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^"\ J O I N T T H I R D CONGRESS OF CZECHOSLOVAK 
MATHEMATICIANS AND S E V E N T H CONGRESS OF P O L I S H 

Af M A T H E M A T I C I A N S . 

ji* From 28th August till 4th September, 1949, the Mathematical Inst i tute of the 
Czech Academy of Science and the Arts, the Union of Czechoslovak Mathematicians 
and Physicists and the Polish Mathematical Association organised a joint congress 
of Czechoslovak and Polish mathematicians at which were also present delegates from 
Hungary and France. There was a total of 179 participants. Fifteen main lectures 
were held and 109 communications were submitted in the five sections: L mathe
matical logic and the theory of sets, 2. algebra and the theory of numbers, 3. analysis, 
4. geometry and topology, 5. probability and applied mathematics . 

In our journal we shall confine our reports to the lectures and cornmunications of 
the fifth section. The main lectures in this field were given by: 
<J. Alexita: The basis of a theory of the development of monopoly capitalism. 
B. Hostinsktf: Modern work on Markoff chains and related problems. 
J. Janko: Advances in the theory of non-parametric tests in statistical inference. 
H. Steinhaus: Various forms of the law of large numbers. 

Communications in the fifth section, as far as they concerned the theory of pro
bability and statistics, were presented by: 
H. Gruiewska: An approximation of the limit probability law. 
J. Hdjek: The cluster sampling by the two-stage method. 
Z. Hordk: The frequency law of errors in measurement. 

k-l 
A. Hutd: Concerning the function Tk --. 2 (— ^ ' l J (n — sq)1. 

8-0 \ I 

N. Krysicki: A limit theorem concerning expressions of higher order in Bayes , problem. 
E. Marczewski: Note on the ergodic theorem and on the law of large numbers. 
B. Pardubsktf: The estimation of structural parameters of partially consistent series. 
J. Perkal: Concerning certain regional correlations. 
H. Steinhaus: On the conception of the length of empirical curves and their measure

ment, 
A, jSpac'ek: A binomial test for which the maximum of a given risk function is a mini

mum, 
3 L Warmus: Estimation of the areas of plane regions by means of a plane network. 

Now follow short summaries of the lectures and communications as far as they 
reached us in time for inclusion in this number. 
B. Hostinsky: Modern work on Markoff chains and related problems. 

The lecture is connected with the articles which the author published in 1934 in 
the „Casopis pro p stovant matematiky a fysiky" (Journal for the Advancement of 
Mathematics and Physics) 63, 167; 64. I t surveys work on the subject of Markoff 
chains and related problems over the period of the last fifteen years. The theorems on 
the asympto t e values of probabilities for Markoff chains (ergodic principle) have 
been worked out in detail and extended to include more general assumptions. The 
relation between the chains and general and partial differential equations has been 
clarified from various points of view. Functional equations which satisfy the pro
bability of transition in the case of continuous variables have been solved in various 
ways for very general assumptions. General „stochastic processes" have also been 
taken into consideration where it is a question of the probability of transition in the 
t ime history of a certain population; if it is assumed tha t the whole „prehistory" of 
a certain quantity varying with t ime has an effect on the probability of its further 
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changes, then such processes are really Markoff chains of an infinitely high order. 
All these considerations can be explained as a generalisation of the theory of Brown 
movement. Justification of the ergodic principle on the basis of the theory of pro
bability, where in fact nothing is known about the nature of the trajectories, lias been 
compared with its derivation on the assumption tha t the trajectories are precisely 
defined by the differential equations. 

J. Janko: Advances in the theory of non-parametric tests in statistical inference. 

The theory of statistical tests has recently concentrated with increased measure 
on the problems where it is impossible to assume a certain functional form of the 
frequency distribution of the population and has tried to give a solution which would 
be valid for all populations with continous cumulative distribution functions. The 
problems of this kind are called non-parametric. 

Similarly as in the parametrical case it is necessary to construct so called „similar" 
regions and among them to elect a certain region which has been done mostly up to 
now by means of a statistical coefficient chosen intuitively. In order to obtain the 
,.similar" regions it is possible to use Fisher 's method of randomization. A special 
case of general randomization methods is the method of ranks. One of the fundamen
tal problems in the non-parametric statistical inference is the problem of estimation 
of cumulative distribution function F(x) about which we only know that it is continous. 
I t is solved by means of a sample cumulative distribution function FN(x) so that 
there are constructed the acceptance regions in which F(x) lies with the certain pro
bability a. In fact it is possible to construct practically the respective confidence 
region, for it is also determined, as has been shown by Wolfowitz through the belt of 
such two step-functions F($(x) and F%\x)9 that F(£\x) < FN (x) <T; F

(
N\x). I t is 

useful to choose a belt of a constant width and equal on both sides, so tha t then 
F^N\x) -=. FN(x) -f A and F%\x) = FN(x) — A with the exception of a necessary 
correction consisting in i t that the boundaries do no t exceed the figure one and do not 
fall below nought. If we then have a table of values A as function of <x, we can easily 
construct the confidence regions. Such a table has been constructed by Kolmogorov 
and was extended by Smirnov. How to determine the exact confidence belts with 
a small sample size has been shown by Wald and Wolfowitz who determined a method 
about finding a probability tha t FN(x) would be within an acceptance region which 
is usable for generally given widths of the belt and for finite sample sizes. 

The method which has been used in estimating F(x), can also be used in testing 
the hypotheses of distribution function of the population . If we test whether the two 
samples with the sizes nx and n2 have come from the same population, we say that 
it is a problem of two samples. In its solution the development of the distribution 
theory of runs (Mood) was made valid, with success. This theory is of great importance 
with the solution of the question whether the sample values xl9 x2, . . . , xy in order 
sequence as drawn, are random. Impor tant are the tests of independence consisting 
in ordered statistics which we obtain through arranging the observed sample values 
in increasing order from the lowest value to the highest one. Of great significance then 
are the tests using the runs above and below the median or runs from the binomial 
and multinomial population ((Bortkiewicz, Mises, Wishart and Hirschfeld, Cochran 
and Mood) and ,,runs up and down" which are of outstanding practical use especially 
in the quality control. Different criteria for testing randomness have been suggested by 
Young, Anderson, Hotelling and Pabst, Pitman. About the two tests i. e. Thompson's 
and Mathiesen's it has been proved that they are not consistent. Wald and Wolfowitz 
have defined the consistency so as to be able to be also used in the non-parametric 
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problems, According to them a test is consistent, if the probability of rejeeting the 
null hypothesis, when it is false, approaches one while the sample number increases 
indefinitely. Furthermore we should quote a Wald-Wolfowitz's LT-test which was 
used with the solution of the two samples' problem. I t s frequency distribution has been 
determined. If the sample sizes nA resp. n>, are no t big there is no difficulty in obtaining 
a t able of critical points (8 wed and Fisenhart). If the total of the sizes of these two samples 

*V •*- /q -7 M3 increases indefinitely with constant ~~ — A* the redistribution appro-

aches the normal distribution asymptotically. 
I t is necessary to attach great importance to the Wald's general formulation of 

the problem of statistical inference which starts with a general theory of statistical 
decision functions. He expanded it first for the non-sequential case, where the number 
of observations, that is the basis of decision, had been determined in advance. In 
his next work he extended this theory on the sequential case, where the number of 
observations required for decision had no t been determined in advance but had de
pended on the result of observation. The solution of the problems of statistical decisions 
has been issued by Wald in the year 1947 under certain restrictive assumptions; some 
of these restrictive assumptions have been removed in his work of the year 1949. 
There has also been started the application of this theory on practical problems. 

H. Stehihaii*: Variowt forms of the law of large numbers. 

Let the function x(t) be defined and measurable in the interval (0,1). We define 
the distribution function X(\) of the function x(t) bv the expression X(x) — \i£{x(t) < 

t 
•^ \) , and the distribution function H(<\,j3) of the bivariate population x(t), y(t) by 
the expression H(\. ft) — ;(£|.r(t) < \ , y(t) < f$\ . The independence of the two variables 
j \ tf is expressed by the identity H(c\, fi) — -Y(\) . Y(fi). In a similar way we define the 
independence of systems of two , three or more variables. „En bloc"* independence 
means independence of each system of n variables for all n. 

I. Bernoulli's theorem states: 
If the functions ,rx, , r 2 . . . , ,rn, . . . are independent in pairs, if they hare the same 

distribution function and if each of them possesses first and second moments, then 

n 
(1) lim as *n(t)jn = const., where $n — ^}X{. 

For the proof it is possible to use Banach 's theorem that the mean value of normalised 
and orthogonal functions converges almost everywhere to zero. This proof can be 
used even without the assumption of the existence of the second moment; in particular 
it is possible to replace the functions .r?(t) by limited functions plus a remainder, 
concerning which it can be shown that its mean absolute value has an integral as small 
as we please. On the other hand, omission of the assumption of the existence of the 
second moment permits us to weaken the assumption of independence and to replace 
it by the assumption of zero correlation between the pairs xp xk. I t is no t known 
whether the simultaneous weakening of both assumptions still gives relation (1), i. e. 
the so-called weak law of large numbers. 

I I . The strong law of large numbers is expressed by the relation 

(2) \imsn(t)jn =- const, almost everywhere. 

Cantelli proved this in 1916; on the assumption of the independence in pairs 
and of the existence of both moments (and naturally also of a common distribution 
function), we can here again make use of Banach 's theorem (Bull. Ac. Pol. 1919). 
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Kolmogorov proved this theorem assuming the existence of only the first moment, 
and of course on the assumption of ,.en bloc" independence. It is not known whether 
it is here possible to weaken the „en bloc'* independence. 

Just as it is possible to define the distribution function of a function, so also 
we can define the distribution function of a sequence of numbers: it is the frequency 
of the members of the sequence less than \ . In the same way we can define the con
ception of the independence of two sequences. The law of large numbers can then be 
formulated thus: 

I I I . If the functions «r?-(t) are independent in pairs and if they havo the same 
distribution function F(\), then the sequence \:r,(t)\ lias the distribution function 
F(cx) for almost all t. The proof consists of CantAli's law; the existence of moments 
is not assumed. 

From this law follows the explanation of the Petrogrud paradox: if a player wins 
2W money units provided tha t the coin does no t fall head up untill the n-th throw, 
then before each throw he ought to wager the sums: 

1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 1 6 , . . . 

which have the same distribution function as the variable x(t); hence, according to 
law I I I , the game can be regarded as just. On the assumptions made in law I I I , the 
sequences (#,-(*)} and {xt(t)} are independent of one another for almost all points 
(s, t) of the unit square. 

IV. From the ergodic theorem, E. Alarczewski obtained the following form of 
the law of large numbers: If the functions xf(t) are equivalent, i. e. if the distribution 
function of each system of n variables is equal to the distribution function of the 
n-variable system obtained by altering the subscripts by one, then 

(3) \imsn(t)ln exists almost everywhere. 

This form of the law of large numbers was expressed by Khintchin already in the 
year 1937 and later by Doob. I t should be noted tha t this paper does no t deal with 
the authorship of the individual theorems. This would indeed be a difficult task due 
to the incompleteness of bibliographical reports on work in the theory of probability. 

The sequence {an} is said to be random if its distribution function assumes a t 
least three different values and if the sequence is independent of the alteration {an+k}. 
If Xj(t) are independent in sets of four and if they have a common non-trivial distribut
ion function, then the sequence f

KXj(t)} is random for almost all t. 

Halina Milicer-Gruzewska: An approximation of the limit probability law. 

The author examines the conditions under which the asymptotic expansion 
theorem is fulfilled1) if the random variables are equivalent.2) I t is proved among 
other things that the central limit theorem is false, when the equivalent variables 
are strongly correlated and uniformly bounded, although, as we know,3) this theorem 
is true when the moments of these variables fulfil some special conditions (1). Even 
if we suppose tha t the conditions (1) are satisfied, the asymptotic expansion theorem 
may be false if further moments of the variables do no t fulfil some additional con-

*) H. Cramer: Random Variables and Probability Distributions (Cambridge 
1937, ch. VII Th. 2, 5. p . 81—83). 

2) B. N. F i n e t t i : Classi di numeri aleatori equivalenti (Rendiconti della Reale 
Accademia Naz. d. Lincei, ser. 6a vl. XVII I , pp. 203-7, Roma). 

3) H. M i l i c e r - G r u z e w s k a : Sulla legge limite d. variabili casuali equivalenti 
(Atti d. Ace. Naz. d. Lincei s. VI I I , v. I I , ser. I , fase 2, Teorema I, p . 28-9). 
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ditions (2). However if we suppose tha t the conditions (1) and (2) are satisfied, we 
receive the following approximation for the distribution function Fn(x) of the standar
dised sum of n equivalent variables: 

Fn(x) « cp(x) + £>(rT-* lgn-"1) 0 < a < 1 

where <p(x) is the Gauss-Laplace integral. The properties of the distribution function 
Fn(x) and the corresponding characteristic function <pn(t) are subject to the properties 
of the joint distribution of the equivalent variables: Xv X2 , . . . , Xn : Fn(xl9 x%> . . . , xn) 
which the author describes. The conditions (1) and (2) differ essentially from the 
analogous ones for the case of independent random variables. No t only the existence 
of the moments and the estimation of their gradual increase is supposed but also the 
fulfilment of an enumerable number of equalities. 

A more detailed report will appear soon in the. Proceedings of the Third Class 
of the Warsaw Science Society under the ti t le „On the distribution law and the char
acteristic function of the standardised sum of equivalent variables". 

Jaroslav Hdjek: The cluster sampling by the two-stage method. 

During applications of the sampling method, it is often impossible to select 
single elements, but only whole groups. J . Neyman presents a solution in which each 
combination of groups has the same chance of being selected. Then, however, the sample 
mean 

n?/i •+• . . . + rkyk 
У 

+ rk 

(r$ and t/t- denote the size resp. mean of the selected groups) cannot be used as an esti
mate of the population mean since it has a bias, and it becomes necessary to choose 
some other quantity which has usually, however, a larger dispersion. I n order t h a t 
the bias of the sample mean should vanish, it suffices to alter the sampling procedure: 
we choose a method which the author has called the two-stage method. The first stage 
consists of selecting one of the groups in such a way t h a t the probability of selection 
will be, for each group, proportional to its size. (This can be easily arranged with the 
help of tables of random numbers.) I n the second stage, we select the K — 1 remaining 
groups in the usual way, where each combination of groups has the same chance. 

Z. Hordk: The frequency law of errors in measurement. 

With a view to verifying the normal (Gauss) law of errors, the distribution of 
errors was determined for two series of bridge measurements, each of 500 readings. 
The obtained frequency curves displayed systematic deviations from the Gauss curve 
and they can be well represented by the equation 

^ r c c o s V ) ° r r ; = 2 ^ T o i ) ( 1 ) ' ( 2 ) 

The author was thus led to s tudy a new type of frequency curve, 

1]^ ^ cosh*(6e) 

which for whole number n > 0 can be easily integrated. 

From a theoretical po int of view, however, i t would be more convenient to keep 
to the Gauss law of frequency for the simplest cases and to explain deviations of the 
observed distribution from the normal distribution b y the assumption that , when 
dealing with physical measurements, several simultaneous effects are superimposed 
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with different weights for individual measurings. The resultant frequency curve is 
then given by the superposition of two (or more) simple Gauss curves, even in cases of 
symmetrical distribution of errors. The author thus arrived at frequency curves of 
the type 

v » arix -f (1 — a) i)i (3) 

where nx and n2 represent Gauss curves with different standard deviations, and by 
a superposition of an infinite number of Gauss curves, whose standard errors decrease 
in proportion to the square roots of whole numbers, he obtained a frequency curve 
of the type 

"(e) - -rhj < 4 ) 

which differs from the Gauss curve in the same way as the basic equation of quantum 
statistics differs from the Maxwell-Boltzmann equations of classical statistics. Both 
functions (3) and (4) contain more than one. constant and can therefore better represent 
an actual distribution of errors. The author has derived simple relations for determining 
the constants of the functions (1), (3) and (4). 

Anton Huta: Concerning the function 

1—1 

-ъ - 2 <--)• (ľ) (»-ч)' (i) 

I t is a well-known fact t h a t in practical work and in the theory of applied mathe
matics, especially in mathematical statistics, there very often occur expressions of the 
form 

P =- - i . JT (— 1)< (l\ (— — »)* (do Moivre's problem) 
*i=o W \* / 

ril-g)9-1 — lv

2\ (l-Zg)"-1 + ...+ (-I)™-1 M (l-mg)*-1 ( .Fisher's test") 

nn -^ (n\ I 1i\n~~1 (distribution of sample means m 
tn—\\\ JL* ^ \ r / \ n / for a rectangular distribution) 

r~o 
All these expressions are special cases of the relation TK- We wish to investigate 

the properties of this function. If we introduce into Equ. (1) the substitution n — 
=- (k — l)g-|-r, we can write (1) in the form 

1—1 , . 

Tk = T(k, m, q, r, I) = £ (— - / s H [(* — 1 — *) * + rf (2) 
8 — 0 » ' 

The values of Tk are the coefficients of the members of the series of a certain generating 
function f(x) which, after several transformations and rearrangements, can be written 

l+l k—l . . 
f(x)~(l — x)m<pi(x) = (l--x)m^1^xk 2 v— 1>5(Z "V 1 ) [</fc — 1 — ^) g -F r]^ (3) 

,fc = 0 8 — 0 » ' 

The function f(x) can be expanded into the form of a Laurent series whose coefficient 
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Tc of xc will be >dven by the expression 

T(t „ - . 1 . . f _ i _ (i . . . , )W~J- l V ** y ( _ 1)* (l) [(k - 1 - , ) q + r ] ' - 1 (4) 

("> 
From Equ. (:$) it follows 

P . Lr) 

where IV. is a polynomial of degree (l H- 1) in x. The polynomials _P display a certain 
symmetry which can be demonstrated by means of the expressions 

}\e w --= 2 ^(f/? r)*2r"f+1 r ^ ? , ) *' (C) 

f !. 
r 

Por , i(j") « <7r , i <"> r) ** f * + 2 *I<K' r ) {r2r""f + 2 J" <>* ('"' " > *'* ( ? ) 

For special eases of these expressions we obtain the individual properties of the ex
pressions occurring in practical work. As an example, let us consider the function 

rW-2<-»>'( i )<H-a>' y - - £ - v < y <s) 
t •*•• v 

From Kqu. (4) we can obtain the values of this function. If n and I are simultaneously 
odd or even, then T{1^ — 0; for special cases, we obtain from (6) and (7) reciprocal 
polynomials, etc. 

K. Marczewski; Note on the crgodic theorem and on the law of large numbers. 

The author discusses the analogy between Birkoff's ergodic theorem and the 
strong law of large numbers. Using this analogy he proves, with the help of the ergodic 
theorem, a certain, hitherto unknown, version of the law of large numbers which 
does no t require the assumption of independence. 

Bohumil Pardubsky: The estimation of structural parameters of partially consistent 
.series. 

Wo start out from the assumption that we are given a certain random sample 
from a given basic population,possessing a cumulativedistribution function whose mathe
matical form is known, but which contains a certain number of parameters which 
are unknown. The problem is to estimate these parameters as functions of the values 
of the random sample. The number of such functions is infinitely large. The question 
arises which of these estimates is the best. 

Let Tjfri, . . . , xn) for i — 1, 2, . . . , v be a system of estimates of the parameters 
Si (i — 1, 2, . . . , v). We shall consider the best system of estimates to be the one whose 
simultaneous distribution of probability density of the estimates has maximum con
centration. On the assumption tha t certain conditions of regularity are fulfilled, 
Harold Cramer established in the Skandinavisk aktuarietidskrift in 1946 the equation 
of the ellipsoid of maximum concentration belonging to a given simultaneous distribut
ion of probability density of estimates, in the form 
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Tx/#.(г/-. , . ( r , - ,>=-

where 

^ S r ^ S / } '-"- '-'* *•> 
is the simultaneous distribution of probability density of the variables a-.,..., .rn. 
The random variables of a sequence {£.•{- are said to be consistent if the number of 
parameters involved in their, distribution functions of probability density is finite, 
and if each parameter occurs in all or an infinite number of distributions of probability 
density. The random variables of a sequence {|?:} are said to bo partially consistent 
if the parameters involved in their distributions of probability density can bo divided 
into two groups. The first group consists of a finite number of parameters and these 
parameters are contained in all distributions of probability density. The second group 
of parameters is composed of an infinite number of parameters of which each occurs 
in only a linito number of distributions of probability density. The parameters of the 
first group are called structural parameters; the parameters of the second group are 
called incidental parameters. 

Because estimates of structural parameters of partially consistent sequences 
determined by the method of maximum likelihood are not necessarily consistent, 
new systematic methods were sought which would give consistent estimates. J . Neyman 
and Elizabeth Scott established five conditions which the system of equations 

F9i(xl9 . . . , x./T, Tv) « 0, i «. 1, 2 r 

must satisfy i. e. the system of estimates of the structural parameters Q. (i = 1, 2, . . . , r) . 
Because of tho difficulty of fulfilling these conditions it was decided to abandon 

this general method and to look for a method for a more special, but frequently occur
ring, case. The method may be called the method of modified equations of maximum 
likelihood, where we need no t limit ourselves to only one incidental parameter, 
alwaj's occurring in the function of one random variable, but where there may bo any 
number . A necessary condition is that the mathematical chance of the partial derivative 
of the logarithm of the appropriate distribution of probability density, after elimination 
of the incidental parameters, should be a constant, or should be a function only of 
the structural parameters. 

The squares of the standard deviations of the estimates of individual parameters 
have lower limits given by the coefficients of the quadratic form which is the inverse 
to the quadratic form of tho corresponding ellipsoid of maximum concentration, 

J. Perkal: Concerning certain regional correlations. 

In this paper the author deals with the problem: Suppose that the result of a 
series of observations is n numbers . The results of N such series of observations can 
be arranged in a matrix with N rows and n columns. If we interpret each row of this 
matrix as a point in an n-dimensional space, we obtain a system of N points in this 
space. 

I n mathematical statistics we are familiar with the conception of the ellipsoid 
of concentration, belonging to a given distribution system of probability density. 
Explaining the relations involved in this conception, the author demonstrates methods 
of working out results from observations of the above-mentioned type. 

As an example he presents new tables of the dependence between the weight and 
the height (with regard to age) of school children in Lower Silesia. 
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//• Steinhaus: On the length of empirical curves. 

A paradox in the conception of length arises from the fact tha t length is an 
unbounded functional in the neighbourhood of every arc. If we wish to eliminate this 
paradox, wo can use the following method of measuring length: On transparent paper 
we have drawn a system of equidistant, parallel lines, distance d apart. We "place 
this paper over the arc S and count the number of intersections of the system with 
the curve S, then wo turn the paper through an angle of 1/A* of a straight angle and 
again count the number of intersections; in this way we obtain the numbers n„ n2, . . . , nk 

and N .-» N n f; the approximate length of the arc S is then 

L~ydi£ (l) 

and the accuracy depends on d and k. Equation (1) alone does no t eliminate the paradox 
of length, but can be modified by taking, in place of the numbers n„ n2, . . . , nk, the 
numbers n / , n2\ . . . , n^9 defined by the equations 

« / - n, (2) 
for Ht <* p. n/ s-s p for nt > p. 

Using (1) we obtain a length of p-th order, the functional of which we denote by 
Lp(S). This functional is bounded. We can calculate the value Lp(S) with any chosen 
degree of accuracy. We can compare the lengths of the boundaries of two regions using 
any chosen order p, e. g. p «=- 10. If we are given two maps of different accuracy and 
if we wish to use the information contained in them, e. g. compare the lengths of two 
rivers, one of which appears on the one map and the other river on the other map, we 
must adjust the order p to the map of rougher accuracy. Even if we are investigating 
objects which in fact have infinite length, we can define the relation of their lengths 
s by the expression 

s « UmLp(A)ILp(B) 
P*r~ QD 

where A, B are these objects, e. g. the left and the right bank of the River Vltava . 
In cases where we do no t wish to use this method, it is better to avoid the conception 
of length. 

Antonin Spacek: Sampling plans for percent defective, which minimize the maximum of 
a given risk function. (Tesla Electronic National Corporation, Prague.) 

Given a lot of size N of manufactured product which contains an unknown 
fraction defective p. The acceptance or rejection of this lot is to be decided on the 
basis of a single random sample of size n with acceptance number k. The decision 
procedure is determined as follows: If the random sample of size n from this lot contains 
k or less defective items, the lot will be accepted, and otherwise rejected. Evidently, accor
ding to this rule, the two integers n <I N and k <I n completely determine the decision 
procedure and with each N there is associated the set Sv of all decision procedures 
of this type, i. e. the set of all pairs of integers (a, k), where 0 <I k <I n <I N. The 
choice of an element of S^ corresponds to the choice of a decision procedure. The 
probability of acceptance is 
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If n/N is sufficiently small (for example <£ 1/10), then (1) may be approximated by 

L(p,n,k)~ ^ M p i ( i ^ p ) " ^ (2) 

With each (n, k) e SN and each fraction defective p there is associated a risk Ii(p, n, k), 
which expresses the economic outlay involved by the given decision procedure. If 
rejected lots are returned by the consumer to the producer, it seems natural to estab
lish the risk-function as follows: en -f a(N — n) pL(p, n, k), where c is the 
cost of inspection of one item and a is the loss incurred by accepting one defective. 
Since cN is the cost of making 100% inspection, we may write 

R(P, n, k) - £ + a (i - J ) pL(p, n. k) (3) 

where a =- a/c. 
A question of fundamental importance is that of the proper choice of sampling 

plans. Following an idea of A. Wald we shall now establish a principle, on the basis 
of which the sampling plan will be chosen. 

The decision procedure (v, x) e S^ is optimum if and only if simultaneously 

L(p0, v,x)^>l — e , 0 < e < l , (4) 

the maximum of (3) with respect to p is minimum for n -= v, k = x. (5) 

The condition (4) excludes the unreasonable consumer's specifications, which 
cannot be met by the producer, i. e. there is given a p = p0 and a value 0 < e < 1, 
such tha t (4) holds. I t is easy to show, tha t min maxR(p , n, k) always exists and that 

n p 
min maxR(p , n, k) = max minli(p,[n, k) (6) 

» p p n 

for each k = 0, 1, 2, . . . Clearly, (6) corresponds to the condition of strict determina-
teness in the sense of von Neumann's theory of zero-sum two-person games. 

For each k = 0, 1, 2, . . . let nk denote the value of n which minimizes the maximum 
with respect to p of (3). We have n0 ~ }/(<xN)]e and nk for k =- 1, 2, 3 , . . . may be easily 
computed by successive approximations . Since B(p, n, k) <1 E(p, n,k-\- 1) for each 
p, n, k we have minmaxR (p , n, k) <£ minmaxR (p , n,k -\- 1) for each k =- 0, 1, 2 , . . . 

n p n p 
and the optimum decision procedure (v, K) can be found as follows: 

For k = 0, 1, 2 , . . . we compute n0, nlt n2»... cw long as 

L(p0, nk, k) < 1 —- e. 
Then 

L(p0> nk+l9 k -f 1) ;*> 1 — e 

and (v, K) €tSN, where v = nfc.fl, K = k -f 1 is the optimum decision procedure. If 
v/N is no t sufficiently small, then (2) must be replaced by (I) and the computations 
are obviously much more laborious. 

M. Warmus: Estimation of the areas of plane regions by means of a parallelogram network. 

In a plane parallelogram network W we are given a g-connected region A of area 
a and diameter 6, within which lie w nodes of the network W. Region A is bounded 
by q closed Jordan curves which are capable of rectification. 
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Let i ť denote the length and bi the diameter of the curve Lť. Let £lt -= 1. 
Let m denote tlie distance between the two nearest nodes of the network W, 

a the area of one panel of this network. The number <p is given by the equation 

m2(<p -f* sin q> eosg?) — 2a &in%q> = . 0 0 < <p < i 

1 
and the number c by the equation c -=- -/, .. . —rrrrrr 

\'2<p + sin2#>. 

Theorem: If Ž J> l* = 2(.7rc — ^.7i2c2 — n) )>]la oř 6 ^ m and if for q0 various na-
tural numbersfy (/ «- 1, 2, ..., q0), where 1 ^ fy <[ #, the relation ífc ^> J* or 6 .̂. I> m 
holds, then the inequality 

— cl]/<í~-f {qQ — 2) a < a — wa ^ clya -f (# — 2) a 
holds true. 

ZPRÁVY 
POLSKO-ČF.SKOSLOVJ3XSKÁ PRACOVNÍ KONFERENCE MATEMATICKÝCH STATI

STIKŮ VE VRATISLAVĚ se bude konat ve dnech od 13. do 18. června 1950. Před
mětem konference bude matematická statistika a její užití v průmyslu a v problémech 
hospodařsko-sociálních. 

Práce bude rozdělena do tří sekcí: 
A. Užití matematicko statistiky ve výrobo a obchodu. 
B. Užití matematické statistiky v problémech demologických, zvláště užití methody 

výběrové (representativní) v problémech úmrtnost i a nemocnosti. 
C Prostředky numerického počítání, hlavně matematické stroje elektronkové a jejich 

užití v badáních statistických. 
V těchto třech sekcích se budou pro jednávati jednak sdělení s časovým vy

mezením ISminutovým, jednak referáty, stanovené na 30 minut. Jednacími jazyky 
bude čeština, slovenština, polština a jazyky, jichž se užívá na mezinárodních 
sjezdech matematických. 

Přihlášené referáty a sdělení československých účastníku budou po jednávat 
o problémech péče o jakost s hlediska matematické statistiky, o rozhodovacích 
funkcích, pro které maximum jistých risikových funkcí je minimální, o jejich apli
kaci na výběrové postupy a kontrolní diagramy, o statistickém sledování a kontrole 
plánovaných jevů ve všech úsecích socialistického hospodářství, o prvcích kontrol
ních diagramů s hlediska hospodárnosti. V dalších pracích se pojednává o užití 
výběrových method při zpracování sčítání lidu, o theorii kontroly přejímací i ply
nulého procesu, o otázkách statistiky v národních podnicích obchodních a jejím 
vztahu k plánování a podnikovému početnictví, o souvislosti řetězových testů 
výběrových se stochastickými procesy a o užití nomografických pomůcek při 
numerickém počítání. 
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