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Abstract

The aim of this paper is to study generalized recurrent, generalized
Ricci-recurrent, weakly symmetric and weakly Ricci-symmetric, semi-gen-
eralized recurrent, semi-generalized Ricci-recurrent Lorentzian α-Sasakian
manifold with respect to quarter-symmetric metric connection. Finally,
we give an example of 3-dimensional Lorentzian α-Sasakian manifold with
respect to quarter-symmetric metric connection.
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1 Introduction

The idea of a semi-symmetric linear connection on a differentiable manifold was
introduced by Friedmann and Schouten [5]. Further, Hayden [7], introduced the
idea of metric connection with torsion on a Riemannian manifold. In [32], Yano
studied some curvature conditions for semi-symmetric connections in Rieman-
nian manifolds.

*First author is supported by DST/INSPIRE Fellowship/2013/1041, Govt. of India.
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In 1975, Golab [6] defined and studied a quarter-symmetric connection in a
differentiable manifold.
A linear connection ∇̃ on an n-dimensional Riemannian manifold (Mn, g) is said
to be a quarter-symmetric connection [6] if its torsion tensor T̃ defined by

T̃ (X,Y ) = ∇̃XY − ∇̃Y X − [X,Y ], (1.1)

is of the form

T̃ (X,Y ) = η(Y )φX − η(X)φY, (1.2)

where η is a non-zero 1-form and φ is a tensor field of type (1, 1). In addition,
if a quarter-symmetric linear connection ∇̃ satisfies the condition

(∇̃Xg)(Y, Z) = 0 (1.3)

for all X,Y, Z ∈ χ(M), where χ(M) is the set of all differentiable vector fields
on M , then ∇̃ is said to be a quarter-symmetric metric connection. In particu-
lar, if φX = X and φY = Y for all X,Y ∈ χ(M), then the quarter-symmetric
connection reduces to a semi-symmetric connection [5].

M. M. Tripathi [29] studied semi-symmetric metric connections in a Kenmotsu
manifolds. In [31], the semi-symmetric non-metric connection in a Kenmotsu
manifold was studied by M. M. Tripathi and N. Nakkar. Also in [30], M. M.
Tripathi proved the existence of a new connection and showed that in particu-
lar cases, this connection reduces to semi-symmetric connections; even some of
them are not introduced so far.

In 2005, Yildiz and Murathan [36] studied Lorentzian α-Sasakian manifolds and
proved that conformally flat and quasi conformally flat Lorentzian α-Sasakian
manifolds are locally isometric with a sphere. In 2012, Yadav and Suthar [34]
studied Lorentzian α-Sasakian manifolds.

After Golab [6], Rastogi ([22], [23]) continued the systematic study of quarter-
symmetric metric connection. In 1980, Mishra and Pandey [8] studied quarter-
symmetric metric connection in a Riemannian, Kaehlerian and Sasakian mani-
fold. In 1982, Yano and Imai [33] studied quarter-symmetric metric connection
in Hermition and Kaehlerian manifolds. In 1991, Mukhopadhyay et al. [16]
studied quarter-symmetric metric connection on a Riemannian manifold with
an almost complex structure φ.

On the other hand, De and Guha introduced generalized recurrent manifold
with the non-zero 1-form α1 and another non-zero associated 1-form β1. Such
a manifold has been denoted by GKn. If the associated 1-form becomes zero,
then the manifold GKn reduces to a recurrent manifold introduced by Ruse [24]
which is denoted by Kn. The idea of Ricci-recurrent manifold was introduced
by Patterson [17]. He denoted such a manifold by Rn. Ricci-recurrent manifolds
have been studied by many authors ([3], [18], [35], [9], [10], [11], [12]).
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A non-flat n-dimensional differentiable manifold M, n > 3, is called general-
ized recurrent if its curvature tensor R satisfies the condition

(∇XR)(Y, Z)W = α1(X)R(Y, Z)W + β1(X)[g(Z,W )Y − g(Y,W )Z], (1.4)

where ∇ is the Levi-Civita connection and α1 and β1 are two 1-forms (β1 �= 0)
defined by

α1(X) = g(X,A), β1(X) = g(X,B), (1.5)

and A, B are vector fields related with 1-forms α1 and β1 respectively. A non-
flat n-dimensional differentiable manifold M , n > 3, is called generalized Ricci-
recurrent if its Ricci tensor S satisfies the condition

(∇XS)(Y, Z)W = α1(X)S(Y, Z)W + (n− 1)β1(X)g(Y, Z), (1.6)

where α1 and β1 defined as (1.5).

The notions of weakly symmetric and weakly Ricci-symmetric manifolds were
introduced by L. Tamassy and T. Q. Binh in ([27], [28]).

A non-flat n-dimensional differentiable manifold M, n > 3, is called pseudosym-
metric if there is a 1-form α1 on M such that

(∇XR)(Y, Z)V = 2α1(X)R(Y, Z)V + α1(Y )R(X,Z)V + α1(Z)R(Y,X)V

+ α1(V )R(Y, Z)X + g(R(Y, Z)V,X)A, (1.7)

where ∇ is the Levi-Civita connection and X,Y, Z, V are vector fields on M .
A ∈ χ(M) is the vector field associated with 1-form α1 which is defined by
g(X,A) = α1(X) in [1]. Later R. Deszcz [4] started to use “pseudosymmetric”
term in different sence, see([11], [12] [13]).

A non-flat n-dimensional differentiable manifold M, n > 3, is called weakly
symmetric ([27], [28]) if there are 1-forms α1, β1, γ1, σ1 such that

(∇XR)(Y, Z)V = α1(X)R(Y, Z)V + β1(Y )R(X,Z)V + γ1(Z)R(Y,X)V

+ σ1(V )R(Y, Z)X + g(R(Y, Z)V,X)A (1.8)

for all vector fields X,Y, Z, V on M . A weakly symmetric manifold M is
pseudosymmetric if β1 = γ1 = σ1 = 1

2α1 and P = A, locally symmetric if
α1 = β1 = γ1 = σ1 = 0 and P = 0. A weakly symmetric manifold is said to be
proper if at least one of the 1-forms α1, β1, γ1 and σ1 is not zero or P �= 0.

A non-flat n-dimensional differentiable manifold M, n > 3, is called weakly
Ricci-symmetric ([27], [28]) if there are 1-forms ρ, μ, υ such that

(∇XS)(Y, Z) = ρ(X)S(Y, Z) + μ(Y )S(Y, Z) + υ(Z)S(X,Y ) (1.9)
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for all vector fields X,Y, Z, V on M . If ρ = μ = υ, then M is called pseudo
Ricci-symmetric(see [2]).
If M is weakly symmetric, from (1.8), we have

(∇XS)(Y, Z) = α1(X)S(Z, V ) + β1(R(X,Z)V ) + γ1(Z)S(X,V )

+ σ1(V )S(X,Z) + p(R(X,V )Z), (1.10)

where p is defined by p(X) = g(X,P ) for any X ∈ χ(M) in [28].

Generalizing the notion of recurrency, the author Khan [21] introduced the
notion of generalized recurrent Sasakian manifolds. In the paper B. Prasad
[19] introduced the notion of semi-generalized recurrent manifold and obtained
few interesting results. L. Rach̊unek and J. Mikeš studied the similar problems
in([14], [15], [25]).

A Riemannian manifold is called a semi-generalized recurrent manifold if its
curvature tensor R satisfies the condition

(∇XR)(Y, Z)W = α1(X)R(Y, Z)W + β1(X)g(Z,W )Y, (1.11)

where α1 and β1 defined as (1.5).

A Riemannian manifold is called a semi-generalized Ricci-recurrent manifold
if its curvature tensor R satisfies the condition

(∇XS)(Y, Z) = α1(X)S(Y, Z) + nβ1(X)g(Y, Z), (1.12)

where α1 and β1 defined as (1.5).

Motivated by the above studies, in the present paper we have proved that
β1 = (α − α2)α1 holds on both generalized recurrent and generalized Ricci-
recurrent Lorentzian α-Sasakian manifold with respect to the quarter-symmetric
metric connection. We also show that there is no weakly symmetric or weakly
Ricci-symmetric Lorentzian α-Sasakian manifold with respect to the quarter-
symmetric metric connection, n > 3, unless α1+σ1+γ1 or ρ+μ+υ is everywhere
zero, respectively. We have also studied semi-generalized recurrent Lorentzian
α-Sasakian manifold with respect to the quarter-symmetric metric connection.

2 Preliminaries

A n(=2m+1)-dimensional differentiable manifold M is said to be a Lorentzian
α-Sasakian manifold if it admits a (1, 1) tensor field φ, a contravariant vector
field ξ, a covariant vector field η and Lorentzian metric g which satisfy the
following conditions

φ2X = X + η(X)ξ, (2.1)
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η(ξ) = −1, φξ = 0, η(φX) = 0, (2.2)

g(φX, φY ) = g(X,Y ) + η(X)η(Y ), (2.3)

g(X, ξ) = η(X), (2.4)

(∇Xφ)(Y ) = α{g(X,Y )ξ + η(Y )X} (2.5)

∀X,Y ∈ χ(M) and for non-zero smooth functions α on M , ∇ denotes the
covariant differentiation with respect to Lorentzian metric g ([20], [37]).
For a Lorentzian α-Sasakian manifold, it can be shown that ([20], [37]):

∇Xξ = αφX, (2.6)

(∇Xη)(Y ) = αg(φX, Y ) (2.7)

for all X,Y ∈ χ(M).
Further on a Lorentzian α-Sasakian manifold, the following relations hold [20]

g(R(X,Y )Z, ξ) = η(R(X,Y )Z) = α2[g(Y, Z)η(X)− g(X,Z)η(Y )], (2.8)

R(ξ,X)Y = α2[g(X,Y )ξ − η(Y )X], (2.9)

R(X,Y )ξ = α2[η(Y )X − η(X)Y ], (2.10)

R(ξ,X)ξ = α2[X + η(X)ξ], (2.11)

S(X, ξ) = S(ξ,X) = (n− 1)α2η(X), (2.12)

S(ξ, ξ) = −(n− 1)α2, (2.13)

Qξ = (n− 1)α2ξ, (2.14)

where Q is the Ricci operator, i.e.,

g(QX, Y ) = S(X,Y ). (2.15)

If ∇ is the Levi-Civita connection manifold M , then quarter-symmetric metric
connection ∇̃ in M is denoted by

∇̃XY = ∇XY + η(Y )φ(X). (2.16)
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3 Curvature tensor and Ricci tensor of Lorentzian α-
Sasakian manifold with respect to quarter-symmetric
metric connection

Let R̃(X,Y )Z and R(X,Y )Z be the curvature tensors with respect to the
quarter-symmetric metric connection ∇̃ and with respect to the Riemannian
connection ∇ respectively on a Lorentzian α-Sasakian manifold M . A relation
between the curvature tensors R̃(X,Y )Z and R(X,Y )Z on M is given by

R̃(X,Y )Z = R(X,Y )Z + α[g(φX,Z)φY − g(φY, Z)φX]

+ αη(Z)[η(Y )X − η(X)Y ]. (3.1)

Also from (3.1), we obtain

S̃(X,Y ) = S(X,Y ) + α[g(X,Y ) + nη(X)η(Y )], (3.2)

where S̃ and S are the Ricci tensor with respect to ∇̃ and ∇ respectively.
Contracting (3.2), we obtain,

r̃ = r, (3.3)

where r̃ and r are the scalar curvature tensor with respect to ∇̃ and ∇ respec-
tively.
Also we have

R̃(ξ,X)Y = −R̃(X, ξ)Y = α2[g(X,Y ))ξ − η(Y )X] + αη(Y )[X + η(X)ξ],(3.4)

η(R̃(X,Y )Z) = α2[g(Y, Z)η(X)− g(X,Z)η(Y )], (3.5)

R̃(X,Y )ξ = (α2 − α)[η(Y )X − η(X)Y ], (3.6)

S̃(X, ξ) = S̃(ξ,X) = (n− 1)(α2 − α)η(X), (3.7)

S̃(ξ, ξ) = −(n− 1)(α2 − α), (3.8)

Q̃X = QX − α(n− 1)X, (3.9)

Q̃ξ = (n− 1)(α2 − α)ξ, (3.10)

R̃(ξ,X)ξ = (α2 − α)[X + η(X)ξ]. (3.11)
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4 Generalized recurrent Lorentzian α-Sasakian manifold
with respect to quarter-symmetric metric connection

A non-flat n-dimensional differentiable manifold M , n > 3, is called general-
ized recurrent with respect to the quarter-symmetric metric connection if its
curvature tensor R̃ satisfies the condition

(∇̃XR̃)(Y, Z)W = α1(X)R̃(Y, Z)W + β1(X)[g(Z,W )Y − g(Y,W )Z] (4.1)

for all X,Y, Z,W ∈ χ(M), where ∇̃ is the quarter-symmetric metric connection
and R̃ is the curvature tensor of ∇̃.

A non-flat n-dimensional differentiable manifold M, n > 3, is called general-
ized Ricci-recurrent with respect to the quarter-symmetric metric connection if
its Ricci tensor S̃ satisfies the condition

(∇̃X S̃)(Y, Z) = α1(X)S̃(Y, Z) + (n− 1)β1(X)g(Y, Z) (4.2)

for all X,Y, Z ∈ χ(M).
In [26] Sular studied that if M be a generalized recurrent Kenmotsu manifold
and generalized Ricci recurrent Kenmotsu manifold respect to semi-symmetric
metric connection, then β1 = 2α1 holds on M .

Now we consider generalized recurrent and generalized Ricci-recurrent Lorentzian
α-Sasakian manifold with respect to quarter-symmetric metric connection.
We start with the following theorem:

Theorem 4.1. If a generalized recurrent Lorentzian α-Sasakian manifold M
admits quarter-symmetric metric connection, then β1 = (α−α2)α1 holds on M .

Proof. Suppose that M is a generalized recurrent Lorentzian α-Sasakian man-
ifold admitting a quarter-symmetric metric connection. Taking Y = W = ξ in
(4.1), we get

(∇̃XR̃)(ξ, Z)ξ = α1(X)R̃(ξ, Z)ξ + β1(X)[g(Z, ξ)ξ + Z]. (4.3)

By using the equation (2.4), (2.10) and (3.6) in (4.3), we have

(∇̃XR̃)(ξ, Z)ξ = [α1(X)(α2 − α) + β1(X)]{η(Z)ξ + Z}. (4.4)

On the other hand, it is clear that

(∇̃XR̃)(ξ, Z)ξ = ∇̃XR̃(ξ, Z)ξ − R̃(∇̃Xξ, Z)− R̃(ξ, ∇̃XZ)− R̃(ξ, Z)∇̃Xξ.(4.5)

Now using the equation (2.10) and (3.6) in (4.5), we have

(∇̃XR̃)(ξ, Z)ξ = 0. (4.6)
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Hence comparing the right hand sides of the equations (4.4) and (4.6) we obtain

[α1(X)(α2 − α) + β1(X)]{η(Z)ξ + Z} = 0, (4.7)

which imply

β1(X) = (α− α2)α1(X) (4.8)

for any vector field X ∈ M . So our theorem is proved.

Theorem 4.2. Let M be a generalized Ricci-recurrent Lorentzian α-Sasakian
manifold admitting quarter-symmetric metric connection, then β1 = (α−α2)α1

holds on M .

Proof. Suppose that M is a generalized Ricci-recurrent Lorentzian α-Sasakian
Manifold M with respect to quarter-symmetric metric connection. Now putting
Z = ξ in (4.2), we get

(∇̃X S̃)(Y, ξ) = α1(X)S̃(Y, ξ) + (n− 1)β1(X)g(Y, ξ). (4.9)

Then by using the equation (2.4), (2.12) and (3.7) in (4.9), we have

(∇̃X S̃)(Y, ξ) = α1(X)[(n− 1)(α2 − α)η(Y ) + (n− 1)β1(X)η(Y ). (4.10)

On the other hand, by using the definition of covariant derivative of S̃ with
respect to the quarter-symmetric metric connection, it is well-known that

(∇̃X S̃)(Y, ξ) = ∇̃X S̃(Y, ξ)− S̃(∇̃XY, ξ)− S̃(Y, ∇̃Xξ) (4.11)

Now using the equation (2.6), (2.7), (2.12), (2.16), (3.2) and (3.7) in (4.11), we
obtain

(n− 1)(α2 − α)αg(Y, φX)− (α− 1)[S(Y, φX) + αg(Y, φX)]. (4.12)

Hence comparing the right hand sides of the equations (4.10) and (4.12) we
obtain

α1(X)[(n− 1)(α2 − α)η(Y ) + (n− 1)β1(X)η(Y )

= (n− 1)(α2 − α)αg(Y, φX)

− (α− 1)[S(Y, φX) + αg(Y, φX)]. (4.13)

Now putting Y = ξ in (4.13), we get

β1(X) = (α− α2)α1(X) (4.14)

for any vector field X ∈ M . So this completes the proof.
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5 Weakly symmetric Lorentzian α-Sasakian manifold with
respect to quarter-symmetric metric connection

A non-flat n-dimensional differentiable manifold M, n > 3, is called weakly
symmetric with respect to quarter-symmetric metric connection if there are
1-forms α1, β1, γ1, σ1 such that

(∇̃XR̃)(Y, Z)V = α1(X)R̃(Y, Z)V + β1(Y )R̃(X,Z)V + γ1(Z)R̃(Y,X)V

+ σ1(V )R̃(Y, Z)X + g(R̃(Y, Z)V,X)A (5.1)

for all vector fields X,Y, Z, V on M .

A non-flat n-dimensional differentiable manifold M , n > 3, is called weakly
Ricci-symmetric with respect to quarter-symmetric metric connection if there
are 1-forms ρ, μ, υ such that

(∇̃X S̃)(Y, Z) = ρ(X)S̃(Y, Z) + μ(Y )S̃(Y, Z) + υ(Z)S̃(X,Y ) (5.2)

for all vector fields X,Y, Z, V on M . If M is weakly symmetric with respect to
the quarter-symmetric metric connection, by a contraction from (1.8), we have

(∇̃X S̃)(Z, V ) = α1(X)S̃(Z, V ) + β1(R̃(X,Z)V ) + γ1(Z)S̃(X,V )

+ σ1(V )S̃(X,Z) + p(R̃(X,V )Z). (5.3)

In [26], Sular studied weakly symmetric and weakly Ricci-symmetric Kenmotsu
manifold with respect to semi-symmetric metric connection and obtained some
results.
i) If M be a weakly symmetric Kenmotsu manifold with respect to quarter-
symmetric metric connection then there is no weakly symmetric n > 3, unless
α1 + σ1 + γ1 is everywhere zero.
ii) If M be a weakly Ricci-symmetric Kenmotsu manifold with respect to semi-
symmetric metric connection then there is no weakly Ricci-symmetric n > 3,
unless ρ+ μ+ υ is everywhere zero.

Now we consider weakly symmetric and weakly Ricci-symmetric Lorentzian α-
Sasakian manifold with respect to quarter-symmetric metric connection.
We start with the following theorem:

Theorem 5.1. There is no weakly symmetric Lorentzian α-Sasakian manifold
with respect to quarter-symmetric metric connection n > 3, unless α1 + σ1 + γ1
is everywhere zero, provided α �= 0, 1.

Proof. Let M be a weakly symmetric Lorentzian α-Sasakian manifold with
respect to quarter-symmetric metric connection ∇̃. By the covariant differen-
tiation of the Ricci tensor S̃ of the quarter-symmetric metric connection with
respect to X, we have

(∇̃X S̃)(Z, V ) = ∇̃X S̃(Z, V )− S̃(∇̃XZ, V )− S̃(Z, ∇̃XV ). (5.4)
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Putting V = ξ in (5.4) and using (2.6), (2.7), (2.12), (2.16) and (3.7), it follows
that

(∇̃X S̃)(Z, ξ) = (n− 1)(α2 − α)(∇Xη)Z − (α− 1)S̃(Z, φX). (5.5)

Replacing V = ξ in (5.3), we get

(∇̃X S̃)(Z, ξ) = α1(X)S̃(Z, ξ) + β1(R̃(X,Z)ξ) + γ1(Z)S̃(X, ξ)

+ σ1(ξ)S̃(X,Z) + p(R̃(X, ξ)Z). (5.6)

Now using (2.6), (2.7), (2.12), (2.16), (3.6) and (3.7) in (5.6), we obtain

(∇̃X S̃)(Z, ξ) = α1(X)(n− 1)(α2 − α)η(Z)

+ (α2 − α)[η(Z)β1(X)− η(X)β1(Z)]

+ γ1(Z)(n− 1)(α2 − α)η(X) + σ1(ξ)S̃(X,Z)

− α2[g(X,Z)p(ξ)− η(Z)p(X)]− α1η(Z)[p(X)

+ η(X)p(ξ)]. (5.7)

Thus, comparing the right hand sides of the equations (5.5) and (5.7) we obtain

(n− 1)(α2 − α)(∇Xη)Z − (α− 1)S̃(Z, φX) = α1(X)(n− 1)(α2 − α)η(Z)

+ (α2 − α)[η(Z)β1(X)− η(X)β1(Z)]

+ γ1(Z)(n− 1)(α2 − α)η(X) + σ1(ξ)S̃(X,Z)

− α2[g(X,Z)p(ξ)− η(Z)p(X)]− α1η(Z)[p(X)

+ η(X)p(ξ)]. (5.8)

Then taking X = Z = ξ in (5.8) and using (2.1), (2.2), (2.4), (2.12) and (3.8),
we get

(n− 1)(α2 − α)[α1(ξ) + γ1(ξ) + σ1(ξ)] = 0. (5.9)

Now as n > 3 and α �= 0, 1, So,

α1(ξ) + γ1(ξ) + σ1(ξ) = 0. (5.10)

Now putting Z = ξ in (5.3), we get

(∇̃X S̃)(ξ, V ) = α1(X)S̃(ξ, V ) + β1(R̃(X, ξ)V ) + γ1(ξ)S̃(X,V )

+ σ1(ξ)S̃(X, ξ) + p(R̃(X,V )ξ. (5.11)

Also putting Z = ξ in (5.4) and using (2.6), (2.7), (2.12), (2.16) and (3.7), it
follows that

(∇̃X S̃)(ξ, V ) = (n− 1)(α2 − α)(∇Xη)V − (α− 1)S̃(V, φX). (5.12)

Similarly using (2.6), (2.7), (2.12), (2.16), (3.6) and (3.7) in (5.11), we obtain

(∇̃X S̃)(ξ, V ) = α1(X)(n− 1)(α2 − α)η(V )− α2[g(X,V )β1(ξ)

− η(V )β1(X)]− αη(V )[β1(X) + η(X)β1(ξ)]

+ γ1(ξ)S̃(X,V ) + σ1(V )(n− 1)(α2 − α)η(X)

+ (α2 − α)[η(V )p(X)− η(V )p(X)]. (5.13)
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Thus, comparing the right hand sides of the equations (5.12) and (5.13), we
obtain

(n− 1)(α2 − α)(∇Xη)V − (α− 1)S̃(V, φX) = α1(X)(n− 1)(α2 − α)η(V )

− α2[g(X,V )β1(ξ)− η(V )β1(X)]− αη(V )[β1(X)

+ η(X)β1(ξ)] + γ1(ξ)S̃(X,V ) + σ1(V )(n− 1)(α2

− α)η(X) + (α2 − α)[η(V )p(X)

− η(V )p(X)]. (5.14)

Now putting V = ξ in (5.14), we obtain

−α1(X)(n− 1)(α2 − α) − (α2 − α)[η(X)β1(ξ) + β1(X)]

+ (σ1(ξ) + γ1(ξ))(n− 1)(α2 − α)η(X)

− (α2 − α)[p(X) + η(X)p(ξ)] = 0. (5.15)

Taking X = ξ in (5.14), we obtain

α1(ξ)(n− 1)(α2 − α)η(V ) + γ1(ξ)(n− 1)(α2 − α)η(V )

− σ1(V )(n− 1)(α2 − α) + (α2

− α)[p(V ) + η(V )p(ξ)] = 0. (5.16)

In (5.16) taking V = X and summing with (5.15), by virtue of (5.10) we find

−(n− 1)(α2 − α)[α1(X) + σ1(X)]− (α2 − α)[η(X)β1(ξ) + β1(X)]

+ (n− 1)(α2 − α)η(X)γ1(ξ) = 0. (5.17)

Again putting X = ξ in (5.8), we obtain

α1(ξ)(n− 1)(α2 − α)η(Z) + (α2 − α)[η(Z)β1(ξ) + β1(Z)]

− γ1(Z)(n− 1)(α2 − α)

+ σ1(ξ)(n− 1)(α2 − α)η(Z) = 0. (5.18)

Now in the equation (5.18) taking Z = X, we obtain

α1(ξ)(n− 1)(α2 − α)η(X) + (α2 − α)[η(X)β1(ξ) + β1(X)]

− γ1(X)(n− 1)(α2 − α)

+ σ1(ξ)(n− 1)(α2 − α)η(X) = 0. (5.19)

Then adding (5.17) and (5.19) , we find

(n− 1)(α2 − α)η(X)[α1(ξ) + γ1(ξ) + σ1(ξ)]− (n− 1)(α2 − α)[α1(X)

+ γ1(X) + σ1(X)] = 0. (5.20)

Since n > 3, α �= 0, 1, and

α1(ξ) + γ1(ξ) + σ1(ξ) = 0,
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so we get
α1(X) + γ1(X) + σ1(X) = 0

for all X ∈ M .
So our proof is completed.

Theorem 5.2. There is no weakly Ricci-symmetric Lorentzian α-Sasakian
manifold with respect to quarter-symmetric metric connection n > 3, unless
ρ+ μ+ υ is everywhere zero, provided α �= 0, 1.

Proof. Assume that M is a weakly Ricci-symmetric Lorentzian α-Sasakian
manifold with respect to quarter-symmetric metric connection ∇̃. Now taking
Z = ξ in (5.2) and using (3.2) and (3.7), we obtain

(∇̃X S̃)(Y, ξ) = ρ(X)(n− 1)(α2 − α)η(Y ) + μ(X)(n− 1)(α2 − α)η(X)

+ υ(ξ)[S(X,Y ) + α{g(X,Y ) + nη(X)η(Y )}]. (5.21)

Also we have

(∇̃X S̃)(Y, ξ) = (n− 1)(α2 − α)(∇Xη)(Y )− (α− 1)[S(Y, φX)

+ αg(X,φY )]. (5.22)

Now equating (5.21) and (5.22), we obtain

ρ(X)(n− 1)(α2 − α)η(Y ) + μ(X)(n− 1)(α2 − α)η(X) + υ(ξ)[S(X,Y )

+ α{g(X,Y ) + nη(X)η(Y )}] = (n− 1)(α2

− α)(∇Xη)(Y )− (α− 1)[S(Y, φX)

+ αg(X,φY )]. (5.23)

Now putting X = Y = ξ in (5.23), we find

(n− 1)(α2 − α)[ρ(ξ) + μ(ξ) + υ(ξ)] = 0. (5.24)

As n > 3 and α �= 0, 1, So

ρ(ξ) + μ(ξ) + υ(ξ) = 0. (5.25)

Taking X = ξ in (5.23), we find

(n− 1)(α2 − α)η(Y )[ρ(ξ) + υ(ξ)] + μ(Y )(n− 1)(α2 − α) = 0. (5.26)

So in view of (5.25), the above equation turns into

−η(Y )μ(ξ) = μ(Y ). (5.27)

Similarly in (5.23), taking Y = ξ, we find

−ρ(X)(n− 1)(α2 − α) + (α2 − α)η(X)[μ(ξ)(n− 1) + υ(ξ)] = 0. (5.28)
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So in view of (5.25), we get finally

ρ(X) = −ρ(ξ)η(X). (5.29)

Since (∇̃ξS̃)(Y, ξ) = 0, then from (5.2), we get

[ρ(ξ) + μ(ξ)]η(X) = υ(X), (5.30)

that is

−υ(ξ)η(X) = υ(X). (5.31)

Thus replacing Y with X in (5.27) and then summing of the equations (5.27),
(5.29) and (5.31) we get

ρ(X) + μ(X) + υ(X) = −η(X)[ρ(ξ) + μ(ξ) + υ(ξ)]. (5.32)

From the equation (5.25), it is clear that

ρ(X) + μ(X) + υ(X) = 0 (5.33)

for any vector field X holds on M , which means that

ρ+ μ+ υ = 0.

Hence our proof is completed.

6 On semi-generalized recurrent Lorentzian α-Sasakian
manifold with respect to quarter-symmetric metric con-
nection

A Lorentzian α-Sasakian manifold is called a semi-generalized recurrent mani-
fold with respect to quarter-symmetric metric connection if its curvature tensor
R̃ satisfies the condition

(∇̃XR̃)(Y, Z)W = α1(X)R̃(Y, Z)W + β1(X)g(Z,W )Y, (6.1)

where α1 and β1 defined as (1.5) for any vector field and ∇̃ denotes the operator
of covarient differentiation with respect to the metric.

Taking Y = W = ξ in (6.1), we have

(∇̃XR̃)(ξ, Z)ξ = α1(X)R̃(ξ, Z)ξ + β1(X)g(Z, ξ)ξ. (6.2)

From (4.5), the left hand side of (6.2) can be written in the form

(∇̃XR̃)(ξ, Z)ξ = XR̃(ξ, Z)ξ − R̃(∇̃Xξ, Z)− R̃(ξ, ∇̃XZ)− R̃(ξ, Z)∇̃Xξ. (6.3)
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Now using (2.6), (2.16), (3.4), (3.6) and (3.11), the right hand site of the equa-
tion (6.3) becomes

(∇̃XR̃)(ξ, Z)ξ = −(α2 − α)(α− 1)η(Z)φX − (α2 − α)η(Z)φX. (6.4)

Now using (3.11), the right hand side of (6.2) can be written in the form

(∇̃XR̃)(ξ, Z)ξ = α1(X)(α2 − α)[Z + η(Z)ξ] + β1(X)η(Z)ξ. (6.5)

Now from (6.4) and (6.5), we have

−(α2 − α)(α − 1)η(Z)φX − (α2 − α)η(Z)φX

= α1(X)(α2 − α)[Z + η(Z)ξ]

+ β1(X)η(Z)ξ. (6.6)

Now putting Z = ξ in (6.6), we obtain

(α2 − α)∇̃Xξ + α∇̃Xξ = −β1(X)ξ, (6.7)

that is

α2∇̃Xξ = −β1(X)ξ. (6.8)

Hence we can state the following theorem:

Theorem 6.1. If a semi-generalized recurrent Lorentzian α-Sasakian mani-
fold admits quarter-symmetric metric connection, the associated vector field ξ
is not constant and ∇Xξ is parallel to ξ, provided α �= 0.

Permutting equation (6.1) with respect to X,Y, Z and adding the three equa-
tions and using Bianchi identity, we have

α1(X)R̃(Y, Z)W + β1(X)g(Z,W )Y + α1(Y )R̃(Z,X)W + β1(Y )g(X,W )Z

+ α1(Z)R̃(X,Y )W + β1(Z)g(Y,W )X = 0. (6.9)

Contracting (6.9) with respect to Y , we get

α1(X)S̃(Z,W ) + nβ1(X)g(Z,W ) + R̃′(Z,X,W,A) + β1(Z)g(X,W )

− α1(Z)S̃(X,W ) + β1(Z)g(X,W ) = 0. (6.10)

In view of S̃(Z,W ) = g(Q̃Z,W ), the equation (6.10) becomes

α1(X)g(Q̃Z,W ) + nβ1(X)g(Z,W )− g(R̃(Z,X)A,W ) + β1(Z)g(X,W )

− α1(Z)g(Q̃X,W ) + β1(Z)g(X,W ) = 0. (6.11)

From (6.11), we have

α1(X)Q̃Z + nβ1(X)Z − R̃(Z,X)A+ β1(Z)X

− α1(Z)Q̃X + β1(Z)X = 0. (6.12)
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Contracting (6.12) with respect to Z, we obtain

α1(X)r̃ + (n2 + 2)β1(X)− 2S̃(X,A) = 0. (6.13)

Putting X = ξ in (6.13), we get

η(A)r̃ + (n2 + 2)η(B)− 2(n− 1)(α2 − α)η(A) = 0, (6.14)

that is

r̃ =
1

η(A)
[2(n− 1)(α2 − α)η(A)− (n2 + 2)η(B)], (6.15)

where r̃ is the scalar curvature with respect to quarter-symmetric metric con-
nection.
Hence we can state the following theorem:

Theorem 6.2. The scalar curvature of a semi-generalized recurrent Lorentzian
α-Sasakian manifold admitting a quarter-symmetric metric connection is related
in terms of contact forms η(A) and η(B) as given by (6.15).

7 On semi-generalized Ricci-recurrent Lorentzian α-Sasa-
kian manifold with respect to quarter-symmetric met-
ric connection

A Lorentzian α-Sasakian manifold is called a semi-generalized Ricci-recurrent
manifold with respect to quarter-symmetric metric connection if its Ricci tensor
S satisfies the condition

(∇̃X S̃)(Y, Z) = α1(X)S̃(Y, Z) + nβ1(X)g(Y, Z), (7.1)

where α1 and β1 defined as (1.5).

Taking Z = ξ in (7.1), we have

(∇̃X S̃)(Y, ξ) = α1(X)S̃(Y, ξ) + nβ1(X)g(Y, ξ). (7.2)

The left hand side of (7.2), clearly can be written in the form

(∇̃X S̃)(Y, ξ) = XS̃(Y, ξ)− S̃(∇̃XY, ξ)− S̃(Y, ∇̃Xξ). (7.3)

Using (3.2) and (3.7), the right hand site of the equation (7.3) becomes

−S̃(Y, ∇̃Xξ) + (n− 1)α(α2 − α)g(φX, Y ). (7.4)

The right hand site of (7.2) can be written as using (3.7)

α1(X)(n− 1)(α2 − α)η(Y ) + nβ1(X)η(Y ). (7.5)
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From (7.4) and (7.5), we get

S̃(Y, ∇̃Xξ) + (n− 1)α(α2 − α)g(φX, Y ) = α1(X)(n− 1)(α2

− α)η(Y ) + nβ1(X)η(Y ). (7.6)

Now putting Y = ξ in (7.6), we obtain

α1(X)(n− 1)(α2 − α) + nβ1(X) = 0, (7.7)

that is

α1(X) = − n

(n− 1)(α2 − α)
β1(X). (7.8)

This leads to the following theorem:

Theorem 7.1. If a semi-generalized Rici-Recurrent Lorentzian α-Sasakian
manifold admits a quarter-symmetric metric connection, then

α1(X) = − n

(n− 1)(α2 − α)
β1(X)

holds, that is, the 1-form α1 and β1 are in opposite direction.

A Lorentzian α-Sasakian manifold (Mn, g) with respect to quarter-symmetric
metric connection is said to be an Einstein manifold if its Ricci tensor S̃ is of
the form

S̃(X,Y ) = kg(X,Y ), (7.9)

where k is constant. For an Einstein manifold,

(∇̃U S̃) = 0

∀ U ∈ χ(M). From (7.1), we have

[kα1(X) + nβ1(X)]g(Y, Z) + [kα1(y) + nβ1(y)]g(Z,X)

+ [kα1(Z) + nβ1(Z)]g(X,Y ) = 0. (7.10)

Putting Y = ξ in (7.10) and using (1.5) and (2.4), we obtain

[kα1(X) + nβ1(X)]η(Y ) + [kα1(y) + nβ1(y)]η(X)

+ [kα1(Z) + nβ1(Z)]g(X,Y ) = 0. (7.11)

Now putting X = Y = ξ in (7.11) and using (1.5), (2.2) and (2.4), we obtain

kη(A) + nη(B) = 0, (7.12)

that is

η(A) = −n

k
η(B). (7.13)
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Using (1.5) and (2.4) in the above relation, we have

α1(ξ) = −n

k
β1(ξ). (7.14)

So, we have the following theorem:

Theorem 7.2. If a semi-generalized Ricci-recurrent Lorentzian α-Sasakian
manifold M admitting a quarter-symmetric metric connection is an Einstein
manifold, then the contact form η(A) and η(B) and the 1-form α1 and β1 are
both in opposite direction.

8 Example of 3-dimensional Lorentzian α-Sasakian man-
ifold with respect to quarter-symmetric metric connec-
tion

We consider a 3-dimensional manifold M = {(x, y, u) ∈ R3}, where (x, y, u) are
the standard coordinates of R3. Let e1, e2, e3 be the vector fields on M3 given
by

e1 = e−u ∂

∂x
, e2 = e−u ∂

∂y
, e3 = e−u ∂

∂u
.

Clearly, {e1, e2, e3} is a set of linearly independent vectors for each point of M
and hence a basis of χ(M). The Lorentzian metric g is defined by

g(e1, e2) = g(e2, e3) = g(e1, e3) = 0,

g(e1, e1) = 1, g(e2, e2) = 1, g(e3, e3) = −1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M) and the (1, 1)
tensor field φ is defined by

φe1 = e1, φe2 = e2, φe3 = 0.

From the linearity of φ and g, we have

η(e3) = −1,

φ2X = X + η(X)e3

and
g(φX, φY ) = g(X,Y ) + η(X)η(Y )

for any X ∈ χ(M). Then for e3 = ξ, the structure (φ, ξ, η, g) defines a Lorentzian
paracontact structure on M .
Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g.
Then we have

[e1, e2] = 0, [e1, e3] = e1e
−u, [e2, e3] = e2e

−u.
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Koszul’s formula is defined by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X,Y )

−g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

Then from above formula we can calculate the followings:

∇e1e1 = e3e
−u, ∇e1e2 = 0, ∇e1e3 = e1e

−u,

∇e2e1 = 0, ∇e2e2 = e3e
−u, ∇e2e3 = e2e

−u,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

From the above calculations, we see that the manifold under consideration sat-
isfies η(ξ) = −1 and ∇Xξ = αφX for α = e−u.
Hence the structure (φ, ξ, η, g) is a Lorentzian α-Sasakian manifold.
Using (2.16), we find ∇̃, the quarter-symmetric metric connection on M follow-
ing:

∇̃e1e1 = e3e
−u, ∇̃e1e2 = 0, ∇̃e1e3 = e1(e

−u − 1),

∇̃e2e1 = 0, ∇̃e2e2 = e3e
−u, ∇̃e2e3 = e2(e

−u − 1),

∇̃e3e1 = 0, ∇̃e3e2 = 0, ∇̃e3e3 = 0.

Using (1.2), the torson tensor T , with respect to quarter-symmetric metric con-
nection ∇̃ as follows:

T̃ (ei, ei) = 0, ∀i = 1, 2, 3,

T̃ (e1, e2) = 0, T̃ (e1, e3) = −e1, T̃ (e2, e3) = −e2.

Also,
(∇̃e1g)(e2, e3) = 0, (∇̃e2g)(e3, e1) = 0, (∇̃e3g)(e1, e2) = 0.

Thus M is Lorentzian α-Sasakian manifold with quarter-symmetric metric con-
nection ∇̃.
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