.
0 0

Observe that by symmetry reasons fo% [t — 7| sintdt = 0 and

27 ™ ™
/ |t—7r|costdt:2/ (ﬂ—t)costdt:2[(7r—t)sint|g—|—/ Sintdt} =4
0 0 0
and by (2.25)) we get D > 4 which proves the desired sharpness of the constant 8
in (2:22). 0

Remark 5. If u (t) = t, ¢ € [a,b], then we get from (2.18) and (2.22) the following
inequalities for the Riemann integral

‘f (eis) (b—a)— /bf (eit) dt‘ < 4L[SiH2 (%) + sin’ (b;S)]

a

(2.26) < 8L sin® (b < a)

for any s € [a,b] and

(2.27) Py o —a)- /abf (") dt| < 8Lsin® (bg“)

provided that f: C (0,1) — C is Lipschitzian with the constant L > 0 on the circle
C(0,1).
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Remark 6. If w: [a,b] C [0,27] — C is essentially bounded on [a, b] and f: C (0, 1)
— C is Lipschitzian with the constant L > 0 on the circle C (0, 1), then we have
the following weighted integral inequality

) [ a 1w af <oz [ (C70) w50

(2.28) < 8L |jw]|, sin (b;a)

for any s € [a, b] where [[wl| = esssup;cq ) |w ()]
In particular, we have

(2.29) ‘f(e%*”i) /abw(t) dt_/abf(eit)w(t) dt‘gSLHwHoosin?(bga).

The case of monotonic integrators is as follows:

Theorem 5. Assume that f: C(0,1) — C is Lipschitzian with the constant L > 0
on the circle C (0,1). If [a,b] C [0,27] and the function u: [a,b] — R is monotonic
nondecreasing on [a,b], then

]f(e“) [ (b)—u(a)]—/abf () du(t)‘ < 2L[sm( S)U(b) —sin(sg“)u(a)}

(2.30) +L /ab sgn (s —t) cos (STt)u (t) dt

for any s € [a,b].
In particular, we have

}f (eaTHi) [u(b) —u(a)] — /abf (") du(t) ' < 2Lsin (b?Ta> [u(b) —u(a)]
ath _

(2.31) + L/b sgn (GTM — t) cos (72

Proof. It is well known that if p: [a,b] — C is a continuous function and
v: [a,b] — R is monotonic nondecreasing on [a,b], then the Riemann-Stieltjes

)u(t) dt.

integral f; p(t) dv (t) exists and the following inequality holds

(232) [rowo|s [ o,

Utilising the property , we have from (2.3)) that
7 () [u(b)—u(a)]—/ ) du (t ‘_‘/ CF ()] du(t)‘
(2.33) / £ () — £ ()] du(t) < L/ | — | du (¢

for any s € [a, b].
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Since, by , |ei5 — e”| =2 |sin (ST_t)| for any t,s € R, then

/ab‘eis—eit‘ du(t)z?/ab Sin(sT_t)’dU(t)
(2.34) :2[/assin<‘s;t) du(t)-l—/sbsin(t;s) du(t)]

for any s € [a,b] C [0, 27].
Utilising the integration by parts formula for the Riemann-Stieltjes integral, we

have
s 1 f° s—t
a+§/ cos( 5 )u(t)dt

/: sin (ST_t) du (t) = sin (%ﬂf)u (t)
/ cos w (t) dt

. (S
= —sin
tfs

and

b

/bsin(t2$>du(t)sin(t25 . %
:sin(b;8>u(b) - ;/bcos (t; )u(t) dt,
which, by , produce the equality
/: le" —e"| du(t) = Z[Sin (b ; S)u(b) —sin (8 ; a)u(a)}
+/:cos (ST_t)u(t) dt — bcos (t_ S)u(t) dt

2
= Q{Sin (bgs>u(b) — sin (S;a)u(a)]

u(t) dt

b
—t
(2.35) + / sgn (s — t) cos (S 5 )u (t) dt.
Utilising (2.33]) we deduce the desired result (2.30)). d

Remark 7. We remark that if a = 0 and b = 27, then we get from (2.30) and

[£31) that

2m

7() [u(2m) —u(©)] - /0 £ () du()] < 2Lsin (3) u(2m) —u (0)]
(2.36) +L -/027r sgn (s —t) cos (ST_t)u (t) dt

for any s € [a,b].
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In particular, we have

)f (—1) [u(27) —u(0)] - /0277 £ () du(t) ‘ < V2L[u(2r) — u(0)]
(2.37) ) /:ﬂ sgn (7 — {) sin (%)u (#) dt.

Corollary 3. Assume that f and u are as in Theorem@ then for any [a,b] C [0, 27]
with 0 < b —a < m we have the sequence of inequalities

— S)u(b) — sin (S;a)u(a)]

F(e®)u(b) — u(a)] — /ab Flett) du(t)‘ < 2L[sm (b

+L/absgn(s—t)cos(s t)u(t) dt
(2.38) < QL[sm (b‘TS) [u (b) — u(s)] + sin (5 3 “) [u(s) — u(a)]] — B(s)

where

B(s) < 2L x s [il() u(b)—u(a) u(b)+u(a)
2s n(—)cos( 22)[ 5 Jr‘u(s)*#

for any s € [a,b].
In particular, we have

‘f(eagbl) [u(b) —u(a)] — /abf (") du(t) ‘ < 2Lsin (I)TTCL) [u (b) — u(a)]

a+b _t

_ t) (T
COS 5

D) ®) ~ (@) .

Proof. Since 0 < b—a <7, then ‘S;t‘ < § for s,t € [a,b]. Utilising the fact that

b
(2.39) —|—L/ sgn(a+b

where

M < 2Lsin(

u is monotonic nondecreasing on [a, b] and cos (#) > 0 for s,t € [a,b], then

(2.40) /{: cos (S;t)u(t) dt < wu(s) /ascos (S;t) dt = 2u (s) sin (S ; a)

and
/Sbcos (S;t)u(t) dt>u(s)/sbcos(S;t) dt = 2u (s)sin (b;S)

(2.41) —/sbcos<8;t> (t) dt < —2u(s )sm<b;8).
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Summing (2.40) with (2.41)) we deduce that

s—a

/absgn(st)cos <ST)u(t) dtggu(s)sin( 5 )*2U(S)sin<b;8)

giving that

— S

2L | sin b u (b) — sin “Vu (a)| +L ’ sgn (s —t) cos u(t) dt
; 2

< 2L[sin (%) [ (b) — u(s)] + sin (8 ) [u(s) —u(a)]} :

which proves the second inequality in ([2.38)).
The bounds for B (s) follows from the elementary property stating that

az + Py < max {a, B} (x + y)
where «, G, z, y > 0. (Il

3. A QUADRATURE RULE
We consider the following partition of the interval [a, b]
Apia=x0<21 < <Tp_1<Tp,=2>b

and the intermediate points & € [xg, 2g+1] where 0 < k < n — 1. Define hy, :=
Tpt1 — Tk, 0<kE<n—1and v(A,) =max{h; : 0 <k <n— 1} the norm of the
partition A,,.

For the continuous function f: C (0,1) — C and the function u: [a,b] C [0,27] —
C of bounded variation on [a, b], define the quadrature rule

n—1

(3.1) On (fru, Ay €) = f (%) [u(wrp1) — u ()]

k=0

and the remainder R, (f,u, A, &) in approximating the Riemann-Stieltjes integral
f: f(e") du (t) by Oy (f,u, Ay, €). Then we have

b
(3.2) / £ () du () = On (ot Ans €) + R (ot A €) .

The following result provides a priory bounds for R,, (f,u, A,,£) in several instances
of f and u as above.

Proposition 1. Assume that f: C (0,1) — C satisfies the following Hélder’s type
condition
[f (2) = f(w)| < H |z —wl|"
for any w, z € C(0,1), where H > 0 and r € (0,1] are given.
If [a,b] C [0,27] and the function u: [a,b] — C is of bounded variation on [a,b],
then for any partition Ap:a =29 < v1 < -+ < Tp_1 < T, = b with the norm
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v(A,) <7 we have the error bound

Tr41
R (fy1t, A, )] <2”HZsm [ (1 — 21 %]&C—%H \/ ()
2’HZSln { (Tht1 —mk)} \/ (u)
n—1 Tk+1 b
(3.3) <SHY (wppr—ax)" \/ () < H(A0)\/ ()
k=0 Tk a

for any intermediate points & € [Tk, Tp11] where 0 <k <mn — 1.

Proof. Since v (A,) < m, then on writing inequality (2.9) on each interval
[z, Zk+1] and for any intermediate points & € [zk, Txt1] where 0 < k <n —1, we
have

F(€) (i) — ulex)] — /

Th+1

f (e“) du (t) ’

k

Ty
S 1 T+ Tp41
< 2"H sin [1 (Tht1 —l‘k)-l-i‘fk— 7""“ \/ ()

2
T
1 Th41 Tr41
(3.4) < 9" H sin” [5 (The1 — xk)} \/ () < H (241 —22)" \/ (w)
Tl Tk

where for the last inequality we have used the fact that sinx < z for x € [O, g]
Summing over k from 0 to n — 1 in (3.4) and utilizing the generalized triangle
inequality, we deduce the first part of (3.3)). The second part is obvious. (]

Corollary 4. Assume that f,u and A,, are as in Proposition[l} Define the midpoint
trapezoid type quadrature rule by

(3.5) W (s A) Z Fe™575) [u(wrga) — o)
and the error E, (f,u,Ay) by
(3.6) /bf (") du(t) =T, (f,u, An) + En (fiu, Ay)
Then we have the aerror bounds
n—1 Tk41
|En(fu, Ap)| <27H Y sin” [i (Tp41 — xk)} \7 ()
k=0 Ty

Thk+1

— b
(3.7) 2i Z vrpr — )\ (w) < QiHu (An)\/ ()
k=0 a

Tk

The case of both integrator and integrand being Lipschitzian is incorporated in
the following result:
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Proposition 2. Assume that f: C(0,1) — C is Lipschitzian with the constant
L > 0 on the circle C(0,1). If [a,b] C [0,2x] and the function u: [a,b] — C is
Lipschitzian with the constant K > 0 on [a,b], then for any partition A, : a =
To <11 < < Tp_1 < T, =b we have the error bound

n—1 o
|Rn<f,u,An,g>|g4LKk2_o[sm2 (S0 g (B =)

n—1 n—1
. o (Tht1 — Tk 1 2
k=0 k=0
1
(3.8) < §LK (b—a)v(A,)

for any intermediate points & € [Ty, Tr11] where 0 <k <mn — 1.
In particular, we have

n—1

|En (fu, An)| <SLEK ) sin® (M)

k=0 8

n—1
(3.9) LK (wpp1 —mp)” < éLK (b—a)v(A,) .
k=0

w‘*‘

The proof follows by Theorem [ and the details are omitted.

Proposition 3. Assume that f: C(0,1) — C is Lipschitzian with the constant
L > 0 on the circle C(0,1). If [a,b] C [0,27] and the function u: [a,b] — R is
monotonic nondecreasing on [a,b], then for any partition A, :a =xo < 1 < -+ <
Tp—1 < Tp = b with the norm v (A,,) < m we have the error bound

|Ry, (f,u, An,&)| < ZLZ [ (l'k+12 fk) (Tgr1) — sin (&_Txk)u(xk)}

sgn (& — t) cos (§k2_t)u(t) dt

< QLZ {s1 ( LAR fk) (U (1) — w (&)

+ sin <§k ;xk> [u (&) — U(xk)]}

T+
< 2L Zsm [ (Tpy1—x)+ 5 ‘fk— %H [u(2pt1)—u (xg)]

< QLZ sin { (Tpy1 — xk)} [u(xps1) — u(xy))

k=0
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n—1

(3.10) SLY (o —2i) fu(@ren) — u(2)] S v (A) Lu(b) —u(a)
k=0

for any intermediate points & € [xy, xkr1] where 0 <k <n— 1.
In particular, we have

By (f,u, An)| < 2L z_: sin (W) [ (zh1) — u (2]

Th41 Th+Tr41

—l—LZ/ sgn W—t) cos (%)u(t) dt

2L Z sin ( bl xk) [u (1) — u ()]

IN

(311) < L3 s 20 ) — o) € 20 (B) (9= w 0]

The proof follows by Corollary [3] and the details are omitted.

4. APPLICATIONS FOR FUNCTIONS OF UNITARY OPERATORS

We recall that the bounded linear operator U on the Hilbert space H is unitary
iffUr=U""

It is well known that (see for instance [5, p. 275-p. 276]), if U is a unitary
operator, then there exists a family of projections {Ey} A€[0,27] called the spectral
family of U with the following properties

a) Ex < E, for 0 <X < pu<2m

b) Ey =0 and Es; = 1g (the identity operator on H);

¢) Exyo=FE) for 0 <\ < 2m;

d) U= fozﬂ e*dE\ where the integral is of Riemann-Stieltjes type.

Moreover, if {F)\} Ae[0,27] 1S @ family of projections satisfying the requirements
a)-d) above for the operator U, then F = Ej for all A € [0, 27].

Also, for every continuous complex valued function f: C(0,1) — C on the
complex unit circle, we have

(4.1) fU) = /O i f(e™) dE

where the integral is taken in the Riemann-Stieltjes sense.
In particular, we have the equalities

(4.2) f(U):c:/O Wf(ei’\) dExz,

(43) (f (U)z,y) = / " F () d (B



248 S.S. DRAGOMIR

and

2m

(4.4) I (V) al® = / £ ()] dl|Exal? |

for any z, y € H.
We consider the following partition of the interval [a, b]

A,:0=X <A < <A1 <A\, =27
and the intermediate points & € [k, Ag+1] where 0 < k < n — 1. Define hy, :=
Met1 — M, 0<kE<n—1and v(A,) =max{h;:0<k <n—1} the norm of the
partition A,,.
If U is a unitary operator on the Hilbert space H and {E,\})\E[O’Qﬂ, the spectral
family of U, then we can introduce the following sums

n—1
(4.5) On (f,U, An,E2,y) = 3 F(€%) (Bx,sy — Ex,) 2,y)
k=0
and
nd A1+
(46) T, (fa U; An;xay) = Zf(e 2 z) <(E)\k+1 _E)\k)l'vy>
k=0

where z, y € H.

Theorem 6. With the above assumptions for U, {Ex} (a7 » Bn with v (Ay) <
m and if f: C(0,1) — C satisfies the Holder’s type condition |f (z) — f (w)| <
H |z —wl|" for any w, z € C(0,1), where H > 0 and r € (0,1] are given, then we
have the representation

(4.7) (fU)z,y) = On (f,U,An, & 2,y) + R (f,U, Ay 2, y)

with the error Ry, (f,U, Ay, & x,y) satisfying the bounds

!Rn(fv Ua Anaf? x,y)f

n—1 Akt
ol 1 M + A
<2"H Z sin b (M1 — Ag) + 5‘& - %H \/ (<E(.)x, y>)
k=0 e
n—1 1 Ak41
<2°H Y sin [5 Gt =) |V ((Ee,n))
k=0 by
n—1 Akt 2r
<HY (k=27 (Boz,w) < BV (A) \ ((Bye.v))
k=0 e 0
(4.8) < HV"(Ay) [z [yl

for any x, y € H and the intermediate points & € [Ag, \g+1] where 0 <k <n —1.
In particular we have

(49) <f (U) x’y> =T, (f7 U, Ap; $>y) + E, (f> U, An;x,y)
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with the error

Ak41

<2THZs1n [ (MNgt1 — )\k)} \/ (<E(,)z,y>)

Ak
1 n—1 Ak41
< yH (A1 — )" \/ (Ecyz,y))
k=0 Ak
27

1 T

(410) < o1 (A (Bor.w)) < oV (8, ol o]
0

foranyx, ye H.

Proof. For given z,y € H, define the function u () := (Exz,y), A € [0,27]. We
will show that u is of bounded variation and

(4.11) V (@) =\ (Eoa,y)) < |zl Iyl -
0 0

It is well known that, if P is a nonnegative selfadjoint operator on H, i.e., (Px,x) > 0
for any x € H, then the following inequality is a generalization of the Schwarz
inequality in H

(4.12) |(Pz,y)|* < (Pa,x) (Py,y) ,

for any =, y € H.
Now, ifd: 0=ty <t; < - - <tp,_1 <t, = 2w is an arbitrary partition of the
interval [0, 27], then we have by Schwarz’s inequality for nonnegative operators

that
\/ (<E(,)x, y>) = Sl;p { Z |<(Eti+1 - Eti) x7y>| }
0 i=0
(4.13) < stcllp { i [((Ei,,, — Eb) x,$>1/2 (Br,, — Ev)) y,y>1/2]} =1.
i=0

By the Cauchy-Buniakovski-Schwarz inequality for sequences of real numbers we

also have that
1 n—1

I< Sl;p [7.10 <(Eti+1 — Eti) x,x>}1/2[¥ <(Et7:+1 — Eti) y,y>]1/2
< Sgp [7:: <(Eti+1 — B, ) }1/2 Sup {z;: tirr T ) Y y> } "
a1 = [V (Eoma) ]IV (Eow)]” = el

for any z, y € H.
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On making use of (4.13]) and (4.14) we deduce the desired result (4.11]).
Now, applying Proposition |1|to the spectral representation (4.3]) we deduce the
desired result (4.7)) with the error bound (4.8]). The details are omitted. O

Remark 8. In the case when the partition reduces to the whole interval [0, 27],
then utilizing the inequality (2.7) we deduce the bound
2

(4.15) |1 (") (a,) = (F @)z, )| <27\ ((Byz,y)) < 27H |||l Iyl
0

for any s € [0, 27] and any vectors z, y € H.
In the case when the division is

Aoy : 0= < A =7 < Ay =271

and we take the intermediate points u € [0, 7] and v € [, 27|, then we get from
Theorem [0 that

|[f(e") (Er,y) + f(e") (I = Ex) @,y) = (f (U) 2,3} |
< ZTH[sin [f ) ’u — —H \/((E(.)x,y>)

(4.16) + sin” F 2‘1}— —H i}(<E()x,y>)}

for any vectors x, y € H.
The best inequality we can get from ([&.17) is obtained for u = T and v = 37,
namely

|f (@) (Exa,y) + f (=) (U — Bx) 2,y) = (f (U) 2,y) |

v}
3

(4.17) <251 \/ ((Biyz.y)) < 25 H |l |ly]
0
for any vectors x, y € H.

If U is a unitary operator on the Hilbert space H and {E)\}Ae[o 2] the spectral

family of U, then we can introduce the following sums depending only of one vector
zeH

n—1
(418) On (fa Ua Anvg;x) = Z f (eigk) <(E>\k+1 - E>\k) $,l‘>

and
~ nd >\k+1+>\ki
(4'19) Tn (f,U,An;x,y) = Zf(e 2 ) <(E)\k+1 _E/\k)x7x> .
k=0

Theorem 7. With the above assumptions for U, {Ex} (.0 » An with v (A,) <
and, if f: C(0,1) — C is Lipschitzian with the constant L > 0 on the circle C (0, 1),
then we have the representation
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(4.20) (f (U)x,2) = O (f,U, A, &) + Ry (f,U, A, & )
with the error R, (f,U, An, & ) satisfying the bounds

|Rn (f,UAn,g; z)]
< QLZ {sm( Uas. £k> (Ex,, 2z ) —sin (gk ; Ak) <E>\k:c,:c>}

+L ,;) /}\:Hl sgn (& — t) cos (ka— t) (B, x) dt
< 2LT§:1 [sm( bl gk) [((Bxpyy — Be,) z, ) |
k=0
+ sin <M) (B¢, — Eny) x,x)}
<2LZ§1D[ (A1 — )+%‘fk—wu <(Ez\k+1 _EM)'T7$>

< QLZsm [ (Akg1 — )\k)] <(E>\k+l - E/\k) x7:r>

n—1

(421) <L (kg1 — M) ((Bxeey — Bx,) 2,7) < v(Ay) L)
k=0

for any x € H and the intermediate points i € [Ag, Ag+1] where 0 < k <n —1.

In particular we have

(422) <f (U> €z, .73> = Tn (fa Ua An; l‘) + En (f7 Ua An; J))

with the error

n—1

. Akt1—A

|En(f, UAp;x)| < QLZ sin (%) ((Exiy — BExy) z2)
k=0

n—1 A FAp41

LN Akt ) 3 ¢t

+ Lkz_o/zk sgn (72 —t) cos ( 5 ) (Erx,x) dt

n—1
A1 — A
<2L » sin (%) ((Expyr — Bxy) o)

k=0

1 n—1

(423) S §L (/\k+1_)\k) <(E)\k+1 —E)\k) X x> < LV( n) Hl‘”

k=0

for any x € H.
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The proof follows by Proposition [3] applied for the monotonic nondecreasing
function w (t) := (Eyx, ), t € [0, 27].

Remark 9. We remark that if the partition reduces to the whole interval [0, 27]
then we get from (2.36]) that

£l = (U2} | < 2Lsin ()]

(4.24) + L/OQTr sgn (s —t) cos (ST) (B, x) dt

for any s € [a,b] and z € H.

In particular, we have
|F(=Dllz))? = (f(U)z,2) | < V2L|z|?
27
(4.25) + L/o sgn (m — t) sin (%) (Byx,x) dt

for any =z € H.

Example 1. In order to provide some simple examples for the inequalities above
we choose two complex functions as follows.

a) Consider the power function f: C\ {0} — C, f(z) = 2™ where m is a
nonzero integer. Then, obviously, for any z, w belonging to the unit circle C (0, 1)
we have the inequality

[f (2) = f(w)| < [m||z = w]
which shows that f is Lipschitzian with the constant L = |m/| on the circle C (0, 1).
Then from (4.15)), we get for any unitary operator U that

27

(4.26) €7 (e, y) — (U™, )| < 2|m| \/ ((Boyz,)) < 2[m] ]| |y
0

for any s € [0,27] and =, y € H.

Also, from (4.16) and the intermediate points u € [0, 7] and v € [, 27], we have
for any unitary operator U

| B, y) + € (L — Bx) w,y) — (U™, )|

< ofm [sin g7+ 5u - 7 \/ (B w)
() pin Lo+ Lo - 22V (B

for any vectors x, y € H, where {EA})\G[O’%] is the spectral family of U.
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The best inequality we can get from ([#.27) is obtained for u = T and v = 37,

namely ’ ?
i (Brz,y) + (=)™ ((1g — Ex) 2,y) — (U™, y) |
(4.28) < V2|m| \/ (Eoyz,y) < vV2Im| ||l |y ,
0

for any vectors z, y € H.

b) For a # +1, 0 consider the function f: C (0,1) — C, f, () = 1. Observe
that

(4.29) |fa (2) — fa (w)| =

for any z, w € C(0,1).
If z = ¢! with ¢ € [0, 27, then we have

laf [z — w|
|1 —az||1 — aw]

I1—az]> =1—-2aRe(2) +a*|z|> =1 — 2acost + a?
> 1—2a| +a® = (1 Ja])?

therefore

1 1 1 1
4.30 < d
(4.30) e STl ™ T ST
for any z, w € C (0,1).

Utilising and we deduce
(4.31) [fa (2) = fa (w)] <

_ el
(1~ lal)?

for any z,w € C (0, 1), showing that the function f, is Lipschitzian with the constant
Lo =g I‘ll‘ 5z on the circle C (07 1).
Applying the inequality (4.15]), we get for any unitary operator U that
(1= ac®) ™ (2,9) - <<1H —al) 2y |
2
|a|

2al
=< m\!(<E(-)$»y>) =<

for any s € [0,27] and =, y € H.

Also, from (4.16)) and the intermediate points u € [0, 7] and v € [, 27], we have
for any unitary operator U

|(1—ae™) ™ (Exz,y) + (1 — ae™) " ((1g — Ex) —{((1lg —alU) "2, y) |

e e W (om0

(4.33) + sin [ 5 "U - —H \/((E()w,y>)}

5 |2 —w|

(4.32) 5 lzlHlyll

2|a
(1= lal)
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for any vectors z, y € H, where {E/\},\e[o o] 18 the spectral family of U.

The best inequality we can get from (4.27) is obtained for u = 5 and v = 37”,
namely

|(1 = ai) " (Era,y) + 1+ ai) " (1g — Ex)z,y) — (lg — aU) " '2,y) |

2w
: (f|||) V (Eoyzw)) < (f”') B
0

for any vectors z, y € H.

(4.34)
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