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Abstract. Let X be a connected closed manifold and f a self-map on X. We say that f is
almost quasi-unipotent if every eigenvalue λ of the map f∗k (the induced map on the k-th
homology group of X) which is neither a root of unity, nor a zero, satisfies that the sum of
the multiplicities of λ as eigenvalue of all the maps f∗k with k odd is equal to the sum
of the multiplicities of λ as eigenvalue of all the maps f∗k with k even.
We prove that if f is C1 having finitely many periodic points all of them hyperbolic,

then f is almost quasi-unipotent.
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1. Introduction and statement of the main result

Let X be a topological space and f : X → X a continuous map on X . We say that

x ∈ X is a periodic point of period p if fp(x) = x and f j(x) 6= x for 1 6 j 6 p− 1.

Let X be a differentiable manifold and f a differentiable map. We say that a peri-

odic point of period p is hyperbolic if the derivative of fp at x, i.e.Dfp
x : TXx → TXx,

has no eigenvalues of modulus equal to 1.

If the dimension of X is n, the map f induces a homomorphism on the k-th

rational homology group of X for 0 6 k 6 n, i.e. f∗k : Hk(X,Q) → Hk(X,Q). Here
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Hk(X,Q) is a finite dimensional vector space over Q and f∗k is a linear map whose

matrix has integer entries.

A linear transformation is called quasi-unipotent if its eigenvalues are roots of

unity. We say that a continuous map f : X → X is quasi-unipotent if the maps f∗k
are quasi-unipotent for 0 6 k 6 n, where n is the dimension of the manifold X . We

say that a continuous map f : X → X is almost quasi-unipotent if every eigenvalue λ

of a map f∗k which is neither a root of unity nor a zero, satisfies that the sum of

the multiplicities of λ as an eigenvalue of all the maps f∗k with k odd is equal to

the sum of the multiplicities of λ as an eigenvalue of all the maps f∗k with k even.

Clearly the quasi-unipotent maps are almost quasi-unipotent. In Section 3, we show

an example of an almost quasi-unipotent map which is not quasi-unipotent.

We say that a manifold is closed if it is compact and without boundary.

Theorem 1.1. Let X be a connected closed manifold and f a C1 self-map on X

with finitely many periodic points all of them hyperbolic. Then f is almost quasi-

unipotent.

The reciprocal of Theorem 1.1 is false. Consider the classical construction of

Smale’s horseshoe (cf. [12]); there is a diffeomorphism f : S2 → S2 such that it has

infinitely many periodic points all of them hyperbolic and with all possible periods.

However, the map f is quasi-unipotent. There are maps on the n-dimensional torus

which are minimal (all orbits are dense) and quasi-unipotent (cf. [4]).

In [8] sufficient conditions are given for the existence of almost quasi-unipotent

maps on various closed manifolds having infinitely many periodic points all of them

hyperbolic. We list some of these results in Section 3.

We note that Theorem 1.1 can be extended to manifolds with boundary which

have no periodic points on the boundary.

We remark that Theorem 1.1 allows to weaken the hypothesis of the results of [2],

[7], [9], [10]. In these articles the periodic orbits of Morse-Smale diffeomorphisms

on n-dimensional torus, orientable and non-orientable surfaces are studied. So The-

orem 1.1 allows to extend those results to C1 maps having finitely many periodic

points all of them hyperbolic. Clearly the Morse-Smale diffeomorphisms satisfy this

last condition (cf. [11]).

In Theorem 2.1 we give a characterization of almost quasi-unipotent maps in terms

of the Lefschetz zeta function. We show that a C1 map on a closed manifold is almost

quasi-unipotent if and only if the zeros and poles of its Lefschetz zeta function are

roots of unity, or the Lefschetz zeta function is equal to 1.
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2. Definitions and proof of Theorem 1.1

The Lefschetz number of f is defined as

L(f) =

n
∑

k=0

(−1)k trace(f∗k).

The Lefschetz Fixed Point Theorem states that if L(f) 6= 0 then f has a fixed

point (cf. [3]).

The Lefschetz zeta function of f is defined as

ζf (t) = exp

(

∑

m>1

L(fm)

m
tm

)

.

Since ζf (t) is the generating function of the Lefschetz numbers, L(f
m), it keeps the

information of the Lefschetz number for all iterates of f . There is an alternative way

to compute it:

(2.1) ζf (t) =
n
∏

k=0

det(Idk −tf∗k)
(−1)k+1

,

where n = dimX , mk = dimHk(X,Q), Idk is the identity map on Hk(X,Q), and

by convention det(Idk −tf∗k) = 1 if mk = 0 (cf. [5]).

Let X be a connected closed manifold and f : X → X a C1 map. We say that f

is of Franks type if its Lefschetz zeta function ζf (t) is of the form
m
∏

i=1

(1−∆it
ri)(−1)si

for some positive integer m, where ∆i = ±1, ri and si are positive integers. Note

that ζf (t) = 1 is a possible Lefschetz zeta function for a Franks type map.

We remark that f is Franks type if and only if the zeros and poles of ζf (t) are

roots of unity or ζf (t) = 1.

Theorem 2.1. Let X be a connected closed manifold and f : X → X a C1 map.

The map f is of Franks type if and only if f is almost quasi-unipotent.

P r o o f. Let ζf (t) be the Lefschetz zeta function of f ; according to (2.1) it is of

the form

(2.2) (1− t)−1p1(t)p2(t)
−1 . . . pn(t)

(−1)n+1

,

where pk(t) = det(Idk −tf∗k). Let mk be the dimension of Hk(X,Q). Then pk(t) =

tmkqk(1/t), or equivalently pk(1/t) = t−mkqk(t), where qk(t) = det(t Idk −f∗k),
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i.e. the characteristic polynomial of f∗k. So, if all eigenvalues of f∗k are zero, then

pk(t) = 1.

First we shall prove that if f is almost quasi-unipotent, then f is of Franks type.

We separate the proof into three cases.

Case 1 : Assume that all eigenvalues of all the maps f∗k are roots of unity, i.e. f is

quasi-unipotent. Then all roots of the polynomials qi(t) are roots of unity for all i,

so the roots of the polynomials pi(t) are also roots of unity. Hence the zeros and

poles of ζf (t) are roots of unity, or ζf (t) = 1. Then f is of Franks type.

Case 2 : Assume that all eigenvalues of all the maps f∗k are roots of unity or zero.

In general the characteristic polynomial of f∗k can be written as qk(t) = tlkrk(t),

where rk(t) =
sk
∏

j=1

(t−λj), with λj the nonzero eigenvalues of f∗k, lk is the dimension

of the kernel of f∗k and sk = mk − lk. Due to this pk(1/t) = t−skrk(t). The

coefficients of the polynomial rk(t) are integers, since qk(t) has integers coefficients.

If all eigenvalues of f∗k are zero, then pk(t) = 1. If some eigenvalue f∗k is not zero,

then the roots of rk(t) are roots of unity. Since pk(1/t) = t−skrk(t) and the degree

of rk(t) is sk, we have pk(1/t) = rk(1/t). Therefore, zero is not a root of pk(t), and

all roots of pk(t) are roots of unity. Hence the zeros and poles of ζf (t) are roots of

unity, or ζf (t) = 1. Again f is of Franks type.

Case 3 : Assume that for some f∗k there is an eigenvalue λ different from a root

of unity and from zero. Then λ−1 is a root of the polynomial pk(t). By the def-

inition of being almost quasi-unipotent, the multiplicity of λ−1 as a root of the

polynomial p1(t)p3(t) . . . pl(t), if l is the largest odd positive integer less than or

equal to dimX = n, is equal to the multiplicity of λ−1 as a root of the polynomial

p2(t)p4(t) . . . pm(t), if m is the largest even positive integer less than or equal to

dimX . This implies that the factor t − λ−1 cancels in the expression (2.2). So, by

the arguments of the proof of Case 2 the unique poles or zeros of ζf (t) are the roots

of unity, or ζf (t) = 1. Hence f is of Franks type.

Finally we prove that if f is of Franks type, then f is almost quasi-unipotent.

Assume that f is not almost quasi-unipotent, then there exists an eigenvalue λ of

some map f∗k, different from zero, from a root of unity and such that the multiplicity

of λ−1 as a root of the polynomial p1(t)p3(t) . . . pl(t) if l is the largest odd positive

integer less than or equal to dimX is different from the multiplicity of λ−1 as a root of

the polynomial p2(t)p4(t) . . . pm(t) ifm is the largest even positive integer less than or

equal to dimX . Therefore the factor t−λ−1 does not cancel in the expression (2.2).

So λ−1 is a zero or a pole of ζf (t). Hence ζf (t) has a zero or a pole, which is not

a root of unity. Consequently f is not of Franks type. This completes the proof of

the theorem. �
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Let M be a C1 compact manifold and let f : M → M be a C1 map. Let x be

a hyperbolic periodic point of period p of f and Eu
x its unstable linear space, i.e. the

subspace of the tangent space TxM generated by the eigenvalues of Dfp(x) of norm

larger than 1. Let γ be the orbit of x, the index u of γ is the dimension of Eu
x . We

define the orientation type ∆ of γ as +1 if Dfp(x) : Eu
x → Eu

x preserves orientation

and −1 if reverses the orientation. The collection of the triples (p, u,∆) belonging

to all the periodic orbits of f is called the periodic data of f . The same triple can

appear more than once if it corresponds to different periodic orbits.

Theorem 2.2 (Franks [6]). Let f be a C1 map on a closed manifold having

finitely many periodic points all of them hyperbolic, and let Σ be the periodic data

of f . Then the Lefschetz zeta function ζf (t) of f satisfies

(2.3) ζf (t) =
∏

(p,u,∆)∈Σ

(1 −∆tp)(−1)u+1

.

P r o o f of Theorem 1.1. Let X be a connected closed manifold and f : X → X

a C1 map having finitely many periodic points all of them hyperbolic. Due to

Theorem 2.2 it is of Franks type. By Theorem 2.1 the map f is almost quasi-

unipotent. �

3. Remarks

(i) An example of an almost quasi-unipotent map which is not quasi-unipotent,

can be obtained as follows:

The linear map A : R3 → R3 given by

A =





m 0 0

0 1 0

0 0 −1



 ,

where m is an integer different from −1, 0 and 1, covers a unique algebraic endomor-

phism f = fA : T3 → T3 such that the action which it induces on its first homology

map is f∗1 = A, for more details see for instance [1]. So f∗1 has as eigenvalues m,

1 and −1. Since the homology groups of the torus form an exterior algebra (cf. [13]),

we have that the eigenvalues of f∗2 are m, −m and −1, and the eigenvalue of f∗3
is −m. Therefore the map fA : T3 → T3 is not quasi-unipotent since m is an eigen-

value, but it is almost quasi-unipotent because the eigenvalues m and −m satisfy

the definition.
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Since the corresponding characteristic polynomials of f∗1, f∗2 and f∗3 are q1(t) =

(t − m)(t − 1)(t + 1), q2(t) = (t − m)(t + m)(t + 1) and q3(t) = t + m, according

to (2.2) the Lefschetz zeta function of fA is

ζfA(t) =
t3q1(1/t)tq3(1/t)

(1− t)t3q2(1/t)
= 1.

(ii) The authors established in [8] sufficient conditions for quasi-unipotent maps

to have infinitely many periodic points. In the following lines we list some of these

conditions.

Theorem 3.1 ([8]). Let f : X → X be a C1 map with all its periodic points

hyperbolic. Let f have at most one periodic orbit of even index with period a power

of 2 different from 1 and

ζf (t) =
p(t)

(1− t)m
,

where m > 2 and p(t) is a polynomial that can have one of the following forms:

(a) p(t) = 1,

(b) p(t) =
l1
∏

i=1

(1± tni), where the ni’s are odd integers greater than 2,

(c) p(t) =
l2
∏

j=1

(1 + t2
kj
), where the kj ’s are positive integers,

(d)

p(t) =

( l1
∏

i=1

(1± tni)

)( l2
∏

j=1

(1 + t2
kj

)

)

,

where the kj ’s are positive integers and the ni’s are odd integers greater than 2.

Then f has infinitely many periodic points.

Theorem 3.2 ([8]). Let f : X → X be a C1 map with all its periodic points

hyperbolic. Let f have neither periodic points of even index with period 2, nor fixed

points and let

ζf (t) =
p(t)

(1 − t)m1
,

where p(t) is a polynomial that can have one of the following forms:

(a) p(t) = 1,

(b) p(t) =
l1
∏

i=1

(1± tni), where the ni’s are odd integers greater than 2,

(c) p(t) =
l2
∏

j=1

(1 + t2
kj
), where the kj ’s are positive integers,
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(d)

p(t) =

( l1
∏

i=1

(1± tni)

)( l2
∏

j=1

(1 + t2
kj

)

)

,

where the kj ’s are positive integers and the ni’s are odd integers greater than 2.

Then f has infinitely many periodic points.

Theorem 3.3 ([8]). Let f : X → X be a C1 map with all its periodic points

hyperbolic such that ζf (t) = 1.

(a) If f has a periodic point with an odd period p, with index u and has no periodic

points of periods a multiple of p with index v 6≡ u (mod 2), then f has infinitely

many periodic points.

(b) Assume that f has periodic points of period a power of 2 whose indexes have

the same parity. Let u be this parity. If f has no fixed points of index v with

v 6≡ u (mod 2), then f has infinitely many periodic points.
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