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Almost pseudo symmetric Sasakian manifold
admitting a type of quarter symmetric metric
connection

Vishnuvardhana S.V. and Venkatesha

Abstract. In the present paper we have obtained the necessary condition
for the existence of almost pseudo symmetric and almost pseudo Ricci sym-
metric Sasakian manifold admitting a type of quarter symmetric metric
connection.

1 Introduction
Cartan [2] initiated the study of Riemannian symmetric spaces and obtained a
classification of these spaces. The class of Riemannian symmetric manifolds is
a very natural generalization of the class of manifolds of constant curvature. Many
authors have been studied the notion of locally symmetric manifolds by extend-
ing into several manifolds such as recurrent manifolds [20], pseudo-Riemannian
manifold with recurrent concircular curvature tensor [14], semi-symmetric mani-
folds [17], pseudo symmetric manifolds [3], weakly symmetric manifolds [18], almost
pseudo symmetric manifolds [8], etc.

A non-flat Riemannian manifold (Mn, g) (n ≥ 2) is said to be almost pseudo
symmetric (APS)n [8], if the curvature tensor R satisfies the condition

(∇XR)(Y,Z)W = [A(X) +B(X)]R(Y, Z)W +A(Y )R(X,Z)W

+A(Z)R(Y,X)W +A(W )R(Y,Z)X + g(R(Y, Z)W,X)P ,
(1)

where A, B are two nonzero 1-forms defined by

A(X) = g(X,P ), B(X) = g(X,Q). (2)

If in particular A = B in (1) then the manifold reduces to a pseudo symmetric
manifold introduced by M. C. Chaki [3].
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Recently Gazi, Pal and Mallick with U.C. De studied almost pseudo confor-
mally symmetric manifolds [9], almost pseudo-Z-symmetric manifolds [11] and al-
most pseudo concircularly symmetric manifolds [10]. Also Yilmaz in [21] studied
decomposable almost pseudo conharmonically symmetric manifolds.

In 2007, Chaki and Kawaguchi [5] introduced the notion of almost pseudo Ricci
symmetric manifolds as an extended class of pseudo symmetric manifold. A Rie-
mannian manifold (Mn, g) is called an almost pseudo Ricci symmetric manifold
(APRS)n, if its Ricci tensor S of type (0,2) is not identically zero and satisfies the
condition

(∇XS)(Y,Z) = [A(X) +B(X)]S(Y, Z) +A(Y )S(X,Z) +A(Z)S(X,Y ), (3)

where ∇ denotes the operator of covariant differentiation with respect to the metric
tensor g and A, B are two nonzero 1-forms defined as in (2). If, in particular, B = A
then almost pseudo Ricci symmetric manifold reduces to pseudo Ricci symmetric
manifold [4]. It may be mentioned that almost pseudo Ricci symmetric manifold is
not a particular case of weakly Ricci symmetric manifold, introduced by Tamassy
and Binh [19]. Since then, several papers [7], [13], [16] have appeared concerning
different aspects of almost pseudo Ricci symmetric manifold.

Motivated by the above study, in the present paper we have studied the ex-
istence of almost pseudo symmetric and almost pseudo Ricci-symmetric Sasakian
manifolds admitting a quarter-symmetric metric connection. The paper is orga-
nized as follows: In Section 2, we have given a brief introduction about Sasakian
manifolds and some formulae for quarter-symmetric metric connection. In the
next section, it is shown that almost pseudo symmetric Sasakian manifold satisfies
cyclic Ricci tensor only when 3A(X) + B(X) = 0. Section 4 is devoted to study
of almost pseudo symmetric Sasakian manifold with respect to quarter symmet-
ric metric connection, here we proved that there is no almost pseudo symmetric
Sasakian manifold admitting a quarter symmetric metric connection, unless 3A+B
vanishes everywhere. In the last section we studied almost pseudo Ricci symmetric
Sasakian manifold with respect to quarter symmetric metric connection.

2 Preliminaries
It is known that in a Sasakian manifold Mn, the following relations hold [1], [15]:

φ2 = −I + η o ξ, η(ξ) = 1, φ(ξ) = 0, η(φX) = 0, g(X, ξ) = η(X), (4)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (5)

(∇Xφ)Y = R(ξ,X)Y, ∇Xξ = −φX, (6)

dη(φX, ξ) = 0, dη(X, ξ) = 0, (7)

(a) g(R(ξ,X)Y, ξ) = g(X,Y )− η(X)η(Y ), (b) R(ξ,X)ξ = −X + η(X)ξ, (8)

S(X, ξ) = (n− 1)η(X), (9)

g(R(X,Y )ξ, Z) = g(X,Z)η(Y )− g(Y,Z)η(X), (10)

for any vector fields X,Y, Z on Mn.
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Here we consider a quarter symmetric metric connection ∇̃ on a Sasakian man-
ifold given by

∇̃XY = ∇XY − η(X)φY. (11)

The relation between curvature tensor R̃(X,Y )Z of Mn with respect to quarter
symmetric metric connection ∇̃ and the Riemannian curvature tensor R(X,Y )Z
with respect to the connection ∇ is given by [12]

R̃(X,Y )Z = R(X,Y )Z − 2dη(X,Y )φZ + η(X)g(Y,Z)ξ

− η(Y )g(X,Z)ξ + {η(Y )X − η(X)Y }η(Z) ,
(12)

where R(X,Y )Z is the Riemannian curvature of the manifold. Also from (12) we
obtain

S̃(X,Y ) = S(Y,Z)− 2dη(φZ, Y ) + g(Y,Z) + (n− 2)η(Y )η(Z), (13)

where S̃ and S are the Ricci tensors of the connections ∇̃ and ∇ respectively.
From (13) it is clear that in a Sasakian manifold the Ricci tensor with respect to
the quarter-symmetric metric connection is symmetric.

Now contracting (13) we have

r̃ = r + 2(n− 1), (14)

where r̃ and r are the scalar curvatures of the connections ∇̃ and ∇ respectively.

3 Almost Pseudo Symmetric Sasakian manifold Satisfying Cyclic
Ricci tensor

On taking the cyclic sum of (3), we get

(∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) = [3A(X) +B(X)]S(Y, Z)

+ [3A(Y ) +B(Y )]S(X,Z) + [3A(Z) +B(Z)]S(X,Y ).
(15)

Let Mn admits a cyclic Ricci tensor. Then (15) reduces to

[3A(X) +B(X)]S(Y,Z) + [3A(Y ) +B(Y )]S(X,Z) + [3A(Z) +B(Z)]S(X,Y ) = 0.
(16)

Taking Z = ξ in (16) and using (9), we have

[3A(X) +B(X)](n− 1)η(Y ) + [3A(Y ) +B(Y )](n− 1)η(X)

+ [3A(ξ) +B(ξ)]S(X,Y ) = 0. (17)

Now putting Y = ξ in the above equation and by making use of (2), (4) and (9),
we obtain

(n− 1)[3A(X) +B(X)] + [3η(P ) + η(Q)](n− 1)η(X) + [3η(P ) + η(Q)]S(X, ξ) = 0.
(18)

Again taking X = ξ in (18) and using (2), (4) and (9), we get

3η(P ) + η(Q) = 0. (19)
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From equations (18) and (19), it follows that

3A(X) +B(X) = 0. (20)

Thus we can state:

Theorem 1. An almost pseudo symmetric Sasakian manifold satisfies cyclic Ricci
tensor if and only if 3A(X) +B(X) = 0 for any vector fields X, Y , Z on Mn.

4 Almost pseudo symmetric Sasakian manifold with respect to
quarter symmetric metric connection

Definition 1. A Sasakian manifold (Mn, g) (n ≥ 2) is said to be almost pseudo
symmetric (APS)n with respect to quarter symmetric metric connection, if there
exist 1-forms A and B and a vector field P such that

(∇̄XR̄)(Y,Z)W = [A(X) +B(X)]R̄(Y, Z)W

+A(Y )R̄(X,Z)W +A(Z)R̄(Y,X)W

+A(W )R̄(Y,Z)X + g(R̄(Y,Z)W,X)P,

(21)

Theorem 2. There is no almost pseudo symmetric Sasakian manifold admitting a
quarter symmetric metric connection, unless 3A+B vanishes everywhere.

Proof. Contracting (21), we get

(∇̃X S̃)(Z,W ) = [A(X) +B(X)]S̃(Z,W ) +A(R̃(X,Z)W )

+A(Z)S̃(X,W ) +A(W )S̃(Z,X) +A(R̃(X,W )Z).
(22)

Substituting W = ξ in (22) and then using the relations (12) and (13), we have

(∇̃X S̃)(Z, ξ) = 2nη(Z)A(X) + 2(n− 1)η(Z)B(X) + 2(n− 2)η(X)A(Z)

+ η(P )
{
S(Z,X)− 2dη(φX,Z) + g(X,Z) + (n− 2)η(X)η(Z)

}
+ 2η(Z)A(X)− 2g(X,Z)A(ξ).

(23)
Now, we know that

(∇̃X S̃)(Z, Y ) = ∇̃X(S̃(Z, Y ))− S̃(∇̃XZ, Y )− S̃(Z, ∇̃XY ). (24)

Replacing Y with ξ in the above equation and using (4), (11) and (13), we get

(∇̃X S̃)(Z, ξ) = S(Z, φX) + (1− 2n)g(Z, φX). (25)

By virtue of (23) and (25), we obtain

S(Z, φX) + (1− 2n)g(Z, φX) = 2nη(Z)A(X)

+ 2(n− 1)η(Z)B(X) + 2(n− 2)η(X)A(Z)

+ η(P )
{
S(Z,X)− 2dη(φX,Z) + g(X,Z) + (n− 2)η(X)η(Z)

}
+ 2η(Z)A(X)− 2g(X,Z)A(ξ).

(26)
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Taking X = Z = ξ in (26) and using (4) and (9), we obtain

3A(ξ) +B(ξ) = 0. (27)

Putting Z = ξ in (22) and by making use of equations (4), (7), (12) and (13), we
get

S(φX,W ) + (1− 2n)g(φX,W ) = 2(n+ 1)A(X)η(W )

+ 2(n− 1)B(X)η(W )− 2g(X,W )A(ξ)

+A(ξ)
{
S(X,W )− 2dη(φW,X) + g(X,W ) + (n− 2)η(X)η(W )

}
+ 2(n− 2)η(X)A(W ).

(28)

By taking X = ξ in (28) and then using (4) and (9), it follows that

0 = 2(2n− 1)A(ξ)η(W ) + 2(n− 1)B(ξ)η(W ) + 2(n− 2)A(W ). (29)

Again putting W = ξ in (28) and using (4) and (9), we have

0 = 2(n+ 1)A(X) + 2(n− 1)B(X) + 4(n− 2)A(ξ)η(X). (30)

Adding (29) with (30) by replacing W by X and in view of (27), we get

4nA(X)− 2A(X) + 2(n− 1)B(X) + 2(n− 2)A(ξ)η(X) = 0. (31)

Further replacing W by X in (29) and then adding with (31), in view of (27) we
arrive at

3A(X) +B(X) = 0 �

5 Almost pseudo Ricci symmetric Sasakian manifold with respect
to quarter symmetric metric connection

A non-flat n-dimensional Riemannian manifold Mn (n ≥ 2) is said to be almost
pseudo Ricci symmetric Sasakian manifold with respect to quarter symmetric met-
ric connection if there exist 1-forms A and B such that

(∇̃X S̃)(Y,Z) = [A(X) +B(X)]S̃(Y, Z) +A(Y )S̃(X,Z) +A(Z)S̃(X,Y ). (32)

Theorem 3. There is no almost pseudo Ricci symmetric Sasakian manifold admit-
ting a quarter symmetric metric connection, unless 3A+B = 0 everywhere.

Proof. Assume that Mn is an almost pseudo Ricci symmetric Sasakian manifold
with respect to quarter symmetric metric connection. Replacing Z with ξ in (32)
and then using (25), we get

S(φX, Y ) + (1− 2n)g(φX, Y )

= [A(X) +B(X)]S̃(Y, ξ) +A(Y )S̃(X, ξ) +A(ξ)S̃(X,Y ). (33)

By substituting X = Y = ξ in (33) and then using (13), one can get

3A(ξ) +B(ξ) = 0. (34)
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Taking X = ξ in (33) and in view of (13), we have

0 = 2(n− 1){2A(ξ)η(Y ) +B(ξ)η(Y ) +A(Y )}. (35)

Putting Y = ξ in (33) and using (13), we get

0 = 2(n− 1){A(X) +B(X) + 2A(ξ)η(X)}. (36)

Adding (35) with (36) by replacing Y by X and in view of (34), we obtain

2(n− 1){2A(X) +B(X) +A(ξ)η(X)} = 0. (37)

Replacing Y by X in (35) and then adding with (37), in view of (34) we get

3A(X) +B(X) = 0. �
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