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STABILITY ANALYSIS OF A THREE-DIMENSIONAL
ENERGY DEMAND-SUPPLY SYSTEM
UNDER DELAYED FEEDBACK CONTROL

Kun-Yi Yang, Ling-Li Zhang and Jie Zhang

This paper considers a three-dimensional energy demand-supply system which typically
demonstrates the relationship between the amount of energy supply and that of energy demand
for the two regions in China. A delayed feedback controller is proposed to stabilize the system
which was originally unstable even under some other controllers. The stability properties of the
equilibrium points are subsequently analyzed and it is found that the Hopf bifurcation appears
under some conditions. By using the center manifold theorem and normal form method, we
obtain the explicit formulae revealing the properties of the periodic solutions of Hopf bifurcation
to show stabilizing effects of the delayed feedback controller. Numerical simulations illustrate
effectiveness of our results.

Keywords: a three-dimensional energy demand-supply system, stability, equilibrium
point, delayed feedback control, Hopf bifurcation

Classification: 93D05, 93C15, 93C05, 93C95, 93D15

1. INTRODUCTION

In order to reduce the gap in gas supplies between different parts of China, natural gas
is being transferred between the western and eastern regions of the country. This paper
aims to provide an efficient method to maintain the balance throughout the process of gas
energy transfer. First, we consider the mathematical model of energy supply and energy
demand. In paper [6] a three-dimensional energy resources system was established,
which shows the relationship between the amount of energy supply and that of energy
demand for the two regions in China:

ẋ(t) = a1x(t)
(

1− x(t)
M

)
− a2(y(t) + z(t)),

ẏ(t) = −b1y(t)− b2z(t) + b3x(t)[N − (x(t)− z(t))],

ż(t) = c1z(t)(c2x(t)− c3).

(1.1)

In this model t is time, x(t) represents the amount of the energy demand shortage
of Region A, y(t) represents the amount of the energy increment supplied from Region
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B to Region A, z(t) represents the amount of the energy import of Region A, M is the
maximum value of energy demand shortage of Region A, N is the threshold value of
energy demand shortage of Region A (M > N > 0), a1(> 0) is the elasticity coefficient
of the amount of energy consumption of Region A, a2(> 0) is the coefficient of the effect
of energy supply of Region B on energy demand of Region A, b1(> 0) is the coefficient
of the effect of energy supply of Region B on the supply rate of Region A, b2(> 0) is the
coefficient of the effect of energy import of Region B on energy supply rate of Region B,
b3(> 0) is the coefficient of the effect of energy demand of Region A on energy supply
rate of Region B, c1(> 0) is a constant equal to energy import rate of Region A, c2(> 0)
is the profit obtained from a unit of energy, c3(> 0) is the cost of supplying energy.

The previously introduced energy-demand has drawn significant attention because
of its wide applications and theoretical significance([9] – [16]). For example, the Hopf
bifurcation of energy system has been analyzed and the subcritical periodic bifurcation
solution has been obtained under certain given conditions ([9]). By using the energy
demand-supply data of the city of Shanghai between 1999 and 2005, the artificial neural
network method has been applied to determine the parameters in the energy system.
Moreover, the relationship between the energy supply and demand has been established
by assessing the dynamics of the energy system ([10]). By analyzing a stochastic energy
demand-supply system, the influence of random factors and different parameter selection
on stability of the system has been explored([16]). In addition, a new variable can be
added to the energy demand-supply system. For example, such variable can represent
a renewable energy resource, with which the three-dimensional energy demand-supply
system becomes four-dimensional([2, 17]). However, until recently few studies have con-
centrated on the stability analysis of the energy demand-supply system under stabilizing
controllers, especially, the effective ones.

There exists complex attractors which differ from those of Lorenz, Rössler and Chen
in the System (1.1) ([6]). For these chaotic energy systems, such controllers as lin-
ear feedback control, non-autonomous feedback control and adaptive control can not
make the originally unstable equilibrium points and periodic orbits stable ([11]). The
phenomenon of parametric perturbation of the system has been accounted for and an
effective non-autonomous feedback controller for hyper chaos has been designed to make
it stable ([12]). Subsequently, in order to treat this phenomenon, people have proposed
numerous methods of designing controllers ([24]), among which the delayed feedback
control has attracted much interest ([1, 13]). Compared with the traditional method of
OGY ([4]), delayed feedback control needs no phase-space reconstruction and may be
more easily designed. This study suggests how to make the chaotic energy system stable
by imposing delayed feedback control on the energy system.

This paper is organized as follows: in part 2 we provides the design of a delayed
feedback controller, with which the system can be stabilized, and the stability prop-
erties of the equilibrium point are analyzed; in part 3 properties of Hopf bifurcation
are illustrated by explicit formulae; in part 4 numerical results are simulated to show
effectiveness of our conclusion.
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2. STABILIZATION OF THE SYSTEM
UNDER DELAYED FEEDBACK CONTROL

It is proposed in [6] that system (1.1) has complex attractors different from that of
Lorenz, Rössler and Chen. In this section, we design delayed feedback control for the
system (1.1). Since the rate of change of energy demand is in proportion to the increasing
amount of energy demand, the item: k(x(t)− x(t− τ)) is added in the right side of the
first equation in order to make the system stable for the appropriate the values of k and
τ . That is, delayed feedback control is imposed on the first equation of the system (1.1):

ẋ(t) = a1x(t)
(

1− x(t)
M

)
− a2(y(t) + z(t)) + k(x(t)− x(t− τ),

ẏ(t) = −b1y(t)− b2z(t) + b3x(t)[N − (x(t)− z(t))],

ż(t) = c1z(t)(c2x(t)− c3),

(2.1)

where τ > 0 is time delay and k is feedback gain. Obviously, the system is just (1.1)
when τ = 0.

Next we will make the system asymptotically stabilized to the equilibrium point O.
In order to do this, the energy demand of Region A needs be in balance with the energy
supply of Region B, moreover, the energy import of Region A needs trend to zero as time
increases infinitely. This section consists of the following parts: firstly stability properties
of the system (2.1) at the equilibrium point O are analyzed, then by using the center
manifold theorem and normal form method the explicit formulae are given to show the
properties of Hopf bifurcation, and numerical simulations illustrate effectiveness of our
results.

2.1. Stability of the system under delayed feedback control

The characteristic equation of the system (2.1) at the point O is

(c1c3 + λ)[(a1 + k − ke−λτ − λ)(b1 + λ)− a2b3N ] = 0. (2.2)

Obviously, λ = −c1c3 is a negative real root of the equation (2.2). Thus we only consider
the roots of:

(a1 + k − ke−λτ − λ)(b1 + λ)− a2b3N = 0, (2.3)

which can be reorganized as:

λ2 + (b1 − a1 − k)λ− a1b1 − b1k + a2b3N + (kλ+ b1k)e−λτ = 0. (2.4)

Substituting

A = b1 − a1 − k, B = −a1b1 − b1k + a2b3N,
C = k, D = b1k,

into the equation (2.4), we have

λ2 +Aλ+B + (Cλ+D)e−λτ = 0. (2.5)

We have the following Lemma ([5]).
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Lemma 2.1. For the equation:

P (λ, e−λτ ) = λ2 +Aλ+B + (Cλ+D)e−λτ ,

only if there exists a root of zero or a pair of roots of pure imaginary number, its total
multiplications changes in the open right half plane as time delay τ changes in a range.

Suppose ±iw(w > 0) be a pair of pure imaginary roots of the equation (2.5), then
we have {

D cos(wτ) + Cw sin(wτ) = w2 −B,
−D sin(wτ) + Cw cos(wτ) = −Aw, (2.6)

which indicate that

w4 + (A2 − C2 − 2B)w2 +B2 −D2 = 0. (2.7)

For the equation (2.7), we obtain Lemma 2.2 below.

Lemma 2.2. (1) If one of the three conditions

B2 −D2 < 0,
{
B2 −D2 = 0,
A2 − C2 − 2B < 0,

{
∆ = (A2 − C2 − 2B)2 − 4(B2 −D2) = 0,
A2 − C2 − 2B < 0,

holds, there exists only one root for the equation (2.7). That is, the equation (2.5) only
has a pair of pure imaginary roots.

(2) If all of the inequalities


∆ = (A2 − C2 − 2B)2 − 4(B2 −D2) > 0,
B2 −D2 > 0,
A2 − C2 − 2B < 0,

hold, equation (2.7) has two roots which means that there exists two pairs of pure
imaginary roots for the equation (2.5).

If there exists a solution for the equation (2.7), time delay τ can be obtained according
to ω:

τn =
arccos

(Dw2 −BD −ACw2

D2 + C2w2

)
+ 2nπ

w
, (2.8)

where 0 < arccos
(Dw2 −BD −ACw2

D2 + C2w2

)
< 2π and n is a nonnegative integer.

Lemma 2.3.

sign
{

d(Reλ)
dτ

|λ=iw

}
= sign

{
A2 + 2(w2 −B)
A2w2 + (w2 −B)2

− C2

C2w2 +D2

}
.

P r o o f . Make derivatives of the equation (2.5) on both sides about the variable τ shows
that

[2λ+A+ [C − τ(Cλ+D)]e−λτ ]
dλ
dτ

= λ(Cλ+D)e−λτ



1088 K.-Y. YANG, L.-L. ZHANG AND J. ZHANG

which together with (2.5) gives that

e−λτ = −λ
2 +Aλ+B

Cλ+D
.

Both of two equations above indicate that(dλ
dτ

)−1

= − 2λ+A

λ(λ2 +Aλ+B)
+

C

λ(Cλ+D)
− τ

λ
.

Therefore,

sign
{

d(Reλ)
dτ

|λ=iw

}
= sign

{
Re

[(
dλ
dτ

)−1

|λ=iw

]}
= sign

{
Re
[
− 2λ+A

λ(λ2 +Aλ+B)
+

C

λ(Cλ+D)
− τ

λ

]
|λ=iw

}
= sign

{
A2 + 2(w2 −B)
A2w2 + (w2 −B)2

− C2

C2w2 +D2

}
.

�

Combing Theorem 1 of the paper [18] with Lemma 2.1, Lemma 2.2 and Lemma 2.3,
we have the following theorem.

Theorem 2.4. (1) For any τ > 0, there is no root or only one root for the equation
(2.7), the equilibrium point O is unstable.

(2) If there exists two roots for the equation (2.7), that is, w1 and w2 (without loss of
generality assuming w1 > w2), and suppose τ (n)

1 and τ
(n)
2 represent time delay respec-

tively corresponding to w1 and w2 where n is a nonnegative integer, there is divided into
two situations below.

Situation I: When τ
(0)
1 < τ

(0)
2 the equilibrium point O is unstable for any τ > 0.

Situation II: When τ (0)
1 > τ

(0)
2 there exists a nonnegative integer l satisfying τ (l)

2 <

τ
(l)
1 < τ

(l+1)
1 . If τ ∈

⋃m
k=0(τ (k)

2 , τ
(k)
1 ), the equilibrium point O is asymptotically stable,

and if τ ∈
⋃m
k=0(τ (k−1)

1 , τ
(k)
2 )

⋃
(τ (m)

1 ,+∞), (τ (−1)
1 = 0), the equilibrium point O is

unstable where m is the minimum of all of values of for l. When τ = τ
(j)
1,2 , (j =

0, 1, 2, . . . ,m), Hopf bifurcation appears.

P r o o f . (1) According to Lemma 2.1, if there is no root of the equation (2.7), the
number of roots with positive real parts is equal to the number of that when τ = 0.
Since when τ = 0 the chaotic system (1.1) is unstable the characteristic equation (2.2)
always has roots with positive real parts. Thus when τ > 0 the equation (2.2) always
has roots with positive real parts. Therefore, the equilibrium point O is unstable for
any τ > 0.
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The paper [18] shows that when the equation (2.7) has one root w the inequality
d(Reλ)

dτ
|λ=iw > 0 holds. Together with Lemma 2.1, the characteristic equation (2.2)

always has roots with positive real parts and then the equilibrium point O is unstable
for any τ > 0.

(2) When the equation (2.7) has two roots w1 and w2, without loss of general-
ity assume that w1 > w2, furthermore, τ (n)

1 and τ
(n)
2 represent time delay respec-

tively corresponding to w1 and w2 where n is a nonnegative integer, we have that
d(Reλ)

dτ
|
λ=iw1,τ=τ

(n)
1

> 0 and
d(Reλ)

dτ
|
λ=iw2,τ=τ

(n)
2

< 0 according to the paper [18]. In

addition, the period of τ (n)
1 is less than that of τ (n)

2 .

Situation I: In the case that τ (0)
1 < τ

(0)
2 we now consider stability properties of the

equilibrium points O. The number of roots with positive real parts for the characteristic
equation will not decrease as τ increases ([18]). Since the characteristic equation (2.2)
always has roots with positive real parts when τ = 0 , the characteristic equation always
has roots with positive real parts when τ > 0. Therefore, the equilibrium point O is
unstable for any τ > 0.

Situation II: In the case that τ (0)
1 > τ

(0)
2 we consider stability for the point O.

Since the period of τ (n)
1 is less than that of τ (n)

2 , there exists a nonnegative integer l
satisfying τ (l)

2 < τ
(l)
1 < τ

(l+1)
1 . Assume that m is the the minimum for all of values of l.

According to analysis of Theorem 1 for the paper [18] from page 218 to page 219 and
Lemma 2.1, all roots of the characteristic equation (2.2) have negative real parts when
τ ∈

⋃m
k=0(τ (k)

2 , τ
(k)
1 ) while the equation (2.2) has roots with positive real parts when

τ ∈
⋃m
k=0(τ (k−1)

1 , τ
(k)
2 )

⋃
(τ (m)

1 ,+∞), (τ (−1)
1 = 0). Therefore, if τ ∈

⋃m
k=0(τ (k)

2 , τ
(k)
1 ),

the equilibrium point O is asymptotically stable, and if
τ ∈

⋃m
k=0(τ (k−1)

1 , τ
(k)
2 )

⋃
(τ (m)

1 ,+∞), (τ (−1)
1 = 0), the equilibrium point O is unstable.

When τ = τ
(j)
1,2 , (j = 0, 1, 2, . . . ,m), the characteristic equation (2.2) has only one pair

of pure imaginary roots while other roots have negative real parts, furthermore, the

inequalities
d(Reλ)

dτ
|
λ=iw1,τ=τ

(j)
1
6= 0 and

d(Reλ)
dτ

|
λ=iw2,τ=τ

(j)
2
6= 0 hold. Therefore, Hopf

bifurcation appears for the system (2.1) when τ = τ
(j)
1,2 , (j = 0, 1, 2, . . . ,m). �

2.2. Properties of Hopf bifurcation

Theorem 2.4 tells us that Hopf bifurcation may appear in the case of the equilibrium
point O(0, 0, 0) for τ = τ

(j)
i , (i = 1, 2; j = 0, 1, 2, . . . ,m). In this section we consider the

properties of Hopf bifurcation by using the center manifold theorem and normal form
method ([19, 20]).

For the equilibrium point O, define functions as follows

u1(t) = x(tτ), u2(t) = y(tτ), u3(t) = z(tτ).

We transform the systems (2.1) equivalently into the system below

u̇(t) = Lµ(ut) + F (µ, ut), µ ∈ R, (2.9)
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where u̇(t) = (u̇1(t), u̇2(t), u̇3(t))T , ut = u(t+ θ) = (u1(t+ θ), u2(t+ θ), u3(t+ θ))T ,
θ ∈ [−1, 0], C = C([−1, 0],R3), Lµ : C→ R3, and F : R× C→ R3 are given by

Lµ(φ) = τ

 a1 + k −a2 −a2

b3N −b1 −b2
0 0 −c1c3

 φ1(0)
φ2(0)
φ3(0)

+ τ

 −k 0 0
0 0 0
0 0 0

 φ1(−1)
φ2(−1)
φ3(−1)

 ,

F (µ, φ) = τ


− a1

M
φ2

1(0)

−b3φ2
1(0) + b3φ1(0)φ3(0)
c1c2φ1(0)φ3(0)

 , φ(θ) = (φ1(θ), φ2(θ), φ3(θ))T .

According to Riesz Representation Theorem, there exists a bounded variation func-
tion matrix η(θ, µ), θ ∈ [−1, 0] which satisfies that

Lµ(φ) =
∫ 0

−1

dη(θ, µ)φ(θ),∀φ ∈ C. (2.10)

Next in order to be decomposed in the phase space, the systems (2.9) are subsequently
transformed into the ordinary differential equations.

For φ(θ) ∈ C, define

A(µ)φ(θ) =

{
dφ(θ)

dθ , θ ∈ [−1, 0),∫ 0

−1
dη(ξ, µ)φ(ξ), θ = 0,

R(µ)φ(θ) =
{

0, θ ∈ [−1, 0),
F (µ, φ), θ = 0.

Then the system (2.9) can be transformed into the abstract differential equation:

u̇t = A(µ)ut +R(µ)ut, (2.11)

where ut = u(t+ θ), θ ∈ [−1, 0].
For ψ(s) ∈ C([−1, 0], (R3)∗), define

A∗ψ(s) =

 −
dψ(s)

ds , s ∈ (0, 1],∫ 0

−1
dηT (t, 0)ψ(−t), s = 0,

where ηT (t, 0) is defined in (2.10).
For φ ∈ C and ψ ∈ C([−1, 0], (R3)∗), define the bilinear function

〈ψ, φ〉 = ψ̄(0)φ(0)−
∫ 0

−1

∫ θ

ξ=0

ψ̄(ξ − θ) dη(θ, 0)φ(ξ) dξ. (2.12)

From the discussions in the section above, we know that ±iωτ (j)
i , (i = 1, 2; j =

0, 1, 2, . . . ,m) are eigenvalues of A(0), and they are also the eigenvalues of A∗(0) because
it is adjoint operator of A(0). Suppose q(θ) = q(0)eiωτ

(j)
i θ is an eigenvector of A(0) corre-

sponding to iωτ (j)
i and q∗(s) = Dq∗(0)eiωτ

(j)
i s is the eigenvector of A∗(0) corresponding
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to −iωτ (j)
i where q(0) = [1, α, β]T , and q∗(0) = [1, p, g]. Moreover, 〈q∗(s), q(θ)〉 = 1, and

〈q∗(s), q(θ)〉 = 0. Then we obtain that

α =
b3N

b1 + iω
, β = 0,

p =
a2

iω − b1
, g =

a2 + b2p

iω − c1c3
,

D̄ = [1 + αp− τ (j)
i ke−iωτ

(j)
i ]−1.

When µ = 0, for any solution of the system (2.11) define

z(t) = 〈q∗, ut〉, W (t, θ) = ut(θ)− 2Re{z(t)q(θ)}, (2.13)

on the center manifold C0. We have

W (t, θ) = W (z(t), z̄(t), θ),

where

W (z(t), z̄(t), θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+ · · · , (2.14)

z and z̄ are local coordinates for center manifold C0 in the directions of q∗ and q∗.
Then the flow of the system (2.9) on the center manifold can be determined by the

following equations:

ż(t) = iωτ
(j)
i z(t) + q̄∗(0)F (0,W (t, 0) + 2Re[z(t)q(0)]). (2.15)

Denote G(z, z̄) = q̄∗(0)F (0,W (t, 0) + 2Re[z(t)q(0)]), since

W (t, 0) + 2Re[z(t)q(0)] = ut

we get that
F (0,W (t, 0) + 2Re[z(t)q(0)]) = F (0, ut),

G(z(t), z̄(t)) = τ
(j)
i D̄(1, p̄, ḡ)

 −a1
M u2

1t(0)
−b3u2

1t(0) + b3u1t(0)u3t(0)
c1c2u1t(0)u3t(0)

 (2.16)

which can be represented respectively as power series of z(t) and z̄(t):

G(z(t), z̄(t)) = g20
z2

2
+ g11z(t)z̄(t) + g02

z̄2

2
+ · · · , (2.17)

F (0, ut) = f20
z2

2
+ f11z(t)z̄(t) + f02

z̄2

2
+ · · · . (2.18)

From (2.13) and (2.14), we have that

ut(θ) = (1, α, β)T eiωτ
(j)
i θz + (1, ᾱ, β̄)T e−iωτ

(j)
i θ z̄ +W20(θ) z

2

2 +W11(θ)z(t)z̄(t)
+W02(θ) z̄

2

2 + · · · ,
(2.19)
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where ut(θ) = [u1t(θ), u2t(θ), u3t(θ)]T .
Substituting (2.19) into (2.16) and comparing their coefficients with that of (2.17)

and (2.18) respectively give that:

g20 = q̄∗(0)f20 = −2D̄τ (j)
i

( a1

M
+ p̄b3

)
,

g11 = q̄∗(0)f11 = −2D̄τ (j)
i

( a1

M
+ p̄b3

)
,

g02 = q̄∗(0)f02 = −2D̄τ (j)
i

( a1

M
+ p̄b3

)
,

g21 = q̄∗(0)f21 = 2D̄τ (j)
i

[
W

(3)
11 (0) +

1
2
W

(3)
20 (0)−

( a1

M
+ p̄b3

)
(W (1)

20 (0) + 2W (1)
11 (0))

]
,

where g21 is determined by W20 and W11.
From the paper [20] we obtain that

W20(θ) =
ig20

wτ
(j)
i

q(0)eiωτ
(j)
i θ +

iḡ02

3ωτ (j)
i

q̄(0)e−iωτ
(j)
i θ + E1e

2iωτ
(j)
i θ,

W11(θ) = − ig11

ωτ
(j)
i

q(0)eiωτ
(j)
i θ +

iḡ11

ωτ
(j)
i

q̄(0)e−iωτ
(j)
i θ + E2,

where
E1 = [2iωτ (j)

i I −
∫ 0

−1
e2iωτ

(j)
i θ dη(θ, 0)]−1f20,

E2 = −[
∫ 0

−1
dη(θ, 0)]−1f11.

From g20 = q̄∗(0)f20 and g11 = q̄∗(0)f11, we have that

f20 = f11 = 2τ (j)
i

 −a1
M
−b3

0

 .
In addition, according to the definition of A(µ), when µ = 0 these two equalities below
hold: ∫ 0

−1

e2iωτ
(j)
i θ dη(θ, 0) = τ

(j)
i

 a1 + k − ke−2iωτ
(j)
i −a2 −a2

b3N −b1 −b2
0 0 −c1c3


and ∫ 0

−1

dη(θ, 0) = τ
(j)
i

 a1 −a2 −a2

b3N −b1 −b2
0 0 −c1c3

 .
Substituting respectively f20, f11,

∫ 0

−1
e2iωτ0θ dη(θ, 0) and

∫ 0

−1
dη(θ, 0) into E1 and

E2 gives that
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E
(1)
1 =

2a1(b1 + 2ωi)− 2a2b3M

M(2ωi+ b1)(a1 + k − ke−2ωiτ
(j)
i − 2ωi)− a2b3MN

,

E
(2)
1 =

2a1b3N − 2b3M(a1 + k − ke−2ωiτ
(j)
i − 2ωi)

M(2ωi+ b1)(a1 + k − ke−2ωiτ
(j)
i − 2ωi)− a2b3MN

,

E
(3)
1 = 0,

E
(1)
2 =

2a2b3M − 2a1b1
M(a2b3N − a1b1)

,

E
(2)
2 =

2a1b3M − 2a1b3N

M(a2b3N − a1b1)
,

E
(3)
2 = 0,

with which E1 = (E(1)
1 , E

(2)
1 , E

(3)
1 )T , E2 = (E(1)

2 , E
(2)
2 , E

(3)
2 )T .

Substitute E1 and E2 into W20(θ) and W11(θ) respectively, and substitute W20(θ)
and W11(θ) into g21, then all of g20, g11, g02 and g21 can be obtained by the system (2.1).
Denote c1(0) = i

2ωτ0
(g20g11 − 2|g11|2 − |g02|

2

3 ) + g21
2 , then we get the parameters that

determine the properties of Hopf bifurcation as follows:

µ
(j)
i2 = − Re{c1(0)}

Re{λ′(τ (j)
i )}

,

β
(j)
i2 = 2Re{c1(0)},

τ
(j)
i2 = − Im{c1(0)}+ µ2Im{λ′(τ (j)

i )}
ωτ

(j)
i

.

(2.20)

According to positiveness or negativeness of parameters above and the paper [20], we
get the properties of Hopf bifurcation by the following theorem.

Theorem 2.5. If µ(j)
i2 > 0 (µ(j)

i2 < 0), then the periodic solutions of Hopf bifurcation
are supercritical (subcritical). If β(j)

i2 < 0 (β(j)
i2 > 0), then the periodic solutions of Hopf

bifurcation are asymptotically stable (unstable). If τ (j)
i2 > 0 (τ (j)

i2 < 0), then the period
of bifurcating periodic solutions increases (decreases).

2.3. Simulations

Parameters are selected as following

a1 = 1, a2 = 1.5, b1 = 0.7, b2 = 0.9, b3 = 0.7,
c1 = 2, c2 = 1.5, c3 = 1, M = 1.5, N = 1. (2.21)

Then the system (2.1) is chaotic as is shown in Figure 1. Initial values are chosen as
that x(0) = 0.5, y(0) = 0.2, z(0) = 0.2 in all of figures from Figure 1 to Figure 11.
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Fig. 1. The systems are chaotic when τ = 0.

In Lemma 2.2, ∆ > 0 tells us that k < −0.121865 or k > 0.241865. Next we simulate
under the condition that k = −0.15, with which following values can be attained:

ω1 = 0.7483, τ (n)
1 = 4.1981 + 8.3963n, n = 0, 1, 2, . . .

ω2 = 0.5916, τ (n)
2 = 2.3721 + 10.6205n, n = 0, 1, 2, . . .

Theorem 2.4 shows that the equilibrium point O is asymptotically stable when τ ∈
(2.3721, 4.1981), but unstable when τ ∈ (0, 2.3721)

⋃
(4.1981,+∞), moreover, the system

(2.1) produces Hopf bifurcation when τ = 4.1981 or τ = 2.3721.
When τ = τ

(0)
2 , the parameters which determine the properties of Hopf bifurcation

are get as follows:

µ
(0)
22 ≈ −30.9262 < 0, β(0)

22 ≈ −3.606 < 0, τ (0)
22 ≈ 6.7385 > 0,

which together with Theorem 2.5 show that the periodic solutions of Hopf bifurcation
are subcritical, asymptotically stable and increasing periodically.

When τ = τ
(0)
1 , the parameters which determine the properties of Hopf bifurcation

are obtained below:

µ
(0)
12 ≈ 158.053 > 0, β(0)

12 ≈ −29.8404 < 0, τ (0)
12 ≈ 1.4254 > 0

which together with Theorem 2.5 indicate that the periodic solutions of Hopf bifurcation
are supercritical, asymptotically stable and increasing periodically.

Next we simulate trends of energy demand shortage x(t), energy supply increment
y(t) and energy import z(t) as time increases and the phase diagram of system (2.1) all
of which illustrate effectiveness of Theorem 2.4 and Theorem 2.5.

Set τ = 1 ∈ (0, 2.3721), we attain Figure 2 which shows that the system (2.1) still
keeps chaotic as t increases and the equilibrium point O is unstable.

Set τ = τ
(0)
2 = 2.3721 and τ = 2.34 < τ

(0)
2 , then we have Figure 3 and Figure 4

respectively both of which show that the energy import z(t) tends to zero, besides, both
the amount of energy demand shortage of Region A x(t) and that of the energy supply
increment of Region B y(t) shock periodically near the null point. Obviously in both of
the figures Hopf bifurcation appears.
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Fig. 2. The equilibrium point O is unstable when τ = 1 ∈ (0, 2.3721).
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Fig. 3. Hopf bifurcation appears when τ = 2.3721.
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Fig. 4. The changes of Hopf bifurcation when τ = 2.34 < 2.3721.

Set τ = 3 ∈ (2.3721, 4.1981), we attain Figure 5 which shows that the values of
x(t), y(t) and z(t) all tend to zero if time t is large enough. Therefore in this case the
equilibrium point O is asymptotically stable and the chaotic system can be stabilized to
the equilibrium point O.

Set τ = τ
(0)
1 = 4.1981 and τ = 4.22 > τ

(0)
1 , then we have Figure 6 and Figure 7

respectively both of which show that z(t) tends to zero if time is large enough, besides,
the amounts of x(t) and y(t) turbulence periodically near the null point. Evidently in
these cases the system produces Hopf bifurcation.
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Fig. 5. The system is stabilized to the equilibrium point O when

τ = 3 ∈ (2.3721, 4.1981).
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Fig. 6. Hopf bifurcation appears when τ = 4.1981.
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Fig. 7. The changes of Hopf bifurcation when τ = 4.22 > 4.1981.

Set τ = 7 ∈ (4.1981,+∞), we attain Figure 8 which shows that the system (2.1) is
chaotic and the equilibrium point O is unstable.

All of Figure 2, Figure 3, Figure 5, Figure 6 and Figure 8 satisfy the case of Theorem
2.4 that there exists two roots. Comparing Figure 5 with Figure 6 tells us that the pe-
riodic solutions of Hopf bifurcation are subcritical, asymptotically stable and increasing
periodically. Furthermore, comparing Figure 8 with Figure 9 shows that the periodic
solutions of Hopf bifurcation are supercritical, asymptotically stable and increasing pe-
riodically.
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Fig. 8. The equilibrium point O is unstable when

τ = 7 ∈ (4.1981,+∞).

Next we choose k = −0.1 in which case the equation (2.7) has no root and the equi-
librium point O is unstable according to Theorem 2.4. We choose τ = 10 to attain
Figure 9 which shows that the system is chaotic.
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Fig. 9. The equilibrium point O is unstable when k = −0.1 and

τ = 10.
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Fig. 10. The systems (1.1) is chaotic for the parameters (2.22).
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Fig. 11. Set k = −0.05 and τ = 17, the equilibrium point O is

unstable.

For the case that the equation (2.7) has only one root. We take the following param-
eters

a1 = 0.1, a2 = 0.15, b1 = 0.11, b2 = 0.1, b3 = 0.07,
c1 = 0.2, c2 = 0.2, c3 = 0.3, M = 1.8, N = 1, (2.22)

with which the system (1.1) is chaotic as is shown in Figure 10. Choosing k = −0.05
which satisfies the preconditions of Lemma 2.2 gives that

w = 0.0972 and τ (n) = 15.4165 + 64.6165n

where n is a nonnegative integer. Theorem 2.4 tells us that the equilibrium point O is
unstable. Choose τ = 17, then we attain Figure 11 which illustrates our results.

3. CONCLUSION

In this paper, a delayed feedback controller was designed for a typical three-dimensional
energy demand-supply system to make the chaotic system periodically changing and
asymptotically stabilizing. The stable effect of the controller indicates that the supply
and demand of energy between the two regions may be in balance under the time-delayed
feedback control even without the import of energy. Although the controller is effective
illustrated by our results, there may exist other simpler and easier control methods which
is our future work.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science Foundation of China under Grant
61203058, the Training Program for Outstanding Young Teachers of North China University
of Technology (No. XN131) and the Construction Plan for Innovative Research Team of North
China University of Technology (No. XN129).

(Received July 2, 2014)



Stability analysis of a three-dimensional energy demand-supply system . . . 1099

R E F E R E N C E S

[1] L. Chen and Z. Z. Han: A survey on time-delayed feedback control for chaotic systems.
Control Decision 19 (2004), 1–6.

[2] C. F. Huang, K. H. Cheng, and J. J. Yan: Robust chaos synchronization of four-
dimensional energy resource systems subject to unmatched uncertainties. Commun. Non-
linear Sci. Numer. Simul. 14 (2009), 2784–2792. DOI:10.1016/j.cnsns.2008.09.017

[3] A. Z. Lei, L. Ji, and W. G. Xu: Delayed feedback control of a chemical chaotic model.
Applied Math. Modelling 33 (2009), 677–682. DOI:10.1016/j.apm.2007.12.001

[4] E. Ott, C. Grebogi, and Y. A. Yorke: Controlling chaos. Physical Rev. Lett. 64 (1990),
1196–1199. DOI:10.1103/physrevlett.64.1196

[5] S. G. Ruan and J. J. Wei: On the zeros of transcendental functions with applications to
stability of delay differential equations with two delays. Dynamics of Continuous, Discrete
and Impulsive Systems Series A: Mathematical Analysis 10 (2003), 863–874.

[6] M. Sun and L. X. Tian: An energy resources demand-supply system and its dynamical
analysis. Chaos, Solitons and Fractals 32 (2007), 168–180.

[7] M. Sun, L. X. Tian, Y. Fu, and Q. Wei: Dynamics and adaptive synchronization
of the energy resource system. Chaos, Solitons and Fractals 31 (2007), 879–888.
DOI:10.1016/j.chaos.2005.10.035

[8] M. Sun, L. X. Tian, and Q. Jia: Adaptive control and synchronization of a four-
dimensional energy resources system with unknown parameters. Chaos, Solitons and
Fractals 39 (2009), 1943–1949. DOI:10.1016/j.chaos.2007.06.117

[9] M. Sun, L. X. Tian and J. Yin: Hopf bifurcation analysis of the energy resource chaotic
system. Int. J. Nonlinear Sci. 1 (2006), 49–53.

[10] M. Sun, X. F. Wang, Y. Chen, and L. X. Tian: Energy resources demand-supply system
analysis and empirical research based on non-linear approach. Energy 36 (2011), 5460–
5465. DOI:10.1016/j.energy.2011.07.036

[11] M. Sun, L. X. Tian, and J. Xu: Feedback control and adaptive control of the en-
ergy resource chaotic system. Chaos, Solitons and Fractals 32 (2007), 1725–1734.
DOI:10.1016/j.chaos.2005.12.008

[12] M. Sun, L. X. Tian, and C. Y. Zeng: The energy resources system with parametric
perturbations and its hyperchaos control. Nonlinear Analysis: Real World Appl. 10
(2009), 2620–2626. DOI:10.1016/j.nonrwa.2008.04.019

[13] Z. K. Sun, W. Xu, X. L. Yang, and T. Fang: Inducing or suppressing chaos in a double-
well Duffing oscillator by time delay feedback. Chaos, Solitons and Fractals 27 (2006),
705–714. DOI:10.1016/j.chaos.2005.04.041

[14] Y. Q. Tian, J. D. Zhu, and G. R. Chen: A survey on delayed feedback control of chaos.
J. Control Theory Appl. 3 (2005), 311–319. DOI:10.1007/s11768-005-0018-1

[15] Z. L. Wang: Chaos synchronization of an energy resource system based on
linear control. Nonlinear Analysis: Real World Appl. 11 (2010), 3336–3343.
DOI:10.1016/j.nonrwa.2009.11.026

[16] L. J. Wang, X. M. Chen, M. Sun, and L X. Tian: Stability of the energy supply-demand
stochastic system. Mathematics in Practice and Theory 42 (2012), 105–111.

[17] M. G. Wang and L. X. Tian: A new four-dimensional energy-saving andemission-reduction
system and its linear feedback control. J. Systems Sci. Math. Sci. 32 (2012), 811–820.

http://dx.doi.org/10.1016/j.cnsns.2008.09.017
http://dx.doi.org/10.1016/j.apm.2007.12.001
http://dx.doi.org/10.1103/physrevlett.64.1196
http://dx.doi.org/10.1016/j.chaos.2005.10.035
http://dx.doi.org/10.1016/j.chaos.2007.06.117
http://dx.doi.org/10.1016/j.energy.2011.07.036
http://dx.doi.org/10.1016/j.chaos.2005.12.008
http://dx.doi.org/10.1016/j.nonrwa.2008.04.019
http://dx.doi.org/10.1016/j.chaos.2005.04.041
http://dx.doi.org/10.1007/s11768-005-0018-1
http://dx.doi.org/10.1016/j.nonrwa.2009.11.026


1100 K.-Y. YANG, L.-L. ZHANG AND J. ZHANG

[18] Z. Wang and H. Y. Hu: Stability switches of time-delayed dynamic systems with unknown
parameters. J. Sound Vibration 233 (2000), 215–233. DOI:10.1006/jsvi.1999.2817

[19] X. Wang, F. Q. Zhang, and Y. J. Zhang: Hopf bifurcation of three species system with
time delays. J. Systems Sci. Math. Sci. 30 (2010), 530–540.

[20] J. J. Wei, H. B. Wang, and W. H. Jiang: Theory and Application of Delay Differential
Equations. Sciences Press, Beijing 2012.

[21] B. G. Xin, T. Chen, and Y. Q. Liu: Projective synchronization of chaotic fractional-order
energy resources demand-supply systems via linear control. Comm. Nonlinear Sci. Numer.
Simul. 16 (2011), 4479–4486. DOI:10.1016/j.cnsns.2011.01.021

[22] C. J. Xu, M. X. Liao, and X. F. He: Stability and Hopf bifurcation analysis for a Lotka-
Volterra predator-prey model with two delays. Int. J. Appl. Math. Computer Sci. 21
(2011), 97–107. DOI:10.2478/v10006-011-0007-0

[23] Z. Y. Ye, G. Yang, and C. B. Deng: Time-delay feedback control in a delayed dynamical
chaos system and its applications. Chinese Physics B 20 (2011), 1–5. DOI:10.1088/1674-
1056/20/1/010207

[24] E. Zou, X. F. Li, and J. G. Chen: Chaos Control and Optimization Applications. National
University of Defence Technology Press, Changsha 2002.

Kun-Yi Yang, College of Science, North China University of Technology, Beijing 100144.
P.R. China.

e-mail: kyy@amss.ac.cn

Ling-Li Zhang, College of Science, North China University of Technology, Beijing 100144.
P.R. China.

e-mail: zhanglingli826@163.com

Jie Zhang, College of Science, North China University of Technology, Beijing 100144.
P.R. China.

e-mail: jzhang26@ncut.edu.cn

http://dx.doi.org/10.1006/jsvi.1999.2817
http://dx.doi.org/10.1016/j.cnsns.2011.01.021
http://dx.doi.org/10.2478/v10006-011-0007-0
http://dx.doi.org/10.1088/1674-1056/20/1/010207
http://dx.doi.org/10.1088/1674-1056/20/1/010207

		webmaster@dml.cz
	2018-01-10T11:14:49+0100
	CZ
	DML-CZ attests to the accuracy and integrity of this document




