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Abstract. Let (M, g) be a 4-dimensional Einstein Riemannian manifold. At each point p
of M , the tangent space admits a so-called Singer-Thorpe basis (ST basis) with respect
to the curvature tensor R at p. In this basis, up to standard symmetries and antisymme-
tries, just 5 components of the curvature tensor R are nonzero. For the space of constant
curvature, the group O(4) acts as a transformation group between ST bases at TpM and for
the so-called 2-stein curvature tensors, the group Sp(1) ⊂ SO(4) acts as a transformation
group between ST bases. In the present work, the complete list of Lie subgroups of SO(4)
which act as transformation groups between ST bases for certain classes of Einstein curva-
ture tensors is presented. Special representations of groups SO(2), T 2, Sp(1) or U(2) are
obtained and the classes of curvature tensors whose transformation group into new ST bases
is one of the mentioned groups are determined.
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1. Introduction

Singer and Thorpe, see [9], have proved the following:

Theorem 1.1. If (M, g) is a 4-dimensional Einstein Riemannian manifold and R

its curvature tensor at some fixed point p, then there is an orthonormal basis B =

{e1, e2, e3, e4} in TpM such that the complementary sectional curvatures are equal,

i.e. K12 = K34, K13 = K24, K14 = K23, and all the corresponding components Rijkl

with exactly three distinct indices are equal to zero.

The author was supported by the Institutional Support for the development of the Re-
search organization, University of Hradec Králové.
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Such a basis is referred to as a Singer-Thorpe basis or as an ST basis. In the

following, we shall study ST bases in a purely algebraic way. Following Gilkey

(see [5], page 17), we introduce the following:

Definition 1.2. An algebraic curvature tensor on a vector space V with a posi-

tive scalar product 〈, 〉 is a tensor R of the type (0, 4) on V which satisfies the same

symmetries and antisymmetries as the Riemannian curvature tensor of a Riemannian

manifold, i.e.

R(U, V,W,Z) = −R(V, U,W,Z) = R(W,Z,U, V ),

R(U, V,W,Z) +R(V,W,U, Z) +R(W,U, V, Z) = 0

for all U, V,W,Z ∈ V. Further, a triplet (V, 〈, 〉, R) as above (or, an algebraic curva-

ture tensor R on V) is said to be Einstein if the corresponding Ricci tensor ̺ on V

satisfies the identity ̺ = λ〈, 〉 for some λ ∈ R.

Now, analogously to [9], one can prove the following algebraic version of Theo-

rem 1:

Theorem 1.3. Let V be a 4-dimensional vector space provided with a positive

scalar product 〈, 〉. Let R be an Einstein algebraic curvature tensor on V. Then there
is an orthonormal basis B = {e1, e2, e3, e4} of V such that the nontrivial components
of R with respect to B are, up to standard symmetries and antisymmetries, the
following:

R1212 = R3434 = A, R1313 = R2424 = B, R1414 = R2323 = C,(1.1)

R1234 = F, R1423 = G, R1342 = H,

where A, B, C, F , G, H are some constants which satisfy F + G + H = 0. On

the other hand, all components Rijkl with exactly three distinct indices are equal to

zero.

Definition 1.4. An orthonormal basis B = {e1, e2, e3, e4} of V with the proper-
ties given above is called an ST basis on V corresponding to the curvature tensor R.

Definition 1.5. Let (V, 〈, 〉, R) be an Einstein triplet. Then V is called 2-stein

if it satisfies the following additional condition:

F(X) =

n∑

i,j=1

(R(X, ei, X, ej))
2,

where B = {e1, . . . , en} is any orthonormal basis, is independent of the choice of the
unit vector X ∈ V. (Cf. [1].)
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Then, we have the following (cf. Lemma 7 in [7]):

Proposition 1.6. An Einstein triplet (V, 〈, 〉, R) of dimension 4 is 2-stein if and

only if

(1.2) ±F = A− τ

12
, ±H = B − τ

12
, ±G = C − τ

12

holds with respect to any ST basis of V. Here τ =
n∑

i=1

̺(ei, ei).

Now, let {J1, J2, J3} be a quaternionic structure on (V, 〈, 〉) compatible with a fixed
orientation defined by

J1X = −x2e1 + x1e2 − x4e3 + x3e4,(1.3)

J2X = −x3e1 + x4e2 + x1e3 − x2e4,

J3X = −x4e1 − x3e2 + x2e3 + x1e4

for any X = x1e1 + x2e2 + x3e3 + x4e4 ∈ V, where {e1, . . . , e4} is an ST basis
compatible with the given orientation. Then, the following fact is also well known

([6], [8]):

Proposition 1.7. Let (V, 〈, 〉, R) be an Einstein triplet. Then the following two

assertions are equivalent:

(i) For any quaternionic structure on V given by (1.3) and any unit vector X ∈ V,

the quadruplet {X, J1X, J2X, J3X} is an ST basis for R;
(ii) (V, 〈, 〉, R) is 2-stein.

Motivated by this result and also by the research in the so-called weakly Einstein

spaces (see [3], [4]), Sekigawa put the following, more general question: Let (M, g)

be a 4-dimensional Einstein manifold, not necessarily 2-stein, and let {e1, . . . , e4} be
an arbitrary fixed ST basis at any point p ∈ M . Determine the relation between all

ST bases {ē1, . . . , ē4} at p and the fixed ST basis {e1, . . . , e4}.
In [2], the present author and Kowalski studied the transformation group between

ST bases for the family of all Einstein curvature tensors in a given ST basis. The

method was just the technical analysis of the additional conditions which must be

satisfied by the matrix from O(4) to satisfy the properties mentioned. The result

was a discrete matrix group and we will recall this result in the next section after

the preliminaries.

In the present work, we study ST bases using another approach. We first determine

the candidates of 1-parameter Lie subgroups of SO(4) for transformations between
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ST bases for some classes of algebraic Einstein curvature tensors. After finding the

6 candidates for such 1-parameter groups, we prove that these groups and the groups

generated by them are the unique Lie groups which transform some classes of alge-

braic Einstein curvature tensors into new ST bases. The conditions for these special

algebraic Einstein curvature tensors naturally appear during the process.

In the last section, we return to the question by Sekigawa. It appears that the de-

sired transformations essentially depend on the properties of the chosen Einstein cur-

vature tensor R. Hence, the original question cannot be studied directly in general,

but separately for various possible special forms of the tensor R. A surprising fact is

that these special forms may, for a given tensor R, be different in different ST bases.

To illustrate this phenomenon, we combine the new results with the result from [2].

To answer completely the question of Sekigawa, it remains to determine all possible

discrete groups of transformations, possibly for special Einstein curvature tensors.

2. Algebraic preliminaries and the basic finite group

We first notice that the relation between two ST bases is characterized by an or-

thogonal transformation (i.e., by an orthogonal matrix). Let P = (pij) ∈ SO(4) be

the matrix of an orthogonal transformation acting on the set of orthonormal bases

of (V, 〈, 〉) in the natural way. Hence, if B = {ei}4i=1
is an orthonormal basis, the

new orthonormal basis BP = B′ = {e′j}4j=1
is given as e′j =

4∑
i=1

eip
i
j . If G is a group

or a set of matrices, we will also denote by BG the set of all bases BP for P ∈ G.
Let us denote by P

ij
kl the 2 × 2 submatrix of the matrix P formed by the elements

in the rows i, j and in the columns k, l. Let us denote by d
ij
kl its determinant. We

now recall algebraic results derived in [2].

Lemma 2.1 ([2]). Let B be an ST basis for an Einstein algebraic curvature ten-
sorR in which the components of R are given by formula (1.1). Then the components

of the tensor R in the basis B′ = BP are given by the formula

R′

ijkl = (d12ij · d12kl + d34ij · d34kl )A+ (d13ij · d13kl + d24ij · d24kl )B(2.1)

+ (d14ij · d14kl + d23ij · d23kl )C + (d12ij · d34kl + d34ij · d12kl )F
+ (d14ij · d23kl + d23ij · d14kl )G+ (d13ij · d42kl + d42ij · d13kl )H.

P r o o f. It follows by the straightforward check using formulas

R′

ijkl = R(e′i, e
′

j, e
′

k, e
′

l),

where the components of the vector e′i are p
u
i (the i-th column of the given matrix P ).

�
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Definition 2.2. Given a matrix P ∈ SO(4), we define, for each admissible set

of indices {i, j, k, l}, the quantities Ãijkl , B̃ijkl , C̃ijkl , F̃ijkl , G̃ijkl , H̃ijkl as the coef-

ficients in formula (2.1). This formula becomes

(2.2) R′

ijkl = ÃijklA+ B̃ijklB + C̃ijklC + F̃ijklF + G̃ijklG+ H̃ijklH.

Lemma 2.3 ([2]). Let B be an ST basis for an Einstein algebraic curvature
tensor R. For any matrix P ∈ SO(4), the components of the tensor R in the basis

B′ = BP satisfy

R′

1212
= R′

3434
, R′

1313
= R′

2424
, R′

1414
= R′

2323
.

Let B = {e1, e2, e3, e4} be an ST basis for an Einstein algebraic curvature tensor R
on (V, 〈, 〉). According to Lemma 2.3, we are interested in transformations P ∈ SO(4)

such that the tensor R in the new bases B′ = BP have all components with just three
different indices equal to zero, namely R′

ijkl = 0 for the following 12 choices of indices

ijkl:

1213, 1214, 1223, 1224, 1314, 1323,(2.3)

1334, 1424, 1434, 2324, 2334, 2434.

Equivalently, all the bases B′ = BP should be new ST bases for the tensor R.
We now recall the basic finite group of transformations, determined in [2], which

can be applied to an ST basis of any Einstein algebraic curvature tensor R, and

we obtain a new ST basis for this tensor. Let us denote by H1 ⊂ SO(4) the group

of all permutation matrices (i.e., the matrices corresponding to permutations of the

vectors e1, e2, e3, e4) and by H2 ⊂ SO(4) the group of all diagonal matrices with

±1 on the diagonal. Obviously, |H1| = 24 and |H2| = 16. We further denote

H3 = H1 · H2 = H2 · H1. We easily see that H3 is a group and |H3| = 16 · 24 = 384.

It is not hard to verify that, for all P ∈ H3, BP are ST bases for R. Let us further
consider two special transformations given by the matrices

P4 =
1

2




−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1


 , P5 =

1√
2




1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1


 .

Direct calculation using formula (2.1) shows that the components of the tensor R in

the basis B′ = BP4 are

A′ = R′

1212 = R′

3434 =
1

2
(B + C −G+H),(2.4)

B′ = R′

1313 = R′

2424 =
1

2
(A+ C − F +G),
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C′ = R′

1414 = R′

2323 =
1

2
(A+B + F −H), F ′ = R′

1234 =
1

2
(C −B + F ),

G′ = R′

1423
=

1

2
(B −A+G), H ′ = R′

1342
=

1

2
(A− C +H)

and R′

ijkl = 0 for all choices of ijkl from formula (2.3). In the basis B′ = BP5, the

components of the tensor R are

A′ = R′

1212 = R′

3434 = A, B′ = R′

1313 = R′

2424 =
1

2
(B + C +G−H),(2.5)

C′ = R′

1414 = R′

2323 =
1

2
(B + C +H −G), F ′ = R′

1234 = F,

G′ = R′

1423
=

1

2
(B − C − F ), H ′ = R′

1342
=

1

2
(C −B − F )

and R′

ijkl = 0 for all choices of ijkl from formula (2.3). We see that both BP4 and

BP5 are ST bases for R. Let us denote by P ′

4
the transformation whose first three

columns are the same as those of the transformation P4 and the last column has the

opposite sign. Obviously, P ′

4
∈ P4H2 and BP ′

4
is also an ST basis for R. Now we

recall the main results from [2].

Lemma 2.4 ([2]). The group H4 generated by H3 and P4 is the union of cosets

H3 ∪ H3P4 ∪ H3P
′

4
. The group H5 generated by H4 and P5 is the union of cosets

H4 ∪H4P5.

Theorem 2.5 ([2]). Let B be a fixed basis. Let us consider the 5-parameter

family of all Einstein algebraic curvature tensors (given by an arbitrary choice of

the parameters A, . . . , H) for which this basis is an ST basis. The group which

transforms all the tensors R from this family into new ST bases is just the group H5.

This statement can be obviously reformulated in the following way, which will be

useful later: Let B be an ST basis for an arbitrary given Einstein algebraic curvature
tensor R. For any transformation P ∈ H5, the new basis BP is also an ST basis
for R.

3. Special Lie groups and corresponding invariant tensors

We consider the matrix

X =




0 s1 s2 s3

−s1 0 s4 s5

−s2 −s4 0 s6

−s3 −s5 −s6 0


 ∈ so(4)(3.1)
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for some numbers s1, . . . , s6 ∈ R, and the corresponding 1-parameter group P (t) =

exp(tX). We consider further a fixed ST basis B for a given Einstein algebraic
curvature tensor R and we want to determine necessary conditions for the new bases

BP (t) to be ST bases. We use the approximation of the 1-parameter group P (t) =

exp(tX) by the Taylor polynomial of the first order, hence P (t) = E+tX+o(t2). We

calculate the components of the tensor R in the new bases BP (t). Using formula (2.1)

and the matrix P (t), we obtain in particular

R1214 = (s2(G− F ) + s5(A− C))t+ o(t2),

R1223 = (s2(C −A) + s5(F −G))t+ o(t2),

R1224 = (s3(B −A) + s4(H − F ))t+ o(t2),

R1312 = (s3(F −H) + s4(A−B))t + o(t2),

R1314 = (s1(H −G) + s6(B − C))t+ o(t2),

R1323 = (s1(B − C) + s6(H −G))t+ o(t2).

We see that necessary conditions under which a 1-parameter group transforms the

ST basis B into new ST bases can be written as

(s5 − s2)(A − C + F −G) = 0, (s5 + s2)(A− C − F +G) = 0,(3.2)

(s4 − s3)(A−B +H − F ) = 0, (s4 + s3)(A−B −H + F ) = 0,

(s6 + s1)(B − C +H −G) = 0, (s6 − s1)(B − C −H +G) = 0.

Definition 3.1. Let us denote by G1, G2, G3, H1, H2, H3 the 1-parameter sub-

groups of the matrix group SO(4), each of them defined as exp(tX) for X ∈ so(4)

from formula (3.1) with just two nonzero parameters si satisfying the correspond-

ing condition in the second column of the table (3.3) below and with other four

parameters si equal to zero.

Proposition 3.2. Let B be an ST basis for an Einstein algebraic curvature
tensor R and let G be some of the 1-parameter matrix groups G1, . . . , H3. If all the

new bases BG are ST bases, the tensor R must satisfy the corresponding condition
in the following table,

G1 : s1 + s6 = 0, B − C −H +G = 0,(3.3)

G2 : s3 + s4 = 0, A−B +H − F = 0,

G3 : s2 − s5 = 0, A− C − F +G = 0,

H1 : s1 − s6 = 0, B − C +H −G = 0,

H2 : s3 − s4 = 0, A−B −H + F = 0,

H3 : s2 + s5 = 0, A− C + F −G = 0.
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P r o o f. For each choice of the group G, there are four parameters si equal to zero
and hence four of the conditions (3.2) are satisfied identically. One condition in (3.2)

is satisfied due to the choice of the two nonzero parameters si in the definition of G
and the last condition must be satisfied by the components of the tensor R. �

It can be easily seen that for other 1-parameter groups, the curvature tensor R

must satisfy at least two of the above conditions and we will see that these groups are

included in a bigger group of transformations generated by these special 1-parameter

groups. We now formulate basic algebraic facts about these special groups.

Proposition 3.3. Each of the matrix groups Gi, Hj is a faithful representation

of SO(2) in SO(4). Each of the groups Gi commutes with each of the groups Hj .

For fixed i and j, the groups Gi and Hj generate a faithful representation of the

torus T 2 in SO(4). All the groups Gi generate a faithful representation of the group

Sp(1) in SO(4); for simplicity, we will denote it by Sp(1). All the groups Hi generate

another faithful representation of the group Sp(1) in SO(4); for simplicity, we will

denote it by S̃p(1). The matrix groups Sp(1) and S̃p(1) commute.

P r o o f. The first statement is obvious, the second statement follows either from

a direct calculation or it can be verified on the Lie algebra level. It follows imme-

diately that each fixed Gi with a fixed Hj generate a torus. On the Lie algebra

level, we can also verify that the generators of the groups Gi form a 3-dimensional

Lie subalgebra of so(4), and it is isomorphic to so(3) ≃ su(2) ≃ sp(1). The second

algebra isomophic to sp(1) is generated by the generators of the groups Hi. �

For the reader’s convenience, we write down the elements g ∈ Sp(1), h ∈ S̃p(1)

and h′ ∈ H1 explicitly:

g =




a b c d

−b a −d c

−c d a −b

−d −c b a


 , h =




a b c d

−b a d −c

−c −d a b

−d c −b a


 ,(3.4)

h′ =




cos(t) sin(t) 0 0

− sin(t) cos(t) 0 0

0 0 cos(t) sin(t)

0 0 − sin(t) cos(t)


 ,

for any a, b, c, d ∈ R such that a2 + b2 + c2 + d2 = 1 and for any t ∈ R.
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Proposition 3.4. Each of the matrix groups Gi is conjugate to any other

group Gj via an even permutational matrix from H1. Each of the groups Gi is

conjugate to any of the matrix groups Hi via an odd permutational matrix from H1.

The matrix groups Sp(1) and S̃p(1) are conjugate via an odd permutational matrix.

P r o o f. The statement for the groups Gi or Hi, respectively, is easy and the

statement for the groups Sp(1) and S̃p(1) follows by applying the transposition t =

(34) to the rows and to the columns of matrices in formula (3.4). �

In the rest of this section, we are going to derive the geometrical consequences of

formulas (3.3). We start with a technical, but crucial calculation.

Proposition 3.5. Let R be an Einstein curvature tensor in an ST basis B and
let G = H1. Each of the new bases BG is an ST basis for the tensor R if and only if
it satisfies

(3.5) B − C +H −G = 0.

If the condition (3.5) is satisfied, then in any new bases BG the new components A′,

B′, C′, F ′, H ′, G′ of the tensor R are the same as the original components A, B, C,

F , H , G.

P r o o f. We have seen in equations (3.2) that the condition (3.5) is necessary,

now we will prove the sufficiency. Let the tensor R satisfy (3.5) and let P = h′ ∈ H1.

By straightforward calculations with the matrix P we obtain

(3.6) d1212 = d3434 = 1

and for any pair ij different from 12 or 34, we have

(3.7) d12
34

= d34
12

= d12ij = d34ij = d
ij
12

= d
ij
34

= 0.

Further, we obtain

d1313 = d1414 = d2323 = d2424 = cos2(t),(3.8)

d13
24

= d24
13

= −d14
23

= −d23
14

= sin2(t),

d1314 = d1323 = −d2414 = −d2423 = sin(t) cos(t),

−d14
13

= d14
24

= −d23
13

= d23
24

= sin(t) cos(t).

Let now just three indices from ijkl be distinct. We are going to determine the

coefficients in formula (2.2). We obtain easily from formulas (3.6) and (3.7), using

(2.1) and (2.2), that

Ãijkl = F̃ijkl = 0.
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Further, if ij = 12 or kl = 34 (in 8 of the 12 choices in formula (2.3)), we obtain

from formulas (3.6)–(3.8), that

B̃ijkl = C̃ijkl = H̃ijkl = G̃ijkl = 0.

And finally, in the last four cases for ijkl, namely ijkl = 1314, 1323, 1424, 2324, we

obtain

B̃1314 = −C̃1314 = H̃1314 = −G̃1314 = (cos2(t)− sin2(t)) sin(t) cos(t),

B̃1323 = −C̃1323 = H̃1323 = −G̃1323 = (cos2(t)− sin2(t)) sin(t) cos(t),

B̃1424 = −C̃1424 = H̃1424 = −G̃1424 = (sin2(t)− cos2(t)) sin(t) cos(t),

B̃2324 = −C̃2324 = H̃2324 = −G̃2324 = (sin2(t)− cos2(t)) sin(t) cos(t).

We see that in each of the 12 choices from (2.3), formula (2.2) simplifies to

R′

ijkl = B̃ijkl(B − C +H −G) = 0,

which implies that the new basis is an ST basis.

And finally, we determine the nonzero components of the tensor R in the new

basis. First, let ijkl = 1212 or ijkl = 1234. Again from the formulas (3.6) and (3.7),

we obtain

Ã1212 = F̃1234 = 1, B̃1212 = C̃1212 = F̃1212 = H̃1212 = G̃1212 = 0,

Ã1234 = B̃1234 = C̃1234 = H̃1234 = G̃1234 = 0.

Hence we have

A′ = R′

1212 = A, F ′ = R′

1234 = F.

Let now ijkl be one of the choices 1313, 1414, 1342 or 1423. We calculate using

formulas (3.6)–(3.8):

Ã1313 = Ã1414 = Ã1342 = Ã1423 = 0,

F̃1313 = F̃1414 = F̃1324 = F̃1423 = 0,

B̃1313 = C̃1414 = H̃1342 = G̃1423 = cos4(t) + sin4(t)

= (sin2(t) + cos2(t))2 − 2 cos2(t) sin2(t) = 1− 2 cos2(t) sin2(t),

C̃1313 = B̃1414 = G̃1342 = H̃1423 = 2 cos2(t) sin2(t),

H̃1313 = G̃1414 = B̃1342 = C̃1423 = −2 cos2(t) sin2(t),

G̃1313 = H̃1414 = C̃1342 = B̃1423 = 2 cos2(t) sin2(t).
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We see, using (2.2), that the remaining new components are

B′ = R′

1313 = B − 2 cos2(t) sin2(t)(B − C +H −G) = B,

C′ = R′

1414
= C + 2 cos2(t) sin2(t)(B − C +H −G) = C,

H ′ = R′

1342
= H − 2 cos2(t) sin2(t)(B − C +H −G) = H,

G′ = R′

1423 = G+ 2 cos2(t) sin2(t)(B − C +H −G) = G.

�

Proposition 3.6. Let G = H1 be the special representation of the group SO(2)

described above and let R be any tensor from the family satisfying the corresponding

homogeneous linear condition (3.5) in a given ST basis B. Let p ∈ H5 and G′ =

p−1Gp. The matrix group G′ is also one of the six special representations G1, . . . , H3

of the group SO(2) and it transforms ST basis Bp for the tensor R into new ST bases.
In all these bases BpG′, the tensor R satisfies the corresponding condition (3.3) for

the group G′.

P r o o f. The group G transforms the corresponding family of special tensors R
satisfying the given condition from an ST basis B into new ST bases BG. Further,
all the bases BGp are also ST bases for all considered tensors R and these bases can
be written as BGp = Bpp−1Gp = BpG′. One can view the latter as transformations

of the ST basis Bp for the same family of tensors R by the group G′, which is also

a faithful representation of SO(2). Conditions (3.3) describe the unique candidates

for representations of SO(2) which transform a given ST basis into new ST bases for

the whole family of algebraic Einstein curvature tensors R satisfying one homoge-

neous linear condition (and depending on 4 parameters). We see that G′ must be

also one of these representations. The last statement is a direct corollary. �

As an example, we show that both statements can be checked also directly for any

of the conditions (3.3) and any generator of the group H5. Let G = H1 and let the

tensor R in an ST basis B satisfy

B − C +H −G = 0.

For example, we use for p the transposition p = (23) on the basis B. The tensor R
changes by the equations

A′ = B, B′ = A, C′ = C, F ′ = −H, H ′ = −F, G′ = −G.

We see that the tensor R in the new basis Bp satisfies the equation

A′ − C′ − F ′ +G′ = 0,
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which corresponds to the group G′ = G3. For the generators p = P4 or p = P5, the

procedure is similar, using formulas (2.4) and (2.5).

Theorem 3.7. Let R be an Einstein curvature tensor in an ST basis B. The
group SO(2) acts as a transformation group between ST bases if and only if the

tensor R satisfies at least one of the following equations, each equation corresponding

to a particular representation of the group SO(2):

H1 : B − C +H −G = 0, G1 : B − C −H +G = 0,(3.9)

H2 : A−B −H + F = 0, G2 : A−B +H − F = 0,

H3 : A− C + F −G = 0, G3 : A− C − F +G = 0.

P r o o f. The results for the groupH1 were obtained in Proposition 3.5. The anal-

ogous results for the other mentioned groups follow easily by using Propositions 3.4

and 3.6 and conjugation of the mentioned groups. �

Definition 3.8. We will call the three equations on the left in formulas (3.9) the

conditions of the type S̃p(1) and the three equations on the right the conditions of

the type Sp(1).

Theorem 3.9. Let R be an Einstein curvature tensor in an ST basis B. The
torus group T 2 = SO(2)×SO(2) acts as a transformation group between ST bases if

and only if the tensor R satisfies at least one of the equations of the type Sp(1) and

at least one of the equations of the type S̃p(1). The group T 2 can be represented

with respect to the basis B in one of the nine possible ways.

P r o o f. Obviously, we obtain a representation G of the torus T 2 as Gi × Hj

for each fixed choice of i and j. If all the new bases BT 2 are ST bases, necessary

conditions for the tensor R are in formulas (3.3). On the other hand, if the two

mentioned equations are satisfied, all the new bases BG are ST bases, as a corollary
of Proposition 3.5 and Theorem 3.7. Any considered representation G of the group T 2

also preserves the values of all components of the tensor R. In particular, it preserves

both the corresponding equations for the components of the tensor R. �

We notice that each of the triplets of equations in formulas (3.9) are dependent,

because any two of the groups Gi, or Hi, generate a representation of the group

Sp(1) in SO(4). We also remark that the Einstein curvature tensor satisfying all

conditions of the type Gi, or Hi, is a 2-stein curvature tensor (see formulas (1.2)).

ST bases of 2-stein curvature tensors were studied in [8], see Lemma 5 there. The

following theorem is a reformulation and we put it here for the completeness of the
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exposition. Because it is based on Proposition 3.5, it is useful also as an alternative

proof of Lemma 5 in [8].

Theorem 3.10. Let R be an Einstein curvature tensor in an ST basis B. The
group Sp(1) acts as a transformation group between ST bases if and only if the ten-

sor R satisfies the equations of type Sp(1) or the equations of type S̃p(1). The group

Sp(1) can be represented with respect to the basis B in one of two possible ways.

P r o o f. Obviously, we have two choices for a representation G of the group Sp(1)
in SO(4), either the one generated by Gi or the one generated byHi. For each choice,

if all the new bases BG are ST bases, necessary conditions for the tensor R are in
formulas (3.3) and are just the conditions of the corresponding type. The rest of the

proof is the same as for Theorem 3.9. �

Theorem 3.11. Let R be an Einstein curvature tensor in an ST basis B. The
group U(2) ≃ Sp(1)×SO(2) acts as a transformation group between ST bases if and

only if the tensor R satisfies either the equations of type Sp(1) and at least one of

the equations of type S̃p(1) or the equations of type S̃p(1) and at least one of the

equations of type Sp(1). The group U(2) can be represented with respect to the

basis B in one of six possible ways.

P r o o f. Obviously, with each of the two choices for the representation of the

group Sp(1), we have three choices for a representation of the group SO(2). In each

case, we obtain a representation G of the group U(2). For each choice, if all the new
bases BG are ST bases, necessary conditions for the tensor R are in formulas (3.3).
The rest of the proof is the same as for Theorem 3.9. �

For completeness, we end this paragraph by the observation that the conditions

of type G together with the conditions of type H imply conditions

A = B = C, F = G = H = 0

which hold in a space of constant curvature. The group of transformations between

ST bases is the full group O(4), which is a well known fact and in the context of the

present section it follows easily from the previous theorems.
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4. The set of all ST bases for a fixed tensor R

Now we try to give at least a partial answer to the original question by Sekigawa

and approach the description of the set of all ST bases for a given Einstein algebraic

curvature tensor R.

In the previous section we have seen that there are special tensors, which admit

the particular representation G of one of the groups SO(2), T 2, Sp(1) or U(2) as

a group of transformations from a given ST basis into another ST basis. At the same

time, in each case, these transformations preserve the components of the tensor R.

On the other hand, to each new ST basis we can apply any transformation h ∈ H5

and obtain another ST basis in which the tensor R may have components different

from those in the original ST basis.

With respect to this new basis, the matrix Lie group G′ of transformations is

G′ = h−1Gh and it is isomorphic to G (see Proposition 3.6).
We can conclude that for each tensor R and a fixed ST basis B, transformations

of the type p = gh, for g ∈ G, h ∈ H5, transform the given ST basis B into a new
ST basis. One can notice that for each of the considered representations G, there
is an element g5 ∈ G which is the matrix P5 with possibly rearranged rows and

columns. Further, any such element g5 satisfies H5 = H4 ∪ g5H4. We see that the

above transformations p = gh can be simplified to

p = gh, g ∈ G, h ∈ H4.

It can be also observed that these transformations can be composed in the following

way: Let p = gh (g ∈ G, h ∈ H4) be a transformation from an ST basis B into a new
ST basis B′ (written with respect to the basis B) and let p′ = g′h′ (g′ ∈ G′, h′ ∈ H4)

be a transformation from an ST basis B′ into a new ST basis B′′ (written with respect

to the basis B′). Then g′ = h−1gh for some g ∈ G and the transformation p ◦ p′ from
the ST basis B into the ST basis B′′ (written with respect to the basis B) is

p ◦ p′ = (gh) ◦ (g′h′) = ghh−1ghh′ = gghh′.

An open question remains whether the ST bases obtained in this way from one

given ST basis B are all possible ST bases for the given tensor R. The discrete group
H5 was found as a transformation which can be applied to an ST basis of arbitrary

tensor R and obtain a new ST basis. It is not disproved that for special tensors R

there may exist more discrete transformations which can be taken for h above.
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