
Commentationes Mathematicae Universitatis Carolinae

Miroslav Repický
A proof of the independence of the Axiom of Choice from the Boolean Prime
Ideal Theorem

Commentationes Mathematicae Universitatis Carolinae, Vol. 56 (2015), No. 4, 543–546

Persistent URL: http://dml.cz/dmlcz/144758

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/144758
http://dml.cz


Comment.Math.Univ.Carolin. 56,4 (2015) 543–546 543

A proof of the independence of the Axiom of

Choice from the Boolean Prime Ideal Theorem

Miroslav Repický

Abstract. We present a proof of the Boolean Prime Ideal Theorem in a transitive
model of ZF in which the Axiom of Choice does not hold. We omit the argument
based on the full Halpern-Läuchli partition theorem and instead we reduce the
proof to its elementary case.
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Let us recall the following result.

Theorem 1 (Halpern and Lévy [2]). There is a transitive model of ZF in which

the Boolean Prime Ideal Theorem holds and the Axiom of Choice fails.

In the paper, we assume V � ZFC and we consider the following transitive
model M (see [3, pp. 184–187] or [4, pp. 221–223]). Let P be the set of finite
functions p such that dom(p) ⊆ ω×ω and rng(p) ⊆ {0, 1}. Let G ⊆ P be a generic
set of conditions. For i ∈ ω let

ai(n) =

{

1, if (∃p ∈ G) p(i, n) = 1,

0, otherwise,

A = {ai : i ∈ ω},

M = HODV [G](A).

Then M is a transitive model of ZF and A ∈M . The Axiom of Choice does not
hold in M because the set A is infinite and has no countable subset in M (see [3]).

We prove the Boolean Prime Ideal Theorem in M = HODV [G](A). The present
proof uses the same ideas as the proof in [2] but its exposition relies on [3]. We also
omit the argument from [2] based on the full Halpern-Läuchli partition theorem [1]
and instead we reduce the proof to its elementary case substantiated in [2].

Recall that [u] = {x ∈ ω2 : u ⊆ x} for any finite function u such that dom(u) ⊆
ω and rng(u) ∈ {0, 1}. For t ∈ m(ω2) and k ∈ ω, [t↾↾k] =

∏

i<m[t(i)↾k] denotes
a basic clopen set in m(ω2).

DOI 10.14712/1213-7243.2015.138
The author was supported by grants VEGA 1/0002/12 and APVV-0269-11.



544 Repický M.

Lemma 2 (Schema of continuity). Let ϕ(x1, . . . , xn, s, A) be a formula of ZF with

no free variables other than x1, . . . , xn, s, A. If x1, . . . , xn ∈ V , m ∈ ω, s ∈ mA is

a sequence of distinct members of A, and ϕ(x1, . . . , xn, s, A) holds in V [G], then

there is a basic clopen set U ⊆ m(ω2) with pairwise disjoint projections in ω2 such

that s ∈ U and ϕ(x1, . . . , xn, t, A) holds in V [G] for every t ∈ U ∩ mA.

Proof: Let W be the set of all one-to-one functions in mω. For h ∈ W let
h∗ ∈ mA be defined by h∗(i) = ah(i). For h ∈W let

b(h) = ‖ϕ(x1, . . . , xn, ḣ
∗, Ȧ)‖,

c(h) =
∨

k∈ω

∧

z∈W − ‖ż∗ ∈ [ḣ∗↾↾k]‖ ∨ ‖ϕ(x1, . . . , xn, ż
∗, Ȧ)‖

= ‖(∃k ∈ ω)(∀z ∈W ) ż∗ ∈ [ḣ∗↾↾k] → ϕ(x1, . . . , xn, ż
∗, Ȧ)‖

where ḣ∗, ż∗, and Ȧ denote the canonical names for h∗, z∗, and A constructed
by means of the canonical names ȧi for i ∈ ω. The inequality b(h) ≤ c(h) means
that if ϕ(x1, . . . , xn, s, A) holds in V [G] for s = h∗, then there is k ∈ ω such that
the conclusion of the lemma holds for the clopen set U = [s↾↾k]. Then, since s is
one-to-one, the projections of U are pairwise disjoint if k is sufficiently large. We
prove b(h) ≤ c(h) for all h ∈ W .

Let p′ ∈ P satisfy p′ ≤ b(h) and we find p ≤ p′ such that p ≤ c(h). Extend p′

to a condition p ⊇ p′ so that dom(p) = k× k for some k ∈ ω, rng(h) ⊆ k, and for
all i < j < k there is l < k such that p(i, l) 6= p(j, l). For every q ∈ P let qi be
defined by qi(j) = q(i, j). Then pi ∈

k2 for i < k are pairwise incompatible and

p  [ḣ∗↾↾k] =
∏

i<m[ph(i)]. We prove that p ≤ c(h).
To get a contradiction assume that for some z ∈ W there is r ≤ p such

that r  ż∗ ∈ [ḣ∗↾↾k] and r  ¬ϕ(x1, . . . , xn, ż
∗, Ȧ); the former assumption is

equivalent to saying that rz(i)↾k = ph(i) for all i < m. If z(i) 6= h(i), then
z(i) > h(i) because pj for j < k are pairwise incompatible. Let π be the permu-
tation of ω that interchanges h(i) and z(i) for all i < m and π(j) = j otherwise.
The permutation π induces an automorphism of P and an automorphism of V P ,
i.e., for p, q ∈ P , q = π(p) if q(π(i), j) = p(i, j). By the symmetry lemma

π(r)  ¬ϕ(x1, . . . , xn, π(ż∗), π(Ȧ)) which is impossible because π(r) and p are

compatible, π(ż∗) = ḣ∗, π(Ȧ) = Ȧ, and p  ϕ(x1, . . . , xn, ḣ
∗, Ȧ). This contradic-

tion proves that there is no such r and hence p ≤ c(h). �

Let F ∈ [A]m. We say that a sequence 〈Ui : i < m〉 of pairwise disjoint basic
open sets in ω2 distinguishes F , if |F ∩ Ui| = 1 for all i < m.

Corollary 3. Let ϕ(x1, . . . , xn, F ) be a formula of ZF with no free variables other

than x1, . . . , xn, F . If s ∈ <ωA, x1, . . . , xn ∈ ODV [G][A, s], F ′ ⊆ A \ rng(s) is

a finite set, m = |F ′|, and ϕ(x1, . . . , xn, F
′) holds in V [G], then there is a sequence

of basic open sets 〈Ui : i < m〉 in ω2 disjoint from rng(s) and distinguishing

members of F ′ such that ϕ(x1, . . . , xn, F ) holds in V [G] for every F ∈ [A]m such

that |F ∩ Ui| = 1 for all i < m.
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Proof: Assume |s| = k and let t′ : m → F ′ be any one-to-one enumeration.
There is a formula ψ such that for some ordinals α1, . . . , αr,

V [G] � (∀t) ψ(α1, . . . , αr, s
⌢t, A) → ϕ(x1, . . . , xn, rng(t)), and

V [G] � ψ(α1, . . . , αr, s
⌢t′, A).

By Lemma 2 there is a disjoint sequence of basic open sets 〈Vi : i < k + m〉
in ω2 such that s⌢t′ ∈

∏

i<k+m Vi and ψ(α1, . . . , αr, t, A) holds in V [G] for every
t ∈

∏

i<k+m Vi. Take Ui = Vk+i for i < m. �

Now we prove the Boolean Prime Ideal Theorem in M = HODV [G](A).
Let (B,∨,∧,−, 0, 1) be a Boolean algebra in M . Then there is f ∈ <ωA

such that B ∈ ODV [G][A, f ]. The class ODV [G][A, f ] has a well-ordering ordinal-
definable from A and f . Using this well-ordering by transfinite recursion we can
define a proper ideal I ⊆ B maximal ordinal-definable from A and f . Hence, for
every x ∈ B which is ordinal-definable from A and f , either x ∈ I or −x ∈ I.
Clearly I ∈M because I ⊆ B ⊆M . We prove that I is a prime ideal of B in M .

Suppose that I is not prime and let k ∈ ω be the least natural number such

that for some h′ ∈ k+1A there is an x ∈ ODV [G][A, f⌢h′] such that x ∈ B \ I and

−x ∈ B \ I. Let a′ = h′(k) and h = h′↾k. Then B ∈ ODV [G][A, f⌢h] and by
minimality of k it is obvious that a′ /∈ rng(f) ∪ rng(h) and I is a maximal ideal

of B in ODV [G][A, f⌢h] because I is a prime ideal there. There is a formula ϕ
such that

x = {u ∈ V [G] : V [G] � ϕ(u, α1, . . . , αn, f
⌢h, a′, A)}

for some ordinals α1, . . . , αn. Since f⌢h, α1, . . . , αn are fixed throughout the
proof we shall denote

d(a) = {u ∈ V [G] : V [G] � ϕ(u, α1, . . . , αn, f
⌢h, a,A)}.

Hence d(a′) ∈ B \ I and −d(a′) ∈ B \ I. By Corollary 3 there is a basic open set
U ⊆ ω2 such that a′ ∈ U , U ∩ rng(f⌢h) = ∅, and

(∀a ∈ U ∩A) −d(a) ∈ B \ I and d(a) ∈ B \ I.(1)

The ideal of B generated by I ∪ {d(a) : a ∈ U ∩ A} is in ODV [G][A, f⌢h] and it
coincides with B by maximality of I. Therefore for some finite set F ′

1 ⊆ U ∩A we
have

∧

a∈F ′

1

−d(a) ∈ I. Similarly, if we consider the ideal generated by I∪{−d(a) :

a ∈ U ∩A} we obtain a finite set F ′
2 ⊆ U ∩ A such that

∧

a∈F ′

2

d(a) ∈ I. Denote

F ′ = F ′
1 ∪ F

′
2 and m = |F ′|. Then

∧

a∈F ′ −d(a) ∈ I and
∧

a∈F ′ d(a) ∈ I.

By Corollary 3, there is a sequence of basic open sets 〈Ui : i < m〉 distinguish-
ing F ′, such that each set Ui is a subset of U (this is possible because F ′ ⊆ U),
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hence disjoint from rng(f⌢h), and for every F ∈ [A]m such that (∀i < m)
F ∩ Ui 6= ∅,

∧

a∈F −d(a) ∈ I and
∧

a∈F d(a) ∈ I.(2)

For every i < m, (1) holds with U replaced with Ui because Ui ⊆ U . Replacing
U with Ui in the argument that leads to (2) we obtain a sequence of pairwise
disjoint basic open sets 〈Ui,j : j < mi〉 which are subsets of Ui such that for every
i < m, and for every F ⊆ A ∩ U with (∀j < mi) F ∩ Ui,j 6= ∅, we have

∧

a∈F −d(a) ∈ I and
∧

a∈F d(a) ∈ I.(3)

The system S = {Ui,j : i < m and j < mi} is a pairwise disjoint system of basic
clopen sets in ω2 and A is a dense subset of ω2. Let y ⊆ A ∩ U be a finite set of
the size |S| such that (∀V ∈ S) |y ∩ V | = 1. Then for every z ⊆ y,

∧

a∈z d(a) ∧
∧

a∈y\z −d(a) ∈ I.(4)

To prove this let us consider these two possibilities.
(i) For every i < m, z∩Ui 6= ∅. Then by (2),

∧

a∈z d(a) ∈ I and hence (4) holds.
(ii) There is i < m such that z ∩ Ui = ∅. Then (∀j < mi) (y \ z) ∩ Ui,j 6= ∅,

and by (3),
∧

a∈y\z −d(a) ∈ I, and hence (4) holds.

Using (4) we obtain a contradiction as follows: 1 =
∧

a∈y(d(a) ∨ −d(a)) =
∨

z⊆y[
∧

a∈z d(a) ∧
∧

a∈y\z −d(a)] ∈ I. This contradiction proves that I is prime

in M .

References
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