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Abstract. In the paper, dealing with a question of Lahiri (1999), we study the uniqueness
of meromorphic functions in the case when two certain types of nonlinear differential poly-
nomials, which are the derivatives of some typical linear expression, namely hn(h − 1)m

(h = f, g), share a non-zero polynomial with finite weight. The results obtained in the
paper improve, extend, supplement and generalize some recent results due to Sahoo (2013),
Li and Gao (2010). In particular, we have shown that under a suitable choice of the shar-
ing non-zero polynomial or when the first derivative is taken under consideration, better
conclusions can be obtained.
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1. Introduction, definitions and results

In this paper, by meromorphic functions we shall always mean meromorphic func-

tions in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a finite

complex number. We say that f and g share a CM, if f − a and g − a have the

same zeros with the same multiplicities. Similarly, we say that f and g share a IM,

if f − a and g − a have the same zeros ignoring multiplicities. In addition, we say

that f and g share ∞ CM, if 1/f and 1/g share 0 CM, and we say that f and g

share ∞ IM, if 1/f and 1/g share 0 IM.

We adopt the standard notation of value distribution theory, see [7]. We denote

by T (r) the maximum of T (r, f) and T (r, g). The symbol S(r) denotes any quantity

The first author is thankful to the DST-PURSE programme for financial assistance.

DOI: 10.21136/MB.2016.2 13



satisfying S(r) = O(T (r)) as r → ∞, outside a possible exceptional set of finite

linear measure.

Throughout this paper, we need the following definition:

Θ(a, f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)
,

where a is a value in the extended complex plane.

In 1999, Lahiri [11] asked the following question, which is perhaps the first one

concerning the possible relationship between two meromorphic functions related to

value sharing of the nonlinear differential polynomials generated by them:

What can be said if two nonlinear differential polynomials generated by two mero-

morphic functions share 1 CM?

Earlier, in 1997, Yang and Hua [25] already made some contribution in this di-

rection for a specific type of nonlinear differential polynomials, namely differential

monomials. Below we recall their result.

Theorem A ([25]). Let f and g be two non-constant meromorphic functions,

n > 11 be a positive integer and a ∈ C − {0}. If fnf ′ and gng′ share a CM, then

either f(z) = c1e
cz, g(z) = c2e

−cz, where c1, c2 and c are three constants satisfying

(c1c2)
n+1c2 = −1, or f ≡ tg for a constant t such that tn+1 = 1.

Fang and Qiu [5] extended the above result as follows:

Theorem B ([5]). Let f and g be two non-constant meromorphic functions,

n > 11 be a positive integer. If fnf ′ − z and gng′ − z share 0 CM, then either

f(z) = c1e
cz2

, g(z) = c2e
−cz2

, where c1, c2 and c are three constants satisfying

4(c1c2)
n+1c2 = −1, or f ≡ tg for a constant t such that tn+1 = 1.

The introduction of the new idea of scaling between CM and IM, known as

weighted sharing of values, by Lahiri [9], [10] in 2001 further encouraged the inves-

tigations remarkably in the above direction. To verify the above statement readers

are referred to [2]–[5], [13]–[20].

The definition of weighted sharing is given below.

Definition 1.1 ([9], [10]). Let k be a non-negative integer or infinity. For a ∈

C ∪ {∞} we denote by Ek(a; f) the set of all a-points of f , where an a-point of

multiplicity m is counted m times if m 6 k and k + 1 times if m > k. If Ek(a; f) =

Ek(a; g), we say that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k, then z0 is

an a-point of f with multiplicity m (6 k) if and only if it is an a-point of g with
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multiplicity m (6 k), and z0 is an a-point of f with multiplicity m (> k) if and only

if it is an a-point of g with multiplicity n (> k), where m is not necessarily equal

to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.

Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 6 p < k. Also

we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞),

respectively. If a is a small function we say that f and g share (a, l), which means f

and g share a with weight l if f − a and g − a share (0, l).

In 2010, Li and Gao [17] further improved some previous results, e.g., [21] in the

following manner:

Theorem C ([17]). Let f and g be two transcendental meromorphic functions,

let n > 11 be a positive integer and let P 6≡ 0 be a polynomial with degree γP 6 11.

If fnf ′ and gng′ share (P,∞), then either f ≡ tg for a constant t such that tn+1 = 1,

or f(z) = c1e
cQ and g(z) = c2e

−cQ, where c1, c2 and c are three non-zero constants

satisfying (c1c2)
n+1(c)2 = −1, Q(z) is a polynomial satisfying Q =

∫ z

0 P (η) dη.

Theorem D ([17]). Let f and g be two transcendental meromorphic functions,

n (> 15) be an integer and P 6≡ 0 be a polynomial. If (fn(f − 1))′ and (gn(g − 1))′

share (P,∞), and Θ(∞; f) > 2/n, then f ≡ g.

For the last few years the main trend in the value sharing of nonlinear differential

polynomials has somehow been shifted towards the k-th derivative of some linear

expression of f and g. Recently Sahoo [22] have extended Theorems C and D for the

case of IM sharing, which in turn improved Sahoo’s previous result [23]. Sahoo’s [22]

results are as follows:

Theorem E ([22]). Let f and g be two transcendental meromorphic functions,

let n, k be two positive integers such that n > 9k+15 and let P 6≡ 0 be a polynomial

with its degree γP 6 n− 1. Let (fn)(k) and (gn)(k) share (P, 0). Then

(i) if k = 1, then either f ≡ tg for a constant t such that tn = 1 or f(z) = c1e
cQ

and g(z) = c2e
−cQ, where c1, c2 and c are three non-zero constants satisfying

(c1c2)
n(c)2 = −1, Q(z) is a polynomial satisfying Q =

∫ z

0 P (η) dη;

(ii) if k > 2, either (fn)(k)(gn)(k) = p2 or f ≡ tg for a constant t satisfying tn = 1.

Theorem F ([22]). Let f and g be two transcendental meromorphic functions, let

n, m, k be three positive integers and let P 6≡ 0 be a polynomial. Let (fn(f−1)m)(k)

and (gn(g − 1)m)(k) share (P, 0). Then the following holds:

(i) when m = 1, n > 9k + 20 and Θ(∞; f) + Θ(∞; g) > 4/n, then either (fn ×

(f − 1)m)(k)(gn(g − 1)m)(k) = P 2 or f ≡ g;
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(ii) if m > 2 and n > 9k+4m+16, then either (fn(f−1)m)(k)(gn(g−1)m)(k) = P 2

or f ≡ g or f , g satisfy the algebraic equation R(f, g) = 0, where R(x, y) =

xn(x− 1)m − yn(y − 1)m.

The possibility (fn(f − 1)m)(k)(gn(g − 1)m)(k) ≡ P 2 does not arise for k = 1.

The purpose of the paper is to unify all the above theorems into a single one.

Our result radically improves the results of Sahoo and Li-Gao by reducing the lower

bound of n. We also show that when P (z) = d = constant, better results can be

obtained at the cost of assuming f and g share ∞ IM. In short, we shall improve,

extend and generalize all the above mentioned theorems in a more convenient and

compact manner. The following theorem is the main result of the paper.

Theorem 1.1. Let f and g be two transcendental meromorphic functions, and

P (z) (6≡ 0) be a non-zero polynomial. Also we suppose that (fn(f − 1)m)(k) and

(gn(g − 1)m)(k) share (P (z), l), where n (> 1), k (> 1), m (> 0) and l (> 0) are

integers. When

(a) l > 2 and n > max{3k + 8 + 2min{k + 2,m} −m,m+ 3} or

(b) l = 1 and n >max{4k+9+2min{k+2,m}+ 1
2min{k+1,m}−m,m+3} or

(c) l = 0 and n > max{9k + 14 + 3min{k + 1,m}+ 2min{k + 2,m} −m,m+ 3},

then the following cases hold:

(I) when m = 0, one of the following two cases holds:

(I1) f ≡ g for some constant t such that tn = 1;

(I2) (fn)(k)(gn)(k) ≡ P 2. In particular, if f and g share ∞ IM, then for (i)

k = 1 and γP 6 n− 1, we have f(z) = c1e
cQ and g(z) = c2e

−cQ, where c1,

c2 and c are three non-zero constants satisfying (c1c2)
n(c)2 = −1, Q(z) is

a polynomial satisfying Q = n−1
∫ z

0
P (η) dη; and for (ii) P (z) = d we get

f(z) = c1e
cz and g(z) = c2e

−cz, where c1, c2 and c are constants satisfying

(−1)k(c1c2)
n(nc)2k = d2;

(II) when m > 1, one of the following three cases holds:

(II1) f(z) ≡ g(z);

(II2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(x, y) =

xn(x− 1)m − yn(y− 1)m, except for m = 1 and Θ(∞; f)+Θ(∞; g) > 4/n;

(II3) (fn(f − 1)m)(k)(gn(g − 1)m)(k) ≡ P 2;

The possibility (II3) does not arise for k = 1.

We now present some definitions and notations which are used in the paper.

Definition 1.2 ([16]). Let p be a positive integer and a ∈ C ∪ {∞}.

(i) N(r, a; f ;> p) (N(r, a; f ;> p)) denotes the counting function (reduced counting

function) of those a-points of f whose multiplicities are not less than p.
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(ii) N(r, a; f ;6 p) (N(r, a; f ;6 p)) denotes the counting function (reduced counting

function) of those a-points of f whose multiplicities are not greater than p.

Definition 1.3 ([8], [27]). For a ∈ C ∪ {∞} and a positive integer p we denote

by Np(r, a; f) the sum N(r, a; f) + N(r, a; f ;> 2) + . . . + N(r, a; f ;> p). Clearly

N1(r, a; f) = N(r, a; f).

Definition 1.4. Let a, b ∈ C ∪ {∞}. Let p be a positive integer. We denote by

N(r, a; f ;> p; g = b) (N(r, a; f ;> p; g 6= b)) the reduced counting function of those

a-points of f with multiplicities > p which are the b-points (are not the b-points) of g.

Definition 1.5 ([1], [4]). Let f and g be two non-constant meromorphic func-

tions such that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplic-

ity p and a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the counting

function of those 1-points of f and g where p > q, by N
1)
E (r, 1; f) the counting func-

tion of those 1-points of f and g where p = q = 1 and by N
(2

E (r, 1; f) the counting

function of those 1-points of f and g where p = q > 2, each point in these count-

ing functions is counted only once. Similarly we can define NL(r, 1; g), N
1)
E (r, 1; g),

N
(2

E (r, 1; g).

Definition 1.6 ([1], [4]). Let k be a positive integer. Let f and g be two non-

constant meromorphic functions such that f and g share the value 1 IM. Let z0 be

a 1-point of f with multiplicity p and a 1-point of g with multiplicity q. We denote

by Nf>k (r, 1; g) the reduced counting function of those 1-points of f and g where

p > q = k. The function Ng>k (r, 1; f) is defined analogously.

Definition 1.7 ([9], [10]). Let f , g share a value a IM.We denote byN∗(r, a; f, g)

the reduced counting function of those a-points of f whose multiplicities differ from

the multiplicities of the corresponding a-points of g.

Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f)+NL(r, a; g).

Definition 1.8. Let a, b1, b2, . . . , bq ∈ C ∪ {∞}. We denote by N(r, a; f ; g 6=

b1, b2, . . . , bq) the counting function of those a-points of f , counted according to

multiplicity, which are not the bi-points of g for i = 1, 2, . . . , q.

2. Lemmas

Let F and G be two non-constant meromorphic functions defined in C. We denote

by H the following function:

(2.1) H =
(F ′′

F ′
−

2F ′

F − 1

)

−
(G′′

G′
−

2G′

G− 1

)

.
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Lemma 2.1 ([26]). Let f be a non-constant meromorphic function and let

an(z) (6≡ 0), an−1(z), . . . , a0(z) be meromorphic functions such that T (r, ai(z)) =

S(r, f) for i = 0, 1, 2, . . . , n. Then

T (r, anf
n + an−1f

n−1 + . . . + a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.2 ([28]). Let f be a non-constant meromorphic function, and p, k be

positive integers. Then

Np(r, 0; f
(k)) 6 T (r, f (k))− T (r, f) +Np+k(r, 0; f) + S(r, f),(2.2)

Np(r, 0; f
(k)) 6 kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).(2.3)

Lemma 2.3 ([12]). If N(r, 0; f (k); f 6= 0) denotes the counting function of those

zeros of f (k) which are not the zeros of f , where a zero of f (k) is counted according

to its multiplicity, then

N(r, 0; f (k); f 6= 0) 6 kN(r,∞; f) +N(r, 0; f ;< k) + kN(r, 0; f ;> k) + S(r, f).

Lemma 2.4 ([6]). Let f be a non-constant entire function, k > 2 be a positive

integer. If ff (k) 6= 0 then f = eaz+b, where a 6= 0, b are constants.

Lemma 2.5 ([26]). Let f be a non-constant meromorphic function, and let k be

a positive integer. Suppose that f (k) 6≡ 0. Then

N(r, 0; f (k)) 6 N(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 2.6. Let f , g be two transcendental meromorphic functions and n, m

and k be three positive integers with n > k + 2 + min{k + 1,m} − m. Let P (z)

(6≡ 0) be a polynomial. If (fn(f − 1)m)(k) and (gn(g − 1)m)(k) share (P (z), 0), then

T (r, f) = O(T (r, g)) and T (r, g) = O(T (r, f)).

P r o o f. In view of Lemma 2.2 for p = 1 and using the second fundamental

theorem for small functions [24] we get

(n+m)T (r, f) 6 T (r, (fn(f − 1)m)(k))−N(r, 0; (fn(f − 1)m)(k))

+Nk+1(r, 0; f
n(f − 1)m) + S(r, f)

6 N(r, 0; (fn(f − 1)m)(k)) +N(r,∞; f) +N(r, p; (fn(f − 1)m)(k))

−N(r, 0; (fn(f − 1)m)(k)) +Nk+1(r, 0; f
n(f − 1)m) + S(r, f)

18



6 N(r,∞; f) +N(r, p; (fn(f − 1)m)(k)) + (k + 1)N(r, 0; f)

+Nk+1(r, 0; (f − 1)m) + S(r, f)

6 (k+2+min{k+1,m})T (r,f)+N(r,0;(gn(g− 1)m)(k)−p)+S(r,f)

6 (k + 2 +min{k + 1,m})T (r, f) + (k + 1)(n+m)T (r, g) + S(r, f),

i.e.,

(n+m− k − 2−min{k + 1,m})T (r, f) 6 (k + 1)(n+m)T (r, g) + S(r, f).

Since n > k + 2 + min{k + 1,m} −m, we have T (r, f) = O(T (r, g)). Similarly we

have T (r, g) = O(T (r, f)). This completes the proof of the lemma. �

Lemma 2.7. Let f , g be two non-constant meromorphic functions sharing∞ IM.

Let n, k be two positive integers such that n > k. If (fn)(k)(gn)(k) ≡ d2, then f =

c1e
cz, g = c2e

−cz, where c1, c2 and c are constants such that (−1)k(c1c2)
n(nc)2k = d2.

P r o o f. Suppose that

(2.4) (fn)(k)(gn)(k) ≡ d2.

Since f and g share∞ IM, it follows from (2.4) that both f and g are entire functions.

Again, since n > k, from (2.4) we get that both f and g have no zeros and we can

take f and g as follows:

(2.5) f = eα, g = eβ .

Moreover, we see from (2.4) that

(2.6) N(r, 0; (fn)(k)) = 0, N(r, 0; (gn)(k)) = 0.

We consider the following cases:

Case 1 : Let k > 2. Then from (2.6) and Lemma 2.4 for fn we have

(2.7) f(z) = c1e
cz, g(z) = c2e

−cz,

where c, c1 and c2 are constants such that (−1)k(c1c2)
n(nc)2k = 1.

Case 2 : Let k = 1. Suppose that α and β are transcendental. Then from (2.4) we

get

(2.8) ABα′β′en(α+β) ≡ 1,
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where AB = n2. Let α+ β = γ. From (2.8) we know that γ is not a constant since

in that case we get a contradiction. Then from (2.8) we get

(2.9) ABα′(γ′ − α′)enγ ≡ 1.

We have T (r, γ′) = m(r, γ′) = m(r, (enγ)′/enγ) = S(r, enγ). Thus from (2.9) we get

T (r, enγ) 6 T
(

r,
1

α′(γ′ − α′)

)

+O(1)

6 T (r, α′) + T (r, γ′ − α′) +O(1)

6 2T (r, α′) + S(r, α′) + S(r, enγ),

which implies that T (r, enγ) = O(T (r, α′)) and so S(r, enγ) can be replaced by

S(r, α′). Thus we get T (r, γ′) = S(r, α′) and so γ′ is a small with respect to α′.

In view of (2.9), by the second fundamental theorem for small functions we get

T (r, α′) 6 N(r,∞;α′) +N(r, 0;α′) +N(r, 0;α′ − γ′) + S(r, α′) 6 S(r, α′),

which shows that α′ is a non-zero constant and so α is a polynomial. Similarly we

can prove that β is also a polynomial. This contradicts the fact that α and β are

transcendental.

Next, suppose without loss of generality that α is a polynomial and β is a tran-

scendental entire function. Then γ is transcendental. So in view of (2.9) we obtain

nT (r, eγ) 6 T
(

r,
1

α′(γ′ − α′)

)

+O(1)

6 T (r, α′) + T (r, γ′ − α′) + S(r, γ)

6 T (r, γ′) + S(r, eγ) = S(r, eγ),

which leads to a contradiction. Thus α and β are both polynomials. From (2.8) we

can conclude that α(z)+ β(z) ≡ C for a constant C and so α′(z)+ β′(z) ≡ 0. Again

from (2.8) we get n2enCα′β′ ≡ 1. By computation we get

(2.10) α′ = c, β′ = −c.

Hence

(2.11) α = cz + b1, β = −cz + b2,

where b1, b2 are constants. Finally we take f and g as

f(z) = c1e
cz, g(z) = c2e

−cz,

where c1, c2 and c are constants such that (−1)(nc)2(c1c2)
n = 1. This completes the

proof of the lemma. �
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Lemma 2.8. Let f and g be two non-constant meromorphic functions such that

Θ(∞; f) + Θ(∞; g) >
4

n
,

where n (> 3) is an integer. Then

fn(af + b) ≡ gn(ag + b)

implies f ≡ g, where a, b are non-zero constants.

P r o o f. We omit the proof as it can be carried out in the line of the proof of

Lemma 6 in [8]. �

Lemma 2.9. Let f and g be two transcendental meromorphic functions and n

(> 2) be an integer. Also let P be a non-constant polynomial with degree γP 6 n−1.

If (fn)′(gn)′ = P 2, then f and g can be expressed as f(z) = c1e
cQ and g(z) = c2e

−cQ,

where c1, c2 and c are three non-zero constants satisfying (c1c2)
n+1(c)2 = −1, Q(z)

is a polynomial satisfying Q =
∫ z

0
P (η) dη.

P r o o f. Suppose

(2.12) (fn)′(gn)′ ≡ P 2.

Following the same arguments as in Lemma 2.7, one can easily get

(2.13) f = h1e
α, g = h2e

β,

where h1 and h2 are two non-zero polynomials. From (2.12) we get

(2.14) fn−1f ′gn−1g′ ≡ P 2
1 ,

where P 2
1 = P 2/n2.

First, we suppose both α and β are transcendental entire functions and let h = fg.

If h is a polynomial, then we get a contradiction from (2.13) and (2.14). Next, we

suppose h is a transcendental entire function. Now from (2.14) we get

(2.15)
(g′

g
−

1

2

h′

h

)2

≡
1

4

(h′

h

)2

− h−nP 2
1 .

Let

α2 =
g′

g
−

1

2

h′

h
.
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From (2.15) we get

(2.16) α2
2 ≡

1

4

(h′

h

)2

− h−nP 2
1 .

If we suppose α2 ≡ 0, then we get h−nP 2
1 ≡ 1

4 (h
′/h)2 and so T (r, h) = S(r, h), which

is impossible. Hence we suppose that α2 6≡ 0. Differentiating (2.16) we get

2α2α
′

2 ≡
1

2

h′

h

(h′

h

)

′

+ nh′h−n−1P 2
1 − 2h−nP1P

′

1.

Applying (2.16) we obtain

(2.17) h−n

(

−n
h′

h
P 2
1 + 2P1P

′

1 − 2
α′

2

α2
P 2
1

)

≡
1

2

h′

h

(

(h′

h

)

′

−
h′

h

α′

2

α2

)

.

If we assume

−n
h′

h
P 2
1 + 2P1P

′

1 − 2
α′

2

α2
P 2
1 ≡ 0,

then there exists a non-zero constant c such that α2
2 ≡ ch−nP 2

1 and so from (2.16)

we get

(c+ 1)h−nP 2
1 ≡

1

4

(h′

h

)2

.

If c = −1, then h is a constant, which is impossible. On the other hand, if c 6= −1,

then we have T (r, h) = S(r, h), which is also impossible. So we must have

−n
h′

h
P 2
1 + 2P1P

′

1 − 2
α′

2

α2
P 2
1 6≡ 0.

Then by (2.17) we have

nT (r, h) = nm(r, h)(2.18)

6 m

(

r, hn 1

2

h′

h

(

(h′

h

)

′

−
h′

h

α′

2

α2

))

+m

(

r,

(

1

2

h′

h

((h′

h

)

′

−
h′

h

α′

2

α2

)

)

−1)

+O(1)

6 T

(

r,
1

2

h′

h

(

(h′

h

)

′

−
h′

h

α′

2

α2

))

+m

(

r, n
h′

h
P 2
1 − 2P1P

′

1 + 2
α′

2

α2
P 2
1

)

6 N(r, 0;α2) + S(r, h) + S(r, α2).

From (2.16) we get

T (r, α2) 6
1

2
nT (r, h) + S(r, h).
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In view of (2.18) we get
1

2
nT (r, h) 6 S(r, h),

which is impossible. Thus both α and β are polynomials.

From (2.12) we can conclude that α(z) + β(z) ≡ C for a constant C and so

α′(z) + β′(z) ≡ 0. Hence we can deduce from (2.12) that

(2.19) (fn)′ ≡ n(hn
1α

′ + hn−1
1 h′

1)e
nα ≡ P (z)enα,

and

(2.20) (gn)′ = n(hn
2β

′ + hn−1
2 h′

2)e
nβ ≡ P (z)enβ .

By virtue of the polynomial P , from (2.19) and (2.20) we conclude that both h1

and h2 are non-zero constants.

So we can rewrite f and g as follows:

(2.21) f = eγ3 , g = eδ3 .

Now from (2.12) we get

(2.22) n2γ′

3δ
′

3e
n(γ3+δ3) ≡ P 2.

From (2.22) we can conclude that γ3(z)+ δ3(z) ≡ C for a constant C and so γ′

3(z)+

δ′3(z) ≡ 0. Thus from (2.22) we get n2enCγ′

3δ
′

3 ≡ P 2(z). By computation we get

(2.23) γ′

3 = cP (z), δ′3 = −cP (z).

Hence

(2.24) γ3 = cQ(z) + b1, δ3 = −cQ(z) + b2,

where Q(z) =
∫ z

0 P (z) dz and b1, b2 are constants. Finally, we take f and g as

f(z) = c1e
cQ(z), g(z) = c2e

−cQ(z),

where c1, c2 and c are constants such that (nc)2(c1c2)
n = −1. �

Lemma 2.10 ([22]). Let f and g be two transcendental meromorphic functions,

n, m be two positive integers and P be a non-constant polynomial. If m = 1, n > 6

or if m > 2, n > m+ 3, then

(fn(f − 1)m)′(gn(g − 1)m)′ 6≡ P 2.
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Lemma 2.11. Let f and g be two non-constant meromorphic functions and

k, m (n > 3k + 2min{k,m} −m) be three positive integers. If (fn(f − 1)m)(k) ≡

(gn(g − 1)m)(k), then fn(f − 1)m ≡ gn(g − 1)m.

P r o o f. We have (fn(f − 1)m)(k) ≡ (gn(g − 1)m)(k).

When k > 2, integrating we get

(fn(f − 1)m)(k−1) ≡ (gn(g − 1)m)(k−1) + ck−1.

If possible, suppose ck−1 6= 0. In view of Lemma 2.2 with p = 1 and using the second

fundamental theorem we get

(n+m)T (r, f) 6 T (r, (fn(f − 1)m)(k−1))−N(r, 0; (fn(f − 1)m)(k−1))

+Nk(r, 0; f
n(f − 1)m) + S(r, f)

6 N(r, 0; (fn(f − 1)m)(k−1)) +N(r,∞; f)

+N(r, ck−1; (f
n(f − 1)m)(k−1))−N(r, 0; (fn(f − 1)m)(k−1))

+Nk(r, 0; f
n(f − 1)m) + S(r, f)

6 N(r,∞; f) +N(r, 0; (gn(g − 1)m)(k−1))

+ kN(r, 0; f) +Nk(r, 0; (f − 1)m) + S(r, f)

6 (k + 1 +min{k,m})T (r, f) + (k − 1)N(r,∞; g)

+Nk(r, 0; g
n(g − 1)m) + S(r, f)

6 (k + 1 +min{k,m})T (r, f) + (k − 1)N(r,∞; g)

+ kN(r, 0; g) +Nk(r, 0; (g − 1)m) + S(r, f)

6 (k + 1 +min{k,m})T (r, f) + (2k − 1 + min{k,m})T (r, g)

+ S(r, f) + S(r, g)

6 (3k + 2min{k,m})T (r) + S(r).

Similarly we get

(n+m)T (r, g) 6 (3k + 2min{k,m})T (r) + S(r).

Combining the above two inequalities we get

(n+m− 3k − 2min{k,m})T (r) 6 S(r),

which is a contradiction since n > 3k + 2min{k,m} −m.

Therefore ck−1 = 0 and so (fn(f−1)m)(k−1) ≡ (gn(g−1)m)(k−1). Repeating k−1

times, we obtain

fn(f − 1)m ≡ gn(g − 1)m + c0.
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If k = 1, clearly, integrating once we obtain the above expression. If possible, suppose

c0 6= 0.

Now using the second fundamental theorem we get

(n+m)T (r, f) 6 N(r, 0; fn(f − 1)m) +N(r,∞; fn(f − 1)m)

+N(r, c0; f
n(f − 1)m) + S(r, f)

6 N(r, 0; f) + T (r, f) +N(r,∞; f) +N(r, 0; gn(g − 1)m)

6 3T (r, f) +N(r, 0; g) + T (r, g) + S(r, f)

6 3T (r, f) + 2T (r, g) + S(r, f) + S(r, g)

6 5T (r) + S(r).

Similarly we get

(n+m)T (r, g) 6 5T (r) + S(r).

Combining these we get

(n+m− 5)T (r) 6 S(r),

which is a contradiction since n+m > 5.

Therefore c0 = 0 and so

fn(f − 1)m ≡ gn(g − 1)m.

This completes the proof. �

Lemma 2.12. Let f , g be two transcendental meromorphic functions and F =

(fn(f − 1)m)(k)/P , G = (gn(g − 1)m)(k)/P , where P (z) (6≡ 0) is a polynomial,

n (> 1), k (> 1), m (> 0) are positive integers such that n > max{3k + 3 +

2min{k + 1,m} −m,m+ 3}. If H ≡ 0 then

(I) for m = 0, one of the following two cases holds:

(I1) f ≡ g for some constant t such that tn = 1;

(I2) (fn)(k)(gn)(k) ≡ P 2. In particular, if f and g share ∞ IM, then for (i)

k = 1 and γP 6 n− 1, we have f(z) = c1e
cQ and g(z) = c2e

−cQ, where c1,

c2 and c are three non-zero constants satisfying (c1c2)
n(c)2 = −1, Q(z) is

a polynomial satisfying Q = n−1
∫ z

0
P (η) dη; and for (ii) P (z) = d, we get

f(z) = c1e
cz and g(z) = c2e

−cz, where c1, c2 and c are constants satisfying

(−1)k(c1c2)
n(nc)2k = d2.

(II) for m > 1, one of the following three cases holds:

(II1) f(z) ≡ g(z);

(II2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where R(x, y) = xn ×

(x − 1)m − yn(y − 1)m, except for m = 1 and Θ(∞; f) + Θ(∞; g) > 4/n;
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(II3) (fn(f − 1)m)(k)(gn(g − 1)m)(k) ≡ P 2.

The possibility (II3) does not arise for k = 1.

P r o o f. Since H ≡ 0, by integration we get

(2.25)
1

F − 1
≡

bG+ a− b

G− 1
,

where a, b are constants and a 6= 0. We now consider the following cases:

Case 1 : Let b 6= 0 and a 6= b.

If b = −1, then from (2.25) we have

F ≡
−a

G− a− 1
.

Therefore

N(r, a+ 1;G) = N(r,∞;F ) = N(r,∞; f) +O(log r).

So in view of Lemma 2.2 and the second fundamental theorem we get

(n+m)T (r, g) 6 T (r,G) +Nk+1(r, 0; g
n(g − 1)m)−N(r, 0;G) +O(log r)

6 N(r,∞;G) +N(r, 0;G) +N(r, a+ 1;G)

+Nk+1(r, 0; g
n(g − 1)m)−N(r, 0;G) + S(r, g)

6 N(r,∞; g) +Nk+1(r, 0; g
n(g − 1)m) +N(r,∞; f) + S(r, g)

6 N(r,∞; f) +N(r,∞; g) + (k + 1)N(r, 0; g)

+Nk+1(r, 0; (g − 1)m) + S(r, g)

6 N(r,∞; f) +N(r,∞; g) + (k + 1)N(r, 0; g)

+ min{k + 1,m}T (r, g) + S(r, g)

6 T (r, f) + {k + 2 +min{k + 1,m}}T (r, g) + S(r, f) + S(r, g).

Without loss of generality, we suppose that there exists a set I of infinite measure

such that T (r, f) 6 T (r, g) for r ∈ I.

So for r ∈ I we have

{n+m− k − 3−min{k + 1,m}}T (r, g) 6 S(r, g),

which is a contradiction since n > max{3k + 3 + 2min{k + 1,m} −m,m+ 3}.

If b 6= −1, from (2.25) we obtain that

F −
(

1 +
1

b

)

≡
−a

b2(G+ (a− b)/b)
.
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So

N
(

r,
b− a

b
;G

)

= N(r,∞;F ) = N(r,∞; f).

Using Lemma 2.2 and the same argument as used for b = −1 we get a contradiction.

Case 2 : Let b 6= 0 and a = b.

If b = −1, then from (2.25) we have

FG ≡ P 2,

that is,

(fn(f − 1)m)(k)(gn(g − 1)m)(k) ≡ P 2.

In particular, when m = 0 and k = 1, then from above we get fn−1f ′gn−1g′ =

P 2/n2. Applying Lemma 2.9 we get f(z) = c1e
cQ and g(z) = c2e

−cQ, where c1, c2
and c are three non-zero constants satisfying (c1c2)

n(c)2 = −1, Q(z) is a polynomial

satisfying Q = n−1
∫ z

0 P (η) dη. On the other hand, when m = 0 and P (z) = d =

constant, then since n > max{3k+3+2min{k+1,m}−m,m+3} = 3k+3 always

implies n > k, we have by Lemma 2.7 that f(z) = c1e
cz and g(z) = c2e

−cz, where

c1, c2 and c are constants satisfying (−1)k(c1c2)
n(nc)2k = d2.

Also when m > 1 and k = 1, then by Lemma 2.10 we know (fn(f − 1)m)′ ×

(gn(g − 1)m)′ 6≡ P 2.

If b 6= −1, from (2.25) we have

1

F
≡

bG

(1 + b)G− 1
.

Therefore

N
(

r,
1

1 + b
;G

)

= N(r, 0;F ).

So in view of Lemma 2.2 and the second fundamental theorem we get

(n+m)T (r, g) 6 T (r,G) +Nk+1(r, 0; g
n(g − 1)m)−N(r, 0;G) + S(r, g)

6 N(r,∞;G) +N(r, 0;G) +N
(

r,
1

1 + b
;G

)

+Nk+1(r, 0; g
n(g − 1)m)−N(r, 0;G) + S(r, g)

6 N(r,∞; g) + (k + 1)N(r, 0; g) +Nk+1(r, 0; (g − 1)m) + (k + 1)

×N(r, 0; f) +Nk+1(r, (f − 1)m) + kN(r,∞; f) + S(r, f) + S(r, g)

6 {k + 2 +min{k + 1,m}}T (r, g)

+ {2k + 1 +min{k + 1,m}}T (r, f) + S(r, f) + S(r, g).
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So for r ∈ I we have

(n+m− 3k − 3− 2min{k + 1,m})T (r, g) 6 S(r, g),

which is a contradiction since n > max{3k + 3 + 2min{k + 1,m} −m,m+ 3}.

Case 3 : Let b = 0. From (2.25) we obtain

(2.26) F ≡
G+ a− 1

a
.

If a 6= 1 then from (2.26) we obtain

N(r, 1 − a;G) = N(r, 0;F ).

We can deduce a contradiction similarly as in Case 2. Therefore a = 1 and from

(2.26) we obtain F ≡ G, i.e.,

(fn(f − 1)m)(k) ≡ (gn(g − 1)m)(k).

So by Lemma 2.11 we have

(2.27) fn(f − 1)m ≡ gn(g − 1)m.

When m = 0 we have from (2.27) that f = tg, where tn = 1.

When m = 1 and Θ(∞; f) + Θ(∞; g) > 4/n, we then by Lemma 2.8 can prove

that f ≡ g.

Whenm > 2, then proceeding in the same way as in the proof of Theorem 2 in [22]

we can show that either f ≡ g or f and g satisfy the algebraic equation R(f, g) = 0,

where R(x, y) = xn(x− 1)m − yn(y − 1)m. �

Lemma 2.13 ([1]). Let f , g be two non-constant meromorphic functions which

share (1, 1). Then

2NL(r, 1; f) + 2NL(r, 1; g) +N
(2

E (r, 1; f)−Nf>2(r, 1; g) 6 N(r, 1; g)−N(r, 1; g).

Lemma 2.14 ([4]). Let f , g share (1, 1). Then

Nf>2(r, 1; g) 6
1

2
N(r, 0; f) +

1

2
N(r,∞; f)−

1

2
N0(r, 0; f

′) + S(r, f),

where N0(r, 0; f
′) is the counting function of those zeros of f ′ which are not zeros

of f(f − 1).
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Lemma 2.15 ([4]). Let f and g be two non-constant meromorphic functions

sharing (1, 0). Then

NL(r, 1; f) + 2NL(r, 1; g) +N
(2

E (r, 1; f)−Nf>1(r, 1; g)−Ng>1(r, 1; f)

6 N(r, 1; g)−N(r, 1; g).

Lemma 2.16 ([4]). Let f , g share (1, 0). Then

NL(r, 1; f) 6 N(r, 0; f) +N(r,∞; f) + S(r, f).

Lemma 2.17 ([4]). Let f , g share (1, 0). Then

(i) Nf>1(r, 1; g) 6 N(r, 0; f) +N(r,∞; f)−N0(r, 0; f
′) + S(r, f),

(ii) Ng>1(r, 1; f) 6 N(r, 0; g) +N(r,∞; g)−N0(r, 0; g
′) + S(r, g).

3. Proof of the theorem

P r o o f of Theorem 1.1. Let F = (fn(f−1)m)(k)/P (z) and G = (gn(g − 1)m)(k)/

P (z). It follows that F and G share (1, l) except the zeros of P .

Case 1 : Let H 6≡ 0.

Subcase 1 : l > 1. Let z′ be a pole of H such that P (z′) 6= 0. From (2.1) it can

be easily calculated that the possible poles of H occur at (i) multiple zeros of F

and G, (ii) those 1-points of F and G whose multiplicities are different, (iii) poles of

F and G, (iv) zeros of F ′(G′) which are not zeros of F (F − 1)(G(G− 1)).

Since H has only simple poles we get

N(r,∞;H) 6 N(r,∞; f) +N(r,∞; g) +N∗(r, 1;F,G) +N(r, 0;F ;> 2)(3.1)

+N(r, 0;G;> 2) +N0(r, 0;F
′) +N0(r, 0;G

′) +O(log r),

where N0(r, 0;F
′) is the reduced counting function of those zeros of F ′ which are

not zeros of F (F − 1), and N0(r, 0;G
′) is similarly defined.

Again, let z0 be a simple zero of F − 1 but P (z0) 6= 0. Then z0 is a simple zero of

G− 1 and a zero of H . So

(3.2) N(r, 1;F ; = 1) 6 N(r, 0;H) 6 N(r,∞;H) + S(r, f) + S(r, g).
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While l > 2, using (3.1) and (3.2) we get

N(r, 1;F ) 6 N(r, 1;F ; = 1) +N(r, 1;F ;> 2)(3.3)

6 N(r,∞; f) +N(r,∞; g) +N(r, 0;F ;> 2)

+N(r, 0;G;> 2) +N∗(r, 1;F,G) +N(r, 1;F ;> 2)

+N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g).

Now in the view of Lemma 2.3 we get

N0(r, 0;G
′) +N(r, 1;F ;> 2) +N∗(r, 1;F,G)(3.4)

6 N0(r, 0;G
′) +N(r, 1;F ;> 2) +N(r, 1;F ;> 3)

= N0(r, 0;G
′) +N(r, 1;G;> 2) +N(r, 1;G;> 3)

6 N(r, 0;G′;G 6= 0) +O(log r)

6 N(r, 0;G) +N(r,∞; g) + S(r, g),

Hence using (3.3), (3.4), Lemmas 2.1 and 2.2 we get from second fundamental theo-

rem that

(n+m)T (r, f)(3.5)

6 T (r, F ) +Nk+2(r, 0; f
n(f − 1)m)−N2(r, 0;F ) + S(r, f)

6 N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F ) +Nk+2(r, 0; f
n(f − 1)m)

−N2(r, 0;F )−N0(r, 0;F
′) + S(r, f)

6 2N(r,∞, f) +N(r,∞; g) +N(r, 0;F ) +Nk+2(r, 0; f
n(f − 1)m)

+N(r, 0;F ;> 2) +N(r, 0;G;> 2) +N(r, 1;F ;> 2) +N∗(r, 1;F,G)

+N0(r, 0;G
′)−N2(r, 0;F ) + S(r, f) + S(r, g)

6 2{N(r,∞; f) +N(r,∞; g)}+Nk+2(r, 0; f
n(f − 1)m)

+N2(r, 0;G) + S(r, f) + S(r, g)

6 2{N(r,∞; f) +N(r,∞; g)}+Nk+2(r, 0; f
n(f − 1)m) + kN(r,∞; g)

+Nk+2(r, 0; g
n(g − 1)m) + S(r, f) + S(r, g)

6 2{N(r,∞; f) +N(r,∞; g)}+ (k + 2)N(r, 0; f) + min{k + 2,m}T (r, f)

+ (k + 2)N(r, 0; g) + min{k + 2,m}T (r, g)

+ kN(r,∞; g) + S(r, f) + S(r, g)

6 (k + 4 +min{k + 2,m})T (r, f)

+ (2k + 4 +min{k + 2,m})T (r, g) + S(r, f) + S(r, g)

6 (3k + 8 + 2min{k + 2,m})T (r) + S(r).
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In a similar way we can obtain

(3.6) (n+m)T (r, g) 6 (3k + 8 + 2min{k + 2,m})T (r) + S(r).

Combining (3.5) and (3.6) we see that

(n+m)T (r) 6 (3k + 8 + 2min{k + 2,m})T (r) + S(r),

i.e.,

(3.7) (n+m− 3k − 8− 2min{k + 2,m})T (r) 6 S(r).

Clearly, (3.7) leads to a contradiction.

While l = 1, using Lemmas 2.3, 2.13, 2.14, (3.1) and (3.2) we get

N(r, 1;F ) 6 N(r, 1;F ; = 1) +NL(r, 1;F ) +NL(r, 1;G) +N
(2

E (r, 1;F )(3.8)

6 N(r,∞; f) +N(r,∞; g) +N(r, 0;F ;> 2) +N(r, 0;G;> 2)

+N∗(r, 1;F,G) +NL(r, 1;F ) +NL(r, 1;G) +N
(2

E (r, 1;F )

+N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g)

6 N(r,∞; f) +N(r,∞; g) +N(r, 0;F ;> 2) +N(r, 0;G;> 2)

+ 2NL(r, 1;F ) + 2NL(r, 1;G) +N
(2

E (r, 1;F )

+N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g)

6 N(r,∞; f) +N(r,∞; g) +N(r, 0;F ;> 2)

+N(r, 0;G;> 2) +NF>2(r, 1;G) +N(r, 1;G)−N(r, 1;G)

+N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g)

6
3

2
N(r,∞; f) +N(r,∞; g) +N(r, 0;F ;> 2) +

1

2
N(r, 0;F )

+N(r, 0;G;> 2) +N(r, 1;G)−N(r, 1;G)

+N0(r, 0;G
′) +N0(r, 0;F

′) + S(r, f) + S(r, g)

6
3

2
N(r,∞; f) +N(r,∞; g) +N(r, 0;F ;> 2) +

1

2
N(r, 0;F )

+N(r, 0;G;> 2) +N(r, 0;G′;G 6= 0)

+N0(r, 0;F
′) + S(r, f) + S(r, g)

6
3

2
N(r,∞; f) + 2N(r,∞; g) +N(r, 0;F ;> 2) +

1

2
N(r, 0;F )

+N2(r, 0;G) +N0(r, 0;F
′) + S(r, f) + S(r, g).
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Hence using (3.8), Lemmas 2.1 and 2.2 we get from second fundamental theorem

that

(n+m)T (r, f)(3.9)

6 T (r, F ) +Nk+2(r, 0; f
n(f − 1)m)−N2(r, 0;F ) + S(r, f)

6 N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F ) +Nk+2(r, 0; f
n(f − 1)m)

−N2(r, 0;F )−N0(r, 0;F
′)

6
5

2
N(r,∞; f) + 2N(r,∞; g) +N2(r, 0;F ) +

1

2
N(r, 0;F )

+Nk+2(r, 0; f
n(f − 1)m) +N2(r, 0;G)−N2(r, 0;F ) + S(r, f) + S(r, g)

6
5

2
N(r,∞; f) + 2N(r,∞; g) +Nk+2(r, 0; f

n(f − 1)m)

+
1

2
N(r, 0;F ) +N2(r, 0;G) + S(r, f) + S(r, g)

6
5

2
N(r,∞; f) + 2N(r,∞; g) +Nk+2(r, 0; f

n(f − 1)m) + kN(r,∞; g)

+Nk+2(r, 0; g
n(g − 1)m) +

1

2
{kN(r,∞; f)

+Nk+1(r, 0; f
n(f − 1)m)}+ S(r, f) + S(r, g)

6
k + 5

2
N(r,∞; f) + (k + 2)N(r,∞; g) +

3k + 5

2
N(r, 0; f)

+
(1

2
min{k + 1,m}+min{k + 2,m}

)

T (r, f) + min{k + 2,m}T (r, g)

+ (k + 2)N(r, 0; g) + S(r, f) + S(r, g)

6

(

2k + 5 +
1

2
min{k + 1,m}+min{k + 2,m}

)

T (r, f)

+ (2k + 4 +min{k + 2,m})T (r, g) + S(r, f) + S(r, g)

6

(

4k + 9 + 2min{k + 2,m}+
1

2
min{k + 1,m}

)

T (r) + S(r).

In a similar way we can obtain

(3.10) (n+m)T (r, g) 6
(

4k+9+2min{k+2,m}+
1

2
min{k+1,m}

)

T (r) + S(r).

Combining (3.9) and (3.10) we see that

(n+m)T (r) 6
(

4k + 9 + 2min{k + 2,m}+
1

2
min{k + 1,m}

)

T (r) + S(r),

i.e.,

(3.11)
(

n+m− 4k − 9− 2min{k + 2,m} −
1

2
min{k + 1,m}

)

T (r) 6 S(r).
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Since n > max{4k + 9 + 2min{k + 2,m} + 1/2min{k + 1,m} − m,m + 3}, (3.11)

leads to a contradiction.

Subcase 2 : l = 0. Here (3.2) changes to

(3.12) N
1)
E (r, 1;F ; = 1) 6 N(r, 0;H) 6 N(r,∞;H) + S(r, F ) + S(r,G).

Using Lemmas 2.3, 2.15, 2.16, 2.17, (3.1) and (3.12) we get

N(r, 1;F )(3.13)

6 N
1)
E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N

(2

E (r, 1;F )

6 N(r,∞; f) +N(r,∞; g) +N(r, 0;F ;> 2) +N(r, 0;G;> 2)

+N∗(r, 1;F,G) +NL(r, 1;F ) +NL(r, 1;G) +N
(2

E (r, 1;F )

+N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g)

6 N(r,∞; f) +N(r,∞; g) +N(r, 0;F ;> 2) +N(r, 0;G;> 2)

+ 2NL(r, 1;F ) + 2NL(r, 1;G) +N
(2

E (r, 1;F ) +N0(r, 0;F
′)

+N0(r, 0;G
′) + S(r, f) + S(r, g)

6 N(r,∞; f) +N(r,∞; g) +N(r, 0;F ;> 2) +N(r, 0;G;> 2)

+NF>1(r, 1;G) +NG>1(r, 1;F ) +NL(r, 1;F ) +N(r, 1;G)

−N(r, 1;G) +N0(r, 0;F
′) +N0(r, 0;G

′) + S(r, f) + S(r, g)

6 3N(r,∞; f) + 2N(r,∞; g) +N2(r, 0;F ) +N(r, 0;F )

+N2(r, 0;G) +N(r, 1;G)−N(r, 1;G)

+N0(r, 0;G
′) +N0(r, 0;F

′) + S(r, f) + S(r, g)

6 3N(r,∞; f) + 2N(r,∞; g) +N2(r, 0;F ) +N(r, 0;F ) +N2(r, 0;G)

+N(r, 0;G′;G 6= 0) +N0(r, 0;F
′) + S(r, f) + S(r, g)

6 3N(r,∞; f) + 3N(r,∞; g) +N2(r, 0;F ) +N(r, 0;F ) +N2(r, 0;G)

+N(r, 0;G) +N0(r, 0;F
′) + S(r, f) + S(r, g).

Hence using (3.13), Lemmas 2.1 and 2.2 we get from second fundamental theorem

that

(n+m)T (r, f)(3.14)

6 T (r, F ) +Nk+2(r, 0; f
n(f − 1)m)−N2(r, 0;F ) + S(r, f)

6 N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F )

+Nk+2(r, 0; f
n(f − 1)m)−N2(r, 0;F )−N0(r, 0;F

′)
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6 4N(r,∞; f) + 3N(r,∞; g) +N2(r, 0;F ) + 2N(r, 0;F )

+Nk+2(r, 0; f
n(f − 1)m) +N2(r, 0;G)

+N(r, 0;G)−N2(r, 0;F ) + S(r, f) + S(r, g)

6 4N(r,∞; f) + 3N(r,∞; g) +Nk+2(r, 0; f
n(f − 1)m) + 2N(r, 0;F )

+N2(r, 0;G) +N(r, 0;G) + S(r, f) + S(r, g)

6 4N(r,∞; f) + 3N(r,∞; g) +Nk+2(r, 0; f
n(f − 1)m) + 2kN(r,∞; f)

+ 2Nk+1(r, 0; f
n(f − 1)m) + kN(r,∞; g) +Nk+2(r, 0; g

n(g − 1)m)

+ kN(r,∞; g) +Nk+1(r, 0; g
n(g − 1)m) + S(r, f) + S(r, g)

6 (2k + 4)N(r,∞; f) + (2k + 3)N(r,∞; g) + (3k + 4)N(r, 0; f)

+ (2k + 3)N(r, 0; g) + (min{k + 1,m}+min{k + 2,m})(T (r, f)

+ T (r, g)) + min{k + 1,m}T (r, f) + S(r, f) + S(r, g)

6 (5k + 8+ 2min{k + 1,m}+min{k + 2,m})T (r, f) + (4k + 6

+min{k + 1,m}+min{k + 2,m})T (r, g) + S(r, f) + S(r, g)

6 (9k + 14 + 3min{k + 1,m}+ 2min{k + 2,m})T (r) + S(r).

In a similar way we can obtain

(3.15) (n+m)T (r, g) 6 (9k+ 14+ 3min{k+ 1,m}+ 2min{k+ 2,m})T (r) + S(r).

Combining (3.14) and (3.15) we see that

(n+m)T (r) 6 (9k + 14 + 3min{k + 1,m}+ 2min{k + 2,m})T (r) + S(r),

i.e.,

(3.16) (n+m− 9k − 14− 3min{k + 1,m} − 2min{k + 2,m})T (r) 6 S(r).

Since n > max{9k+14+3min{k+1,m}+2min{k+2,m}−m,m+3}, (3.16) leads

to a contradiction.

Case 2 : Let H ≡ 0. Then the theorem follows from Lemma 2.12. �

A c k n ow l e d g em e n t. The authors wish to thank the referee for his/her valu-

able remarks and suggestions.
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