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Abstract. The notion of a bilattice was introduced by Shulman. A bilattice is a subspace
analogue for a lattice. In this work the definition of hyperreflexivity for bilattices is given and
studied. We give some general results concerning this notion. To a given lattice L we can
construct the bilattice ΣL. Similarly, having a bilattice Σ we may consider the lattice LΣ.
In this paper we study the relationship between hyperreflexivity of subspace lattices and of
their associated bilattices. Some examples of hyperreflexive or not hyperreflexive bilattices
are given.
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1. Introduction

In [2] hyperreflexive subspace lattices were introduced and a number of results

about these objects were obtained. Here we attempt to study the hyperreflexivity of

bilattices. Bilattices were defined by Shulman in [6]. These structures were studied

later in [5] in connection with operator synthesis and in [3] in the context of reflexivity.

Let us first recall basic definitions. LetH and K be Hilbert spaces, B(H,K) the space

of all bounded linear operators from H into K, B(H) = B(H,H) and P(H) the set of

all orthogonal projections in H. Given two projections P,Q ∈ P(H) we may consider

their meet P ∧Q as the projection onto P (H) ∩ Q(H), and their join P ∨Q as the

projection onto the closure of P (H) + Q(H). With those two operations P(H) is

a complete lattice. A sublattice of P(H) containing the trivial projections 0 and I

and SOT-closed is called a subspace lattice. For a set of operators S ⊆ B(H), we

denote latS = {P ∈ P(H) : SP = PSP, ∀S ∈ S} and for a family of projections
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L ⊂ P(H) we denote by algL the algebra of all operators leaving invariant the ranges

of all projections in L, i.e. algL = {A ∈ B(H) : L ⊆ lat{A}}. An operator algebra A

is called reflexive if A = alg latA. On the other hand, a subspace lattice L is reflexive

if L = lat algL.

The reflexive closure of a subspace S ⊆ B(H,K) is the set

ref S = {T ∈ B(H,K) : Tx ∈ Sx, ∀x ∈ H}.

A subspace S is called reflexive if S = ref S.

The notion of hyperreflexivity was first introduced for operator algebras [1] and

later extended to operator subspaces [4] and subspace lattices [2]. Hyperreflexivity

is stronger than reflexivity. Denote by

α(T,S) = sup{‖QTP‖ : for projections P,Q such that QSP = {0}}.

A subspace S is called hyperreflexive if there exists a constant κ > 0 such that

d(T,S) 6 κα(T,S), for all T ∈ B(H,K). Here d(·, ·) denotes the distance in the

norm metric. Every hyperreflexive subspace is reflexive, but not vice versa.

Let us now recall following [2] the analogues of these for the case of lattices:

α(P,L) = sup{‖P⊥AP‖ : A ∈ (algL)1},

where (algL)1 denotes the set of all contractions in algL. A subspace lattice L is

called hyperreflexive if there exists a constant κ > 0 such that d(P,L) 6 κα(P,L),

for all P ∈ P(H). The infimum of such constants κ will be denoted by κ(L) and

called the constant of hyperreflexivity for L. Again every hyperreflexive subspace

lattice is reflexive, but not vice versa.

A subspace analogue for a lattice is called a bilattice [6]. Namely, a bilattice is a

set Σ ⊆ P(H)×P(K) containing the pairs (0, I), (I, 0), (0, 0) and satisfying (P1∧P2,

Q1 ∨Q2), (P1 ∨ P2, Q1 ∧Q2) ∈ Σ whenever (P1, Q1), (P2, Q2) ∈ Σ. In this paper we

will always regard only SOT-closed bilattices.

We also define analogues of the above notions for bilattices. Define following [5]

opΣ = {T ∈ B(H,K) : QTP = 0, ∀ (P,Q) ∈ Σ}.

Then opΣ is always a reflexive subspace and all reflexive subspaces are of this form.

The bilattice bilS of a subspace S ⊆ B(H,K) is defined to be the set

bilS = {(P,Q) : QSP = {0}}.
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A bilattice Σ is called reflexive if bil opΣ = Σ. Given a bilattice Σ ⊆ P(H)× P(K)

and a pair of projections (P,Q) ∈ P(H)× P(K), let

α((P,Q),Σ) = sup{‖QTP‖ : ‖T ‖ 6 1, T ∈ opΣ}

and

d((P,Q),Σ) = inf{‖P − L1‖+ ‖Q− L2‖ : (L1, L2) ∈ Σ}.

If (L1, L2) ∈ Σ and T ∈ opΣ, ‖T ‖ 6 1, then

‖QTP‖ = ‖QTP − L2TL1‖ 6 ‖QTP −QTL1‖+ ‖QTL1 − L2TL1‖

6 ‖P − L1‖+ ‖Q− L2‖.

Hence α((P,Q),Σ) 6 d((P,Q),Σ).

Definition 1.1. A bilattice Σ ⊆ P(H) × P(K) is called hyperreflexive if there

exists a constant κ > 0 such that d((P,Q),Σ) 6 κα((P,Q),Σ), for each pair (P,Q) ∈

P(H)×P(K). The infimum of such constants κ will be denoted by κ(Σ) and called

the constant of hyperreflexivity for Σ.

2. Results

Let us start with some basic facts.

Proposition 2.1. For any bilattice Σ ⊆ P(H) × P(K) and a pair of projections

(P,Q) ∈ P(H)×P(K) we have that α((P,Q),Σ) = 0 if and only if (P,Q) ∈ bil opΣ.

P r o o f. If α((P,Q),Σ) = 0, then QTP = 0 for each T ∈ opΣ. Hence (P,Q) ∈

bil opΣ. The second implication is obvious. �

Proposition 2.2. If Σ is hyperreflexive, then it is reflexive.

P r o o f. Let (P,Q) ∈ bil opΣ. Then α((P,Q),Σ) = 0 and hyperreflexivity

implies that d((P,Q),Σ) = 0. Hence (P,Q) ∈ Σ. �

The converse of Proposition 2.2 is not true. The example of a reflexive but not

hyperreflexive bilattice is given after the proof of Proposition 2.6.

Note that, given a lattice L, one can form a billatice ΣL by letting

ΣL = {(P,Q) : there exists L ∈ L with P 6 L 6 Q⊥}.
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There is a dual construction as well: given a bilattice Σ, let

LΣ = {P ⊕Q⊥ : (P,Q) ∈ Σ}.

To see what is the relationship between hyperreflexivity of lattices and of the

bilattices connected with them we will need the following result:

Theorem 2.3. LetM be a hyperreflexive subspace lattice with constant a, and

let L be a sublattice ofM. If there is a constant b > 0 such that

d(M,L) 6 bα(M,L)

for all M ∈ M, then L is hyperreflexive with constant κ(L) 6 a+ b+ 2ab.

P r o o f. Let P ∈ P(H). For any ε > 0 there is M0 ∈ M such that

‖P −M0‖ 6 d(P,M) + ε.

Since L ⊂ M, then α(P,M) 6 α(P,L). Note that for any T ∈ (algL)1 we have

‖M⊥

0 TM0‖ 6 ‖M⊥

0 TM0 − P⊥TM0‖+ ‖P⊥TM0 − P⊥TP‖+ ‖P⊥TP‖

6 ‖P⊥TP‖+ 2‖P −M0‖.

Hence

α(M0,L) 6 α(P,L) + 2d(P,M) + 2ε 6 α(P,L) + 2aα(P,M) + 2ε

6 (1 + 2a)α(P,L) + 2ε.

Therefore

d(P,L) 6 ‖P −M0‖+ d(M0,L) 6 d(P,M) + d(M0,L) + ε

6 aα(P,M) + bα(M0,L) + ε 6 aα(P,L) + b((1 + 2a)α(P,L) + 2ε).

Thus L is hyperreflexive and κ(L) 6 a+ b+ 2ab. �

Proposition 2.4. If a bilattice Σ is hyperreflexive, then the lattice LΣ is hyper-

reflexive.
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P r o o f. Since LΣ ⊂ P(H)⊕P(H) and the lattice P(H)⊕P(H) is hyperreflexive

with constant at most 2 (see [2], Theorem 4.1), by Theorem 2.3 it is enough to show

that there is κ > 0 such that for any P,Q ∈ P(H)

d(P ⊕Q,LΣ) 6 κα(P ⊕Q,LΣ).

First, note that by the hyperreflexivity of Σ

(2.1) d(P ⊕Q,LΣ) = inf{max{‖P − L1‖, ‖Q− L⊥

2 ‖} : (L1, L2) ∈ Σ}

6 inf{‖P − L1‖+ ‖Q⊥ − L2‖} : (L1, L2) ∈ Σ}

= d((P,Q⊥),Σ) 6 κ(Σ)α((P,Q⊥),Σ).

Recall ([3], Proof of Proposition 2.6) that algLΣ =
(

alg Σl 0

opΣ alg(Σr)
⊥

)

, whereΣl = {L1 :

(L1, 0) ∈ Σ} and Σr = {L2 : (0, L2) ∈ Σ}. Since Σ is reflexive, by [3], Remark 2.2,

Σl = Σr = P(H). Hence in our case, algLΣ =
(

CI 0

opΣ CI

)

. So any contraction

T ∈ algLΣ has a matrix form
(

aI 0

B bI

)

for some contraction B ∈ opΣ. Hence we

have

‖(P ⊕Q)⊥T (P ⊕Q)‖ = ‖Q⊥BP‖.

Therefore

α((P,Q⊥),Σ) = α(P ⊕Q,LΣ),

which together with the inequality (2.1) proves the hyperreflexivity of LΣ. �

To see that hyperreflexivity of LΣ does not imply hyperreflexivity of Σ we will

consider the following example.

Example 2.5. Let dimH > 1 and take Σ = {(0, 0), (I, 0), (0, I)} ⊂ P(H)×P(H).

As it was shown in [3], Example 2.7, the bilattice Σ is not reflexive, hence it cannot

be hyperreflexive. We will prove that LΣ = {0 ⊕ I, I ⊕ I, 0 ⊕ 0} is hyperreflexive.

Using Theorem 2.3 and repeating similar reasoning as in the proof of Proposition 2.4

it is enough to calculate the appropriate distances for any projection of the form

P⊕Q ∈ (P(H)⊕P(H))\LΣ. Clearly, d(P⊕Q,LΣ) = 1. Since algLΣ =
(

B(H) 0

B(H) B(H)

)

,

we have that

α(P ⊕Q,LΣ) = sup

{∥

∥

∥

∥

(

P⊥AP 0

Q⊥BP Q⊥CQ

)∥

∥

∥

∥

:

(

A 0

B C

)

∈ (algLΣ)1

}

.

If P = I and Q 6= I, then

α(I ⊕Q,LΣ) > sup{‖Q⊥B‖ : ‖B‖ 6 1} = 1.
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If P = 0, then Q 6= 0, Q 6= I and

α(0 ⊕Q,LΣ) > sup{‖Q⊥CQ‖ : ‖C‖ 6 1}.

Choose x, y ∈ H such that Qx = x, ‖x‖ = 1 and Q⊥y = y, ‖y‖ = 1. De-

fine an operator C as the orthogonal projection onto the subspace C(x + y), then

‖Q⊥CQx‖ = ‖Q⊥Cx‖ = ‖Q⊥(x+ y)/2‖ = ‖y/2‖ = 1/2. Hence

α(0 ⊕Q,LΣ) >
1

2
.

If P is a proper projection, then

α(P ⊕Q,LΣ) > sup{‖P⊥AP‖ : ‖A‖ 6 1}

and repeating similar reasoning as before we may prove that the supremum on the

right hand side is at least equal to 1/2.

Hence we obtain that

d(P ⊕Q,LΣ) 6 2α(P ⊕Q,LΣ).

Applying Theorem 2.3 we have proved the hyperreflexivity of LΣ with constant

κ(LΣ) 6 12.

Recall following [2] that two projections P,Q are close if ‖P −Q‖ < 1.

Proposition 2.6. Let L be a subspace lattice. If ΣL is hyperreflexive then L is

hyperreflexive.

P r o o f. Let P ∈ P(H). Then

α(P,L) = sup{‖P⊥TP‖ : T ∈ (algL)1}.

Since algL = opΣL (see [3], Proposition 2.3), we have that

α((P, P⊥),ΣL) = sup{‖P⊥TP‖ : T ∈ (opΣL)1} = α(P,L),

where (opΣL)1 denotes the set of all contractions in opΣL. On the other hand,

d((P, P⊥),ΣL) = inf{‖P − E1‖+ ‖P⊥ − E2‖ : (E1, E2) ∈ ΣL}

= inf{‖P − E1‖+ ‖P − E⊥

2 ‖ : (E1, E2) ∈ ΣL}.
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Note that E1 6 E⊥
2 . If P is close to E1 and E⊥

2 , then by [2], Lemma 2.4, E1 = E⊥
2

which implies that there is L ∈ L such that E1 = E⊥
2 = L. In that case

‖P − E1‖+ ‖P − E⊥

2 ‖ = 2‖P − L‖ > d(P,L).

If P is not close to E1 or E
⊥
2 , then

‖P − E1‖+ ‖P − E⊥

2 ‖ > 1 > d(P,L).

Hence by the hyperreflexivity of ΣL we have

d(P,L) 6 d((P, P⊥),ΣL) 6 κ(ΣL)α((P, P
⊥),ΣL) = κ(ΣL)α(P,L).

�

Example 2.7. In [2], Example 7.2, the authors constructed an example of reflex-

ive but not hyperreflexive subspace lattice L. Namely, for 0 < ϑ 6 π/4 they consider

L(ϑ) = {0, Q1, Q2, I}, with

Q1 =

(

(cosϑ)2 sinϑ cosϑ

sinϑ cosϑ (sinϑ)2

)

and Q2 =

(

(cosϑ)2 − sinϑ cosϑ

− sinϑ cosϑ (sinϑ)2

)

.

It is shown that each L(ϑ) is hyperreflexive but κ(L(ϑ)) → ∞ as ϑ → 0. So the direct

sum L = L(ϑ1)⊕L(ϑ2)⊕ . . . is reflexive but not hyperreflexive (by [2], Theorem 7.1),

when 0 < ϑn 6 π/4 and ϑn → 0.

Consider now the bilattice ΣL. Due to [3], Corollary 2.5, we know that ΣL is

reflexive but it cannot be hyperreflexive by Proposition 2.6.

Problem 2.8. Is the converse of Proposition 2.6 true?
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