Commentationes Mathematicae Universitatis Carolinas

Miroslav Repický
A proof of the independence of the Axiom of Choice from the Boolean Prime Ideal Theorem

Commentationes Mathematicae Universitatis Carolinae, Vol. 56 (2015), No. 4, 543-546

Persistent URL: http://dml.cz/dmlcz/144758

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2015

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

A proof of the independence of the Axiom of Choice from the Boolean Prime Ideal Theorem

Miroslav Repický

Abstract

We present a proof of the Boolean Prime Ideal Theorem in a transitive model of ZF in which the Axiom of Choice does not hold. We omit the argument based on the full Halpern-Läuchli partition theorem and instead we reduce the proof to its elementary case.

Keywords: Boolean Prime Ideal Theorem; the Axiom of Choice
Classification: Primary 03E35, Secondary 03E25, 03E40, 03E45

Let us recall the following result.
Theorem 1 (Halpern and Lévy [2]). There is a transitive model of ZF in which the Boolean Prime Ideal Theorem holds and the Axiom of Choice fails.

In the paper, we assume $V \vDash$ ZFC and we consider the following transitive model M (see [3, pp. 184-187] or [4, pp. 221-223]). Let P be the set of finite functions p such that $\operatorname{dom}(p) \subseteq \omega \times \omega$ and $\operatorname{rng}(p) \subseteq\{0,1\}$. Let $G \subseteq P$ be a generic set of conditions. For $i \in \omega$ let

$$
\begin{aligned}
a_{i}(n) & = \begin{cases}1, & \text { if }(\exists p \in G) p(i, n)=1, \\
0, & \text { otherwise },\end{cases} \\
A & =\left\{a_{i}: i \in \omega\right\}, \\
M & =\operatorname{HOD}^{V[G]}(A) .
\end{aligned}
$$

Then M is a transitive model of ZF and $A \in M$. The Axiom of Choice does not hold in M because the set A is infinite and has no countable subset in M (see [3]).

We prove the Boolean Prime Ideal Theorem in $M=\operatorname{HOD}^{V[G]}(A)$. The present proof uses the same ideas as the proof in [2] but its exposition relies on [3]. We also omit the argument from [2] based on the full Halpern-Läuchli partition theorem [1] and instead we reduce the proof to its elementary case substantiated in [2].

Recall that $[u]=\left\{x \in{ }^{\omega} 2: u \subseteq x\right\}$ for any finite function u such that $\operatorname{dom}(u) \subseteq$ ω and $\operatorname{rng}(u) \in\{0,1\}$. For $t \in{ }^{m}\left({ }^{(} 2\right)$ and $k \in \omega,[t \upharpoonright k]=\prod_{i<m}[t(i) \upharpoonright k]$ denotes a basic clopen set in ${ }^{m}\left({ }^{\omega} 2\right)$.

Lemma 2 (Schema of continuity). Let $\varphi\left(x_{1}, \ldots, x_{n}, s, A\right)$ be a formula of $Z F$ with no free variables other than x_{1}, \ldots, x_{n}, s, A. If $x_{1}, \ldots, x_{n} \in V, m \in \omega, s \in{ }^{m} A$ is a sequence of distinct members of A, and $\varphi\left(x_{1}, \ldots, x_{n}, s, A\right)$ holds in $V[G]$, then there is a basic clopen set $U \subseteq{ }^{m}\left({ }^{\omega} 2\right)$ with pairwise disjoint projections in ${ }^{\omega} 2$ such that $s \in U$ and $\varphi\left(x_{1}, \ldots, x_{n}, t, A\right)$ holds in $V[G]$ for every $t \in U \cap{ }^{m} A$.

Proof: Let W be the set of all one-to-one functions in ${ }^{m} \omega$. For $h \in W$ let $h^{*} \in{ }^{m} A$ be defined by $h^{*}(i)=a_{h(i)}$. For $h \in W$ let

$$
\begin{aligned}
b(h) & =\left\|\varphi\left(x_{1}, \ldots, x_{n}, \dot{h}^{*}, \dot{A}\right)\right\| \\
c(h) & =\bigvee_{k \in \omega} \bigwedge_{z \in W}-\left\|\dot{z}^{*} \in\left[\dot{h}^{*} \upharpoonright k\right]\right\| \vee\left\|\varphi\left(x_{1}, \ldots, x_{n}, \dot{z}^{*}, \dot{A}\right)\right\| \\
& =\left\|(\exists k \in \omega)(\forall z \in W) \dot{z}^{*} \in\left[\dot{h}^{*} \upharpoonright k\right] \rightarrow \varphi\left(x_{1}, \ldots, x_{n}, \dot{z}^{*}, \dot{A}\right)\right\|
\end{aligned}
$$

where \dot{h}^{*}, \dot{z}^{*}, and \dot{A} denote the canonical names for h^{*}, z^{*}, and A constructed by means of the canonical names \dot{a}_{i} for $i \in \omega$. The inequality $b(h) \leq c(h)$ means that if $\varphi\left(x_{1}, \ldots, x_{n}, s, A\right)$ holds in $V[G]$ for $s=h^{*}$, then there is $k \in \omega$ such that the conclusion of the lemma holds for the clopen set $U=[s \Uparrow k]$. Then, since s is one-to-one, the projections of U are pairwise disjoint if k is sufficiently large. We prove $b(h) \leq c(h)$ for all $h \in W$.

Let $p^{\prime} \in P$ satisfy $p^{\prime} \leq b(h)$ and we find $p \leq p^{\prime}$ such that $p \leq c(h)$. Extend p^{\prime} to a condition $p \supseteq p^{\prime}$ so that $\operatorname{dom}(p)=k \times k$ for some $k \in \omega, \operatorname{rng}(h) \subseteq k$, and for all $i<j<k$ there is $l<k$ such that $p(i, l) \neq p(j, l)$. For every $q \in P$ let q_{i} be defined by $q_{i}(j)=q(i, j)$. Then $p_{i} \in{ }^{k} 2$ for $i<k$ are pairwise incompatible and $p \Vdash\left[\dot{h}^{*} \Vdash k\right]=\prod_{i<m}\left[p_{h(i)}\right]$. We prove that $p \leq c(h)$.

To get a contradiction assume that for some $z \in W$ there is $r \leq p$ such that $r \Vdash \dot{z}^{*} \in\left[\dot{h}^{*} \Vdash k\right]$ and $r \Vdash \neg \varphi\left(x_{1}, \ldots, x_{n}, \dot{z}^{*}, \dot{A}\right)$; the former assumption is equivalent to saying that $r_{z(i)} \upharpoonright k=p_{h(i)}$ for all $i<m$. If $z(i) \neq h(i)$, then $z(i)>h(i)$ because p_{j} for $j<k$ are pairwise incompatible. Let π be the permutation of ω that interchanges $h(i)$ and $z(i)$ for all $i<m$ and $\pi(j)=j$ otherwise. The permutation π induces an automorphism of P and an automorphism of V^{P}, i.e., for $p, q \in P, q=\pi(p)$ if $q(\pi(i), j)=p(i, j)$. By the symmetry lemma $\pi(r) \Vdash \neg \varphi\left(x_{1}, \ldots, x_{n}, \pi\left(\dot{z}^{*}\right), \pi(\dot{A})\right)$ which is impossible because $\pi(r)$ and p are compatible, $\pi\left(\dot{z}^{*}\right)=\dot{h}^{*}, \pi(\dot{A})=\dot{A}$, and $p \Vdash \varphi\left(x_{1}, \ldots, x_{n}, \dot{h}^{*}, \dot{A}\right)$. This contradiction proves that there is no such r and hence $p \leq c(h)$.

Let $F \in[A]^{m}$. We say that a sequence $\left\langle U_{i}: i<m\right\rangle$ of pairwise disjoint basic open sets in ${ }^{\omega} 2$ distinguishes F, if $\left|F \cap U_{i}\right|=1$ for all $i<m$.

Corollary 3. Let $\varphi\left(x_{1}, \ldots, x_{n}, F\right)$ be a formula of $Z F$ with no free variables other than x_{1}, \ldots, x_{n}, F. If $s \in{ }^{<\omega} A, x_{1}, \ldots, x_{n} \in \mathrm{OD}^{V[G]}[A, s], F^{\prime} \subseteq A \backslash \operatorname{rng}(s)$ is a finite set, $m=\left|F^{\prime}\right|$, and $\varphi\left(x_{1}, \ldots, x_{n}, F^{\prime}\right)$ holds in $V[G]$, then there is a sequence of basic open sets $\left\langle U_{i}: i<m\right\rangle$ in ${ }^{\omega} 2$ disjoint from $\operatorname{rng}(s)$ and distinguishing members of F^{\prime} such that $\varphi\left(x_{1}, \ldots, x_{n}, F\right)$ holds in $V[G]$ for every $F \in[A]^{m}$ such that $\left|F \cap U_{i}\right|=1$ for all $i<m$.

Proof: Assume $|s|=k$ and let $t^{\prime}: m \rightarrow F^{\prime}$ be any one-to-one enumeration. There is a formula ψ such that for some ordinals $\alpha_{1}, \ldots, \alpha_{r}$,

$$
\begin{gathered}
V[G] \vDash(\forall t) \psi\left(\alpha_{1}, \ldots, \alpha_{r}, s^{\frown} t, A\right) \rightarrow \varphi\left(x_{1}, \ldots, x_{n}, \operatorname{rng}(t)\right), \text { and } \\
V[G] \vDash \psi\left(\alpha_{1}, \ldots, \alpha_{r}, s \frown t^{\prime}, A\right) .
\end{gathered}
$$

By Lemma 2 there is a disjoint sequence of basic open sets $\left\langle V_{i}: i<k+m\right\rangle$ in ${ }^{\omega} 2$ such that $s \frown t^{\prime} \in \prod_{i<k+m} V_{i}$ and $\psi\left(\alpha_{1}, \ldots, \alpha_{r}, t, A\right)$ holds in $V[G]$ for every $t \in \prod_{i<k+m} V_{i}$. Take $U_{i}=V_{k+i}$ for $i<m$.

Now we prove the Boolean Prime Ideal Theorem in $M=\operatorname{HOD}^{V[G]}(A)$.
Let $(B, \vee, \wedge,-, 0,1)$ be a Boolean algebra in M. Then there is $f \in{ }^{<\omega} A$ such that $B \in \mathrm{OD}^{V[G]}[A, f]$. The class $\mathrm{OD}^{V[G]}[A, f]$ has a well-ordering ordinaldefinable from A and f. Using this well-ordering by transfinite recursion we can define a proper ideal $I \subseteq B$ maximal ordinal-definable from A and f. Hence, for every $x \in B$ which is ordinal-definable from A and f, either $x \in I$ or $-x \in I$. Clearly $I \in M$ because $I \subseteq B \subseteq M$. We prove that I is a prime ideal of B in M.

Suppose that I is not prime and let $k \in \omega$ be the least natural number such that for some $h^{\prime} \in{ }^{k+1} A$ there is an $x \in \mathrm{OD}^{V[G]}\left[A, f \subset h^{\prime}\right]$ such that $x \in B \backslash I$ and $-x \in B \backslash I$. Let $a^{\prime}=h^{\prime}(k)$ and $h=h^{\prime} \upharpoonright k$. Then $B \in \mathrm{OD}^{V[G]}[A, f \frown h]$ and by minimality of k it is obvious that $a^{\prime} \notin \operatorname{rng}(f) \cup \operatorname{rng}(h)$ and I is a maximal ideal of B in $\mathrm{OD}^{V[G]}[A, f \frown h]$ because I is a prime ideal there. There is a formula φ such that

$$
x=\left\{u \in V[G]: V[G] \vDash \varphi\left(u, \alpha_{1}, \ldots, \alpha_{n}, f \subset h, a^{\prime}, A\right)\right\}
$$

for some ordinals $\alpha_{1}, \ldots, \alpha_{n}$. Since $f \subset h, \alpha_{1}, \ldots, \alpha_{n}$ are fixed throughout the proof we shall denote

$$
d(a)=\left\{u \in V[G]: V[G] \vDash \varphi\left(u, \alpha_{1}, \ldots, \alpha_{n}, f^{\frown} h, a, A\right)\right\} .
$$

Hence $d\left(a^{\prime}\right) \in B \backslash I$ and $-d\left(a^{\prime}\right) \in B \backslash I$. By Corollary 3 there is a basic open set $U \subseteq{ }^{\omega} 2$ such that $a^{\prime} \in U, U \cap \operatorname{rng}(f \subset h)=\emptyset$, and

$$
\begin{equation*}
(\forall a \in U \cap A)-d(a) \in B \backslash I \text { and } d(a) \in B \backslash I \tag{1}
\end{equation*}
$$

The ideal of B generated by $I \cup\{d(a): a \in U \cap A\}$ is in $\mathrm{OD}^{V[G]}[A, f \frown h]$ and it coincides with B by maximality of I. Therefore for some finite set $F_{1}^{\prime} \subseteq U \cap A$ we have $\bigwedge_{a \in F_{1}^{\prime}}-d(a) \in I$. Similarly, if we consider the ideal generated by $I \cup\{-d(a)$: $a \in U \cap A\}$ we obtain a finite set $F_{2}^{\prime} \subseteq U \cap A$ such that $\bigwedge_{a \in F_{2}^{\prime}} d(a) \in I$. Denote $F^{\prime}=F_{1}^{\prime} \cup F_{2}^{\prime}$ and $m=\left|F^{\prime}\right|$. Then

$$
\bigwedge_{a \in F^{\prime}}-d(a) \in I \quad \text { and } \quad \bigwedge_{a \in F^{\prime}} d(a) \in I
$$

By Corollary 3, there is a sequence of basic open sets $\left\langle U_{i}: i<m\right\rangle$ distinguishing F^{\prime}, such that each set U_{i} is a subset of U (this is possible because $F^{\prime} \subseteq U$),
hence disjoint from $\operatorname{rng}(f \frown h)$, and for every $F \in[A]^{m}$ such that $(\forall i<m)$ $F \cap U_{i} \neq \emptyset$,

$$
\begin{equation*}
\bigwedge_{a \in F}-d(a) \in I \quad \text { and } \quad \bigwedge_{a \in F} d(a) \in I \tag{2}
\end{equation*}
$$

For every $i<m$, (1) holds with U replaced with U_{i} because $U_{i} \subseteq U$. Replacing U with U_{i} in the argument that leads to (2) we obtain a sequence of pairwise disjoint basic open sets $\left\langle U_{i, j}: j<m_{i}\right\rangle$ which are subsets of U_{i} such that for every $i<m$, and for every $F \subseteq A \cap U$ with $\left(\forall j<m_{i}\right) F \cap U_{i, j} \neq \emptyset$, we have

$$
\begin{equation*}
\bigwedge_{a \in F}-d(a) \in I \quad \text { and } \quad \bigwedge_{a \in F} d(a) \in I \tag{3}
\end{equation*}
$$

The system $S=\left\{U_{i, j}: i<m\right.$ and $\left.j<m_{i}\right\}$ is a pairwise disjoint system of basic clopen sets in ${ }^{\omega} 2$ and A is a dense subset of ${ }^{\omega} 2$. Let $y \subseteq A \cap U$ be a finite set of the size $|S|$ such that $(\forall V \in S)|y \cap V|=1$. Then for every $z \subseteq y$,

$$
\begin{equation*}
\bigwedge_{a \in z} d(a) \wedge \bigwedge_{a \in y \backslash z}-d(a) \in I \tag{4}
\end{equation*}
$$

To prove this let us consider these two possibilities.
(i) For every $i<m, z \cap U_{i} \neq \emptyset$. Then by (2), $\bigwedge_{a \in z} d(a) \in I$ and hence (4) holds.
(ii) There is $i<m$ such that $z \cap U_{i}=\emptyset$. Then $\left(\forall j<m_{i}\right)(y \backslash z) \cap U_{i, j} \neq \emptyset$, and by (3), $\bigwedge_{a \in y \backslash z}-d(a) \in I$, and hence (4) holds.

Using (4) we obtain a contradiction as follows: $1=\bigwedge_{a \in y}(d(a) \vee-d(a))=$ $\bigvee_{z \subseteq y}\left[\bigwedge_{a \in z} d(a) \wedge \bigwedge_{a \in y \backslash z}-d(a)\right] \in I$. This contradiction proves that I is prime in \bar{M}.

References

[1] Halpern J.D., Läuchli H., A partition theorem, Trans. Amer. Math. Soc. 124 (1966), 360367.
[2] Halpern J.D., Lévy A., The Boolean Prime Ideal Theorem does not imply the Axiom of Choice, In: Axiomatic Set Theory, Proceedings of Symposia in Pure Mathematics, vol. XIII, Part I, pp. 83-134, AMS, Providence, 1971.
[3] Jech T., Set Theory, Academic Press, New York-London, 1978.
[4] Jech T., Set Theory, the third millennium edition, revised and expanded, Springer Monographs in Mathematics, Springer, Berlin, 2003.

Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 04001 Košice, Slovak Republic

E-mail: repicky@saske.sk

