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Mechanical oscillators with dampers

defined by implicit constitutive relations

Dalibor Pražák∗, Kumbakonam R. Rajagopal

Abstract. We study the vibrations of lumped parameter systems, the spring be-
ing defined by the classical linear constitutive relationship between the spring
force and the elongation while the dashpot is described by a general implicit
relationship between the damping force and the velocity. We prove global exis-
tence of solutions for the governing equations, and discuss conditions that the
implicit relation satisfies that are sufficient for the uniqueness of solutions. We
also present some counterexamples to the uniqueness when these conditions are
not met.

Keywords: lumped parameter systems; differential-algebraic equations; Coulomb’s
friction; uniqueness of solutions

Classification: 34A09, 70F40, 34K32

1. Introduction

The vibrations of some lumped parameter systems (Figure 1) cannot be des-
cribed by means of explicit expressions for the forces acting in the constituents of
the system in terms of the kinematical variables, the constitutive description be-
ing given in terms of an implicit relationship between the force and the kinematics
associated with the components. In such a situation, the problem is governed by
a system of differential-algebraic equations. Recently, Rajagopal [2] and Naksha-
trala et al. [1] articulated the rationale for the prescription of the kinematics in
terms of the force rather than vice-versa for constitutively describing the compo-
nents of the lumped parameter system as such a description is more in consonance
with the demands of causality. Fully implicit prescription is thus necessary.

The above studies were not concerned with rigorous mathematical issues such
as the existence or uniqueness of solutions to the governing systems. Pražák and
Rajagopal [3] established existence of solutions to the governing equation when the
elongation of the spring and the velocity in the dashpot are given via monotone,
but not necessarily invertible functions of the corresponding forces Fs and Fd.

In this study, we consider the existence and uniqueness of solutions to the
governing equations when the spring is given by the traditional linear relationship
between the spring force and the elongation, the dashpot being defined through
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Figure 1. Mass-Spring-Dashpot lumped parameter system.

a fully implicit relationship between the force in the dashpot and the velocity.
The problem under the study thus assumes a general form

mẍ + Fd + kx = F (t),(1)

g(ẋ, Fd) = 0.(2)

Here x is the (unknown) displacement, m > 0 is the mass, k > 0 is the spring
constant, F (t) is the given external force, and Fd is the damping force.

We are particularly interested in the cases where the damping law (2) is fully
implicit, that is, it cannot be (globally) written either as Fd = ĝ(ẋ) or as ẋ =
ĝ(Fd). There are numerous physically meaningful examples of such dissipation;
the most notable instance being the Coulomb law for friction, cf. Figures 2 and 3
below.

Such problems can usually be solved by an ad-hoc method of patching together
solutions for ẋ negative or positive, see for example [4]. While the results that
are obtained are physically correct, it is still desirable to put the analysis on a
firmer mathematical basis, by proving that the problem is well-posed in a suitable,
clearly defined sense.

The paper is organized as follows: in Section 2 we specify the precise mathema-
tical assumptions that are made, and collect several auxiliary results, in particular
concerning maximal monotone relations. Section 3 contains the main results:
we prove global existence of solution and (under slightly stronger conditions) its
uniqueness. In Section 4 we provide several examples of non-unique solutions when
the implicit constitutive relation does not satisfy the conditions of the general
theory in Section 3.
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2. Preliminaries

We will henceforth assume that (2) is specialized to

Fd = Fc − γ(ẋ),(3)

(Fc, ẋ) ∈ A,(4)

where γ(·) is a relaxation function and Fc is a Coulomb-like force, bearing in
general a monotone relationship with respect to ẋ. It is assumed that

(5) γ is continuous, |γ(u)| ≤ c1(1 + |u|)

and A is maximal monotone relation, meaning that

(F, y), (F̃ , ỹ) ∈ A =⇒ (F − F̃ )(y − ỹ) ≥ 0,(6)

(F0 − F )(y0 − y) ≥ 0 ∀(F, y) ∈ A =⇒ (F0, y0) ∈ A.(7)

We will also need some coercivity with respect to the force:

(8) (F, y) ∈ A =⇒ Fy ≥ c2F
2 − c3.

Here and in what follows, c1, c2, etc. stand for positive real constants. It is easy
to see that (8) (together with maximality of A) implies that (F, y) ∈ A can be
satisfied for arbitrary values of the second argument.

A typical example of maximal monotone relationship of this type is Coulomb’s
law for friction, given by the conditions

(9)

ẋ > 0 =⇒ Fd = φ0,

ẋ < 0 =⇒ Fd = −φ0,

ẋ = 0 =⇒ Fd ∈ [−φ0, φ0] is arbitrary.

See Figure 2. Note that such a relationship is truly implicit, i.e., one cannot
(globally) write either Fd as a function of ẋ, or ẋ as a function of Fd.

Assuming that the relaxation function is bounded, increasing and γ(0) = 0, we
arrive at a more general model (see Figure 3).

Regarding the analysis, we would like to emphasize that the continuity of γ
only guarantees existence of solutions; uniqueness requires a stronger assump-
tion, namely that γ is Lipschitz continuous. See also the last section for several
examples of non well-posed problems.

Our final assumption is that

(10) F (t) ∈ L2(0, T ).

Let us conclude this section with two results that will be instrumental in hand-
ling the monotone relationship between the force and the velocity. Firstly, we
recall a useful “geometric” characterization of maximal monotone graphs.
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Figure 2. Coulomb friction: force-velocity relationship
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Figure 3. Coulomb friction with relaxation
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Lemma 1. Relation A ⊂ R × R is maximal monotone if and only if there exists

a 1-Lipschitz function ϕ : R → R such that

(11) (F, y) ∈ A ⇐⇒ F − y = ϕ(F + y).

Proof: See [7, Lemma 2.1]. �

The following result on weak closeness is well-known and we only give the proof
for the sake of the reader’s convenience.

Lemma 2. Let Fn, yn converge to F , y weakly in L2(0, T ), and let Fnyn → Fy
in the sense of distributions. If (Fn(t), yn(t)) ∈ A for a.e. t ∈ [0, T ], where A is

maximal monotone, then also (F (t), y(t)) ∈ A for a.e. t ∈ [0, T ].

Proof: Let w be an arbitrary, smooth function, compactly supported in (0, T ).
We then have

|Fn − yn − ϕ(w)|2 ≤ |Fn + yn − w|2

a.e. in [0, T ], where ϕ is provided by Lemma 1. This is equivalent to

−2(Fn − yn)ϕ(w) + |ϕ(w)|2 ≤ −2(Fn + yn)w + |w|2 + 4Fnyn.

Here we can take the limit n → ∞, and backward manipulation yields

|F − y − ϕ(w)|2 ≤ |F + y − w|2.

By appealing to the density argument, we replace w by an arbitrary square in-
tegrable function; in particular, taking w = F + y concludes the proof, in view
of (11). �

Theorem 1 (Parameterized Banach theorem). Let X , Y be Banach spaces, let

the mapping G = G(φ, y) : X ×Y → X be such that G(φ, ·) is continuous for any

φ ∈ X fixed and uniformly contracting in φ, i.e., there exists α ∈ (0, 1) such that

(12) ‖G(φ1, y) − G(φ2, y)‖X ≤ α‖φ1 − φ2‖X ∀φ1, φ2 ∈ X , y ∈ Y .

Then for every y ∈ Y there exists a unique φ ∈ X such that φ = G(φ, y).
Moreover, the mapping y 7→ φ =: g(y) is continuous.

Proof: The result is well-known (see e.g. [6, §1, Theorem (3.2)] for a more
general statement.) For reader’s convenience, we outline the proof below.

The sequence of functions φn : Y → X is defined by φn+1(y) = G(φn(y), y),
where φ0(y) ≡ φ0 ∈ X is arbitrary. By (12) we obtain inductively

‖φn(y) − φn−1(y)‖X ≤ αn−1‖G(φ0, y) − φ0‖X

and hence for m > n

(13) ‖φm(y) − φn(y)‖X ≤

m
∑

j=n+1

‖φj(y) − φj−1(y)‖X ≤
αn

1 − α
‖G(φ0, y) − φ0‖X .
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It follows that {φn(y)}n is a Cauchy sequence and its limit, denoted henceforth
by g(y), is the (unique by (12), and hence independent of the initial choice φ0)
solution of φ = G(φ, y).

By letting n = 0 and m → ∞ in (13), we have

(14) ‖g(y) − φ0‖X ≤
1

1 − α
‖G(φ0, y) − φ0‖X .

As the choice φ0 can be arbitrary, we set φ0 = g(ỹ) = G(g(ỹ), ỹ) to finally obtain

(15) ‖g(y)− g(ỹ)‖X ≤
1

1 − α
‖G(g(ỹ), y) − G(g(ỹ), ỹ)‖X

whence follows the continuity of g(·). �

3. Main results

For the sake of definiteness, we start with the definition of the concept of
solution.

Definition 1. By solution we understand a couple (Fd, x) ∈ L2(0, T )×W 2,2(0, T )
such that (1), (2) hold a.e. in [0, T ].

Note that it follows that x and ẋ have absolutely continuous representatives;
in particular, the problem is naturally equipped with initial conditions

(16) x(0) = x0, ẋ(0) = x1.

Theorem 2. Let the assumptions (5)–(8) be in force; moreover let the function γ
be Lipschitz continuous. Then the problem (1), (3), (4) has at most one solution,

subject to the initial conditions (16).

Proof: Let (x1, F 1
d ) and (x2, F 2

d ) be two solutions that satisfy the same initial
condition. Setting z = x1 − x2, we deduce that

mz̈ + F 1
d − F 2

d + kz = 0.

Multiplying by 2ż, and noting that monotonicity of A implies

(F 1
d − F 2

d )(ẋ1 − ẋ2) ≥ −(γ(ẋ1) − γ(ẋ2))(ẋ1 − ẋ2),

we arrive at

d

dt

(

m(ż)2 + kz2
)

≤ 2L(ż)2,

where L is the Lipschitz constant of γ. Since z(0) = ż(0) = 0, we conclude the
result by Gronwall’s lemma. �

Theorem 3. Let the assumptions (5)–(8) and (10) be in force. Then the problem

(1), (3), (4) has at least one solution, subject to initial conditions (16).
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Proof: In view of Lemma 1, the relation (Fc, ẋ) ∈ A is equivalent to

Fc = ẋ + ϕ(Fc + ẋ).

Replacing ẋ by ẋ − Fc/n, we obtain, after some manipulations, a sequence of
approximating problems

(17) Fc = Gn(Fc, ẋ) := n
n+1

(

ẋ + ϕ
(

ẋ + n−1

n
Fc

))

.

Observe that the function Gn satisfies the assumptions of Theorem 1 (with α =
n−1

n+1
, and Fc, ẋ playing the role of φ and y, respectively.) It follows that (17) is

equivalent to

Fc = gn(ẋ),

and gn is a continuous function. We further choose continuous Fn(t) such that
Fn(t) → F (t) in L2(0, T ). The equation

(18) mẍ + gn(ẋ) − γ(ẋ) + kx = Fn(t)

is locally solvable by the standard theory — see [5, Theorem 2.2.1], for example.
We need a priori estimates that are independent of n. Now (17) is equivalent to

(

Fc, ẋ − 1

n
Fc

)

∈ A.

By the coercivity assumption (8),

Fc

(

ẋ − 1

n
Fc

)

≥ c2

∣

∣Fc

∣

∣

2
− c3.

For n large enough

(19) Fcẋ ≥ c4|Fc|
2 − c3

with suitable positive c4. Hence, multiplying (18) by 2ẋ yields

(20)
d

dt

(

m(ẋ)2 + kx2
)

+ c5F
2
c ≤ c6

(

(ẋ)2 + Fn(t)2 + 1
)

.

It follows from Gronwall’s lemma that x(t), ẋ(t) are bounded on [0, T ], and Fc is
bounded in L2(0, T ) by a constant only depending on the initial data x0, x1 and
the norm of F (t) in L2(0, T ). In particular, the local solution can be extended to
[0, T ]; cf. [5, Theorems 2.4.2, 2.4.3].

Let now xn be the sequence of solutions to (18) and Fc,n := gn(ẋn). By the
above estimates and using also the equation (which gives the bound on ẍn in
L2(0, T )), we note that the functions xn and ẋn are uniformly equicontinuous on
[0, T ], and so there is a subsequence (not relabelled) such that

Fc,n → Fc, ẍn → ẍ weakly in L2(0, T ),(21)

ẋn → ẋ, xn → x uniformly on [0, T ].(22)
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Since Fd,n = Fc,n − γ(ẋn) → Fc − γ(ẋ) and Fn(t) → F (t), the equation (1) is
satisfied in the limit. It remains to verify the relationship between Fc and ẋ. We
have for each n

(

Fc,n, ẋn − 1

n
Fc,n) ∈ A ;(23)

however, ẋn → ẋ strongly in L2(0, T ), and thus (Fc, ẋ) ∈ A by Lemma 2. �

4. Some examples of nonuniqueness

The aim of this section is to exhibit some examples that show that our problem
can lack the property of unique solutions, should one not meet the requirements
of the assumptions of Theorem 2. In particular, neither the monotonicity of A
nor the Lipschitz continuity of γ can be disposed of.

Consider, as a first example, a generalized Coulomb law for friction, given by

(24)

ẋ > 0 =⇒ Fd = φ0,

ẋ < 0 =⇒ Fd = −φ0,

ẋ = 0 =⇒ Fd ∈ [−φ1, φ1] is arbitrary,

where 0 < φ0 < φ1. This relationship between Fd and ẋ is not monotone (see
Figure 4). It corresponds to a physically meaningful situation, where the static
friction is larger than the dynamic friction. However, a possible drop of the friction
force at the onset of motion means that the problem is not uniquely solvable.

_x

F

d

Figure 4. Generalized Coulomb law
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Consider the data

(25)
x(0) = ẋ(0) = 0,

k = m = 1, F (t) ≡ φ1.

Clearly, Fd ≡ φ1, x ≡ 0 is a solution on an arbitrary interval [0, T ]. On the other
hand, Fd ≡ φ0 and

x(t) = (φ1 − φ0)(1 − cos t),

is also a solution, subject to the same data, at least on the interval [0, π] where
ẋ ≥ 0.

As a second — and perhaps a more interesting — example we consider consti-
tutive relations (3), (4), where A is the standard Coulomb law (9), and for the
relaxation function we take

γN (u) = N |u|1−
1

N sgnu

with a positive N . Note that γN is not Lipschitz, as it grows steeply close to 0
(see Figure 5). However, it can be made α-Hölder continuous with any α < 1 by
taking N large enough.

_x

F

d

Figure 5. Coulomb law with steep relaxation

This lack of Lipschitz continuity gives rise to nonuniqueness of solutions, as we
will presently see. Consider the following data:

(26)
x(0) = ẋ(0) = 0,

k = m = 1, F (t) ≡ φ0.



60 Pražák D., Rajagopal K.R.

Then the function Fd = φ0 − γN (ẋ), coupled to any x satisfying

(27)
ẍ + x = γN (ẋ), ẋ ≥ 0,

x(0) = ẋ(0) = 0,

gives rise to a solution to our problem. Thus, it remains to consider the reduced
problem (27). Obviously, x ≡ 0 is solution on arbitrary interval [0, T ].

We will now construct a second, nontrivial solution by the means of a fixed
point argument. Set

Y =
{

x ∈ C1([0, δ]); x(0) = ẋ(0) = 0, atN ≤ ẋ(t) ≤ tN ∀t ∈ [0, δ]
}

.

The constants a, δ > 0 will be determined below. We introduce the operator

T : Y → C1([0, δ]),
[

T x
]

(t) = y(t), t ∈ [0, δ]

where y solves

ÿ = γN (ẋ) − x,

y(0) = ẏ(0) = 0.

Let us show that an appropriate choice of constants a and δ implies T (Y) ⊂ Y.
Indeed, for any x ∈ Y one has

atN+1

N + 1
≤ x(t) ≤

tN+1

N + 1
t ∈ [0, δ],

hence

ẏ(t) =

∫ t

0

ÿ(s) ds =

∫ t

0

γN (ẋ(s)) − x(s)ds ≤

∫ t

0

NsN−1ds = tN .

Similarly,

ẏ(t) ≥

∫ t

0

Na1− 1

N sN−1 −
sN+1

N + 1
ds = a1− 1

N tN −
tN+2

(N + 1)(N + 2)
, t ∈ [0, δ].

So to guarantee that ẏ(t) ≥ atN for t ∈ [0, δ], it is enough to have

a−
1

N −
a−1δ2

(N + 1)(N + 2)
≥ 1,

which can be satisfied for any prescribed a ∈ (0, 1) by taking a small enough
δ > 0.

Finally, we observe that T is compact in virtue of a bounded second derivative
of y, and the set Y is convex. By Schauder’s theorem [6, §6, Theorem (3.2)], T
has a fixed point y ∈ Y, which is the desired nontrivial solution to (27).
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