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THE TIME-DEPENDENT NATURAL CONVECTION PROBLEM

Yanxia Qian, Jiaozuo, Tong Zhang, Jiaozuo, Curitiba
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Abstract. We consider the second-order projection schemes for the time-dependent nat-
ural convection problem. By the projection method, the natural convection problem is
decoupled into two linear subproblems, and each subproblem is solved more easily than
the original one. The error analysis is accomplished by interpreting the second-order time
discretization of a perturbed system which approximates the time-dependent natural con-
vection problem, and the rigorous error analysis of the projection schemes is presented.
Our main results of the second order projection schemes for the time-dependent natural
convection problem are that the convergence for the velocity and temperature are strongly
second order in time while that for the pressure is strongly first order in time.
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1. Introduction

The aim of this paper is to establish the convergence of the second-order projection

schemes in time for the time-dependent natural convection problem. One major diffi-

culty for the numerical simulation of the incompressible flows is that the velocity and

the pressure are coupled by the incompressibility constraint. However, the projection

method is an efficient numerical scheme for the incompressible flows, we can refer

to the ground breaking works of Chorin [3] and Temam [18]. The most attractive

feature of the projection method is that, at each time step, one only needs to solve

a sequence of decoupled elliptic equations for different variables; as a consequence,

the computational scale is reduced and a lot of CPU time is saved. For example, we

The research has been supported by CAPES and CNPq of Brazil (No. 88881.068004/
2014.01), the NSF of China (No. 11301157), and the FDYS of Henan Polytechnic Uni-
versity (J2015-05).
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can refer to [1], [2], [10], [13], [14], [16], [20] for the Navier-Stokes equations. Due

to the efficiency of the projection schemes, we consider the second order projection

schemes in this paper for the following time-dependent natural convection problem.

(1.1)





ut − ν∆u+ (u · ∇)u+∇p = −kν2jθ + f in Ω× (0, T ],

divu = 0 in Ω× (0, T ],

θt − λν∆θ + u · ∇θ = g in Ω× (0, T ],

u = 0, θ = 0 on Γ× (0, T ],

u(x, 0) = u0, θ(x, 0) = θ0 on Ω× {0},

where Ω ⊂ R
2 is a bounded domain assumed to have a Lipschitz continuous bound-

ary Γ. Further, u = (u1, u2)
T is the fluid velocity, p is the pressure, θ is the temper-

ature, ν > 0 is the viscosity, k is the Groshoff number, λ = Pr−1, Pr is the Prandtl

number, j = (1, 0)T is the vector of gravitational acceleration, T > 0 is the final

time, f and g are forcing functions.

The natural convection problem (1.1) is an important system which not only con-

tains the incompressibility and strong nonlinearity, but also includes the coupling

between the energy equation and the equations governing the fluid motion. Since

this system not only comprises the velocity and pressure but also includes the tem-

perature filed, finding the numerical solutions of problem (1.1) becomes a difficult

task. Many authors have worked on this problem. Let us mention for example, the

standard Galerkin finite element method (FEM) [9], [15], the projection-based stabi-

lized mixed FEM [4], variational multiscale method [5], [21], [24], and the references

therein. Here, we need to point out that all these numerical schemes for problem (1.1)

are coupled. It means that we need to find the variables u, p, and θ of (1.1) simulta-

neously, therefore, a large nonlinear algebra system is formed. Generally speaking, it

is expensive to find the numerical solutions of the coupled nonlinear system directly

by the standard Galerkin FEM. In order to overcome this difficulty, Zhang and his

co-authors considered the decoupled schemes for the natural convection problem in

[22], [23], [25], and some meaningful results have been established. Recently, Qian

and Zhang in [11], [12] considered the first order and higher order projection schemes

for the time-dependent natural convection problem.

By the projection schemes, problem (1.1) is decoupled into two small linear sub-

problems, and each subproblem is solved more easily than the original one. For

instance, the following modified projection schemes are analyzed in [11]:

(1.2)





ũn+1 − un

∆t
− ν∆ũn+1 + (un · ∇)ũn+1 +∇φn = −kν2jθn+1 + f(tn+1),

ũn+1|Γ = 0,

θn+1 − θn

∆t
− λν∆θn+1 + (un · ∇)θn+1 = g(tn+1),
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and

(1.3)






un+1 − ũn+1

∆t
+ α1∇(φn+1 − φn) = 0,

∇ · un+1 = 0,

un+1 · ~n|Γ = 0,

where ∆t > 0 is the time step, tn = n∆t, φ0 is an approximation of p0, ~n is the

normal vector to Γ and α1 > 1.

Set

H = {u ∈ L2(Ω)2,∇ · u = 0, u · ~n|Γ = 0},

and denote by PH the orthogonal projector from L2(Ω)2 onto H , i.e.,

(1.4) (u− PHu,v) = 0 ∀u ∈ Y = L2(Ω)2, v ∈ H.

We can readily check that (1.3) is equivalent to un+1 = PH ũn+1, which explains why

we call (1.2)–(1.3) the projection schemes. In [11], we developed the classical pro-

jection schemes and the modified projection schemes for the time-dependent natural

convection problem (1.1). For the classical schemes, we established the convergence

of weakly first order for the velocity and temperature and of weakly order 1
2 for the

pressure. For the modified schemes, we improved the convergence to strongly first

order for the velocity and temperature and weakly first order for the pressure.

Then, in [12], we investigated the higher order projection schemes

(1.5)






ũn+1 − un

∆t
− ν∆ũn+1/2 + (un · ∇)ũn+1/2 +∇φn

= −kν2jθn+1/2 + f(tn+1/2),

ũn+1/2|Γ = 0,

θn+1 − θn

∆t
− λν∆θn+1/2 + (un · ∇)θn+1/2 = g(tn+1/2),

and

(1.6)





un+1 − ũn+1

∆t
+ α2∇(φn+1 − φn) = 0,

∇ · un+1 = 0,

un+1 · ~n|Γ = 0,

where tn+1/2 = (n + 1
2 )∆t, ũ

n+1/2 = 1
2 (ũ

n+1 + un), θn+1/2 = 1
2 (θ

n+1 + θn) and

α2 >
1
2 . We also obtained that u

n+1 in (1.6) is uniquely defined by the relation

un+1 = PH ũn+1. For the higher projection schemes (1.5)–(1.6), we established
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convergence of strongly 3
2 order for the velocity and temperature and of weakly one

order for the pressure.

In this paper, instead of the projection schemes (1.2)–(1.3) and (1.5)–(1.6), we

consider the following numerical schemes for the problem (1.1):

Let (u0, p0, θ0) = (u(t0), p(t0), θ(t0)) ∈ H1
0 (Ω)

2 × (H1
0 (Ω)/R)×H1

0 (Ω), find θ
n+1,

un+1 and pn+1 satisfying

(1.7)






un+1 − un

∆t
− ν∆un+1/2 + (un · ∇)un+1/2 +∇pn

= −kν2jθn+1/2 + f(tn+1/2),

un+1|Γ = 0,

θn+1 − θn

∆t
− λν∆θn+1/2 + (un · ∇)θn+1/2 = g(tn+1/2)

and

(1.8) ∇ · un+1 − α∆t(∆pn+1 −∆pn) = 0,

where un+1/2 = 1
2 (u

n+1 + un), θn+1/2 = 1
2 (θ

n+1 + θn) and α > 1
4 , R is the space of

real numbers.

From (1.7) we obtain the numerical solutions un+1 and θn+1, but un+1 may not

belong to the divergence-free space in such situation. Then we improve and get

(un+1, pn+1) from (1.8). Since pn and pn+1 are two successive iterative solutions,

the difference between ∆pn+1 and ∆pn tends to zero as n increases, hence we have

∇ · un+1 = 0 as n increase.

Compared with the other schemes (1.2)–(1.3) and (1.5)–(1.6), the schemes (1.7)–

(1.8) have two advantages: (i) The schemes avoid using the medium ũn+1 to reduce

the computation time and storage space; (ii) the flexible constant α > 1
4 is better

than in the other two schemes.

Although the schemes (1.7)–(1.8) do not apply the projection step, we still refer

to (1.7)–(1.8) as the projection schemes because of its similarity with (1.5)–(1.6). As

mentioned before, at each time step, we only need to solve a Helmholtz equation,

a parabolic problem and a Poisson equation. Specially, fast Poisson solvers, if avail-

able, can be used. Furthermore, since the velocity, temperature, and pressure in the

projection schemes are decoupled from each other, the space discretization for the

velocity, the temperature, and the pressure can be chosen independently, and they

need not satisfy the Babuška-Brezzi or inf-sup condition.

The article is organized as follows: In Section 2, we recall some notation and

present some assumptions which enable us to derive some regularity results required

by error analysis. Stabilities of the projection schemes are established in Section 3.
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In Section 4, we establish rigorously the convergence: un+1 and θn+1 are strongly

second-order approximations to u(tn+1) and θ(tn+1) in L
2(Ω)2 and L2(Ω), respec-

tively, pn+1 is strongly first-order approximation to p(tn+1) in H
1
0 (Ω)/R.

2. Preliminaries

In this section, we recall some notation and basic results which are frequently

used in the sequel. For the mathematical setting of problem (1.1), we introduce the

Hilbert spaces

X = H1
0 (Ω)

2, W = H1
0 (Ω), Z = L2(Ω), M = L2

0(Ω) =

{
ϕ ∈ L2(Ω):

∫

Ω

ϕdx = 0

}
.

The standard Sobolev spaces are adopted, for example, (·, ·) and ‖·‖0 are used

to denote the usual inner product and norm in Z or Y . The spaces W and X are

equipped with the usual scalar product (∇·,∇·) and the associated norm ‖∇·‖0. Let

the closed subset V of X be given by

V = {v ∈ X, ∇ · v = 0 in Ω}.

In order to simplify the description, we set

D(A) = H2(Ω)2 ∩ V, E(A) = H2(Ω) ∩W.

Hereafter, we use N,N,C,C1, C2, C3 to denote generic positive constants which

depend only on Ω, ν, λ. Furthermore, M is a generic positive constant which may

additionally depend on u0, θ0, f∞, g∞, and α, it may stand for different values at

different places, where f∞ = sup
t>0

|f(t)|, g∞ = sup
t>0

|g(t)|.

If Ω is bounded in some direction then the Poincaré inequality holds:

(2.1) ‖v‖0 6 C1‖∇v‖0 ∀v ∈ X or W.

The trilinear terms for all u,v,w ∈ X and θ, ψ ∈W can be defined as follows

b(u,v,w) = ((u · ∇)v,w) + 1
2 (v divu,w) = 1

2 ((u · ∇)v,w)− 1
2 ((u · ∇)w,v),

b(u, θ, ψ) = ((u · ∇)θ, ψ) + 1
2 (θ divu, ψ) =

1
2 ((u · ∇)θ, ψ)− 1

2 ((u · ∇)ψ, θ).

It is easy to verify that the trilinear terms b(·, ·, ·) and b(·, ·, ·) are skew-symmetric

with respect to their two arguments,

(2.2) b(u,v,v) = 0 ∀u,v ∈ X ; b(u, θ, θ) = 0 ∀u ∈ X, θ ∈W.

Furthermore, we recall some properties of the trilinear forms b(·, ·, ·) and b(·, ·, ·)

(see [6], [7], [19]).
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Theorem 2.1. The trilinear forms b(·, ·, ·) and b(·, ·, ·) satisfy:

(1) In view of H1(Ω) →֒ L4(Ω), we have

|b(u,v,w)| 6 N‖u‖1‖v‖1‖w‖1 ∀u,v,w ∈ X,

|b(u, θ, ψ)| 6 N‖u‖1‖θ‖1‖ψ‖1 ∀u ∈ X, θ, ψ ∈W,

where

N = sup
06=u,v,w∈X

|b(u,v,w)|

‖u‖1‖v‖1‖w‖1
, N = sup

06=u∈X,06=θ,ψ∈W

|b(u, θ, ψ)|

‖u‖1‖θ‖1‖ψ‖1
.

(2) The following estimates of trilinear terms b(·, ·, ·) and b(·, ·, ·) hold:

|b(u,v,w)| 6 C2‖u‖1‖v‖2‖w‖0, |b(u, θ, ψ)| 6 C3‖u‖1‖θ‖2‖ψ‖0,

for all u ∈ V , v ∈ D(A), w ∈ X , θ ∈ E(A), ψ ∈ W .

With the above notation, for a given f ∈ L∞(0, T ;Y ) with u0 ∈ D(A) and g ∈

L∞(0, T ;Z) with θ0 ∈ E(A), based on the backward Euler scheme, the weak form of

the projection and linearized time discrete schemes for problems (1.7)–(1.8) read as

follows: For all (v, q, ψ) ∈ X ×M ×W , find (un+1, pn+1, θn+1) such that

(2.3)





(un+1 − un

∆t
,v

)
+ ν(∇un+1/2,∇v) + b(un,un+1/2,v) + (∇pn,v)

= −kν2(jθn+1/2,v) + (f(tn+1/2),v),
(θn+1 − θn

∆t
, ψ

)
+ λν(∇θn+1/2,∇ψ) + b(un, θn+1/2, ψ) = (g(tn+1/2), ψ)

and

(2.4) (∇ · un+1, q)− α∆t(∆pn+1 −∆pn, q) = 0.

The existence and uniqueness of the numerical solutions of problems (2.3)–(2.4)

are ensured by the classical Lax-Milgram theorem. We present some assumptions

about the initial data and the regularity of the exact solutions. These assumptions

are known to cause nonlocal compatibility conditions on the given data as discussed

in [8] in the case of the Navier-Stokes equation. As has been stated in Theorem 1

of [17], we are not concerned with the behavior of the solutions near the initial time

but confine ourselves to an ideal case.

(A1) u0 ∈ H2(Ω)2 ∩ V , θ0 ∈ H2(Ω), f ∈ L∞(0, T ;H), g ∈ L∞(0, T ;Z),

sup
t∈[0,T ]

(‖u(t)‖1 + ‖θ(t)‖1) 6M .
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(A2) sup
t∈[0,T ]

(‖ut(t)‖1 + ‖θt(t)‖1 + ‖pt(t)‖1) 6M .

(A3)
∫ T
0 (‖utt(t)‖

2
2 + ‖θtt(t)‖

2
2 + ‖uttt(t)‖

2
0 + ‖θttt(t)‖

2
0 + ‖ptt(t)‖

2
1) dt 6M.

Under the assumption (A1), for all T > 0 and 0 < t 6 T , the solutions (u, p, θ) of

problem (1.1) satisfy (see [16], [19], [22])

(2.5) sup
t∈[0,T ]

(‖u(t)‖2 + ‖ut(t)‖0 + ‖θ(t)‖2 + ‖θt(t)‖0 + ‖p(t)‖1) 6M.

3. Stabilities of the projection schemes

In this section, we consider the stabilities of the projection numerical schemes

under some assumptions presented in Section 2.

Theorem 3.1. Under the assumptions of (A1)–(A3), for α > 1
4 and all J =

0, 1, . . . , [T/∆t]− 1, the following inequalities for schemes (2.3)–(2.4) hold:

(
1−

1

4α

)
‖uJ+1‖20 + ν∆t

J∑

n=0

‖un+1/2‖21 6 s20, ‖θJ+1‖20 + λν∆t

J∑

n=0

‖θn+1/2‖21 6 s21,

where s20 = ‖u1‖20+
1
2α∆t

2(‖p1‖21+‖p0‖21)+2C2
1T f

2
∞/ν+2C4

1k
2ν2s21/λ, s

2
1 6 ‖θ1‖20+

C2
1Tg

2
∞/(λν).

P r o o f. We derive from (1.8) that

(3.1) ∇ · (un+1 + un)− α∆t(∆pn+1 −∆pn−1) = 0.

Consider the inner product of (1.7) with 2∆tun+1/2 and 2∆tθn+1/2, respectively.

Further, take the inner product of (3.1) with ∆tpn, and sum up these relations.

Thanks to (2.2) and the algebraic relations

(a− b, 2a) = |a|2 − |b|2 + |a− b|2, (a− b, 2b) = |a|2 − |b|2 − |a− b|2,(3.2)

(a− b, a+ b) = |a|2 − |b|2,

we derive that

(3.3)





‖un+1‖20 − ‖un‖20 + 2ν∆t‖un+1/2‖21 + α∆t2(∇pn+1 −∇pn−1,∇pn)

= 2∆t(f(tn+1/2),u
n+1/2)− 2kν2∆t(jθn+1/2,un+1/2),

‖θn+1‖20 − ‖θn‖20 + 2λν∆t‖θn+1/2‖21 = 2∆t(g(tn+1/2), θ
n+1/2).
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Using the inequality (3.2), we find

(3.4) (∇pn+1 −∇pn−1,∇pn)

= (∇pn+1 −∇pn,∇pn) + (∇pn −∇pn−1,∇pn)

6
1

2
(‖pn+1‖21 − ‖pn−1‖21 + ‖pn − pn−1‖21 − ‖pn+1 − pn‖21).

For the right-hand side terms of (3.3) we have

(3.5) |−2kν2∆t(jθn+1/2,un+1/2)| 6 2kν2∆t‖θn+1/2‖0‖u
n+1/2‖0

6
ν∆t

2
‖un+1/2‖21 + 2C2

1k
2ν3∆t‖θn+1/2‖20,

|2∆t(f(tn+1/2),u
n+1/2)| 6 2∆t‖f(tn+1/2)‖0‖u

n+1/2‖0

6
ν∆t

2
‖un+1/2‖21 +

2C2
1∆t

ν
‖f(tn+1/2)‖

2
0,

|2∆t(g(tn+1/2), θ
n+1/2)| 6 2∆t‖g(tn+1/2)‖0‖θ

n+1/2‖0

6 λν∆t‖θn+1/2‖21 +
C2

1∆t

λν
‖g(tn+1/2)‖

2
0.

By the above inequalities together with (3.3) and summing (3.3) for n from 1 to J ,

we get

‖uJ+1‖20 +
α∆t2

2
(‖pJ+1‖21 + ‖pJ‖21) + ν∆t

J∑

n=1

‖un+1/2‖21(3.6)

6 ‖u1‖20 +
α∆t2

2
(‖p1‖21 + ‖p0‖21) +

α∆t2

2
‖pJ+1 − pJ‖21

+ 2C2
1k

2ν3∆t

J∑

n=0

‖θn+1/2‖20 +
2C2

1∆t

ν

J∑

n=1

‖f(tn+1/2)‖
2
0,

‖θJ+1‖20 + λν∆t

J∑

n=1

‖θn+1/2‖21 6 ‖θ1‖20 +
C2

1∆t

λν

J∑

n=1

‖g(tn+1/2)‖
2
0.(3.7)

Let n = J . Taking the inner product of (1.8) with pJ+1 − pJ , we get

α∆t‖pJ+1 − pJ‖21 = (uJ+1,∇pJ+1 −∇pJ)

6 ‖uJ+1‖0‖p
J+1 − pJ‖1 6

1

2α∆t
‖uJ+1‖20 +

α∆t

2
‖pJ+1 − pJ‖21,

which gives the inequality

(3.8) α∆t2‖pJ+1 − pJ‖21 6
1

α
‖uJ+1‖20.
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As a consequence, we have

(3.9)
α∆t2

2
‖pJ+1 − pJ‖21 6

1

4α
‖uJ+1‖20 +

α∆t2

4
‖pJ+1 − pJ‖21

6
1

4α
‖uJ+1‖20 +

α∆t2

2
(‖pJ+1‖21 + ‖pJ‖21).

Substituting (3.7) and (3.9) into (3.6), we deduce that

(
1−

1

4α

)
‖uJ+1‖20 + ν∆t

J∑

n=1

‖un+1/2‖21 6 ‖u1‖20 +
α∆t2

2
(‖p1‖21 + ‖p0‖21)

+
2C4

1k
2ν2

λ

(
‖θ1‖20 +

C2
1Tg

2
∞

λν

)
+

2C2
1T f

2
∞

ν
,

‖θJ+1‖20 + λν∆t

J∑

n=1

‖θn+1/2‖21 6 ‖θ1‖20 +
C2

1Tg
2
∞

λν
.

�

Theorem 3.2. From the projection schemes (1.7)–(1.8) at n = 0, the following

stabilities for numerical solutions (u1, p1, θ1) hold:

‖u1‖20 + ν∆t‖u1/2‖21 6 s22, ‖θ
1‖20 + λν∆t‖θ1/2‖21 6 s23, ∆t

2‖p1‖21 6 s24,

where

s22 = ‖u0‖20 +
3C4

1k
2ν2s23
λ

+
3C2

1∆t

ν
‖f(t1/2)‖

2
0 +

3C2
1∆t

ν
‖p0‖21,

s23 = ‖θ0‖20 +
C2

1∆t

λν
‖g(t1/2)‖

2
0, s24 = ∆t2‖p0‖21 +

s22
α2
.

P r o o f. Taking the inner product of (1.7) at n = 0 with 2∆tu1/2 and 2∆tθ1/2,

by using (3.2), we get

(3.10)






‖u1‖20 − ‖u0‖20 + 2ν∆t‖u1/2‖21 = 2∆t(f(t1/2),u
1/2)

−2kν2∆t(jθ1/2,u1/2)− 2∆t(∇p0,u1/2),

‖θ1‖20 − ‖θ0‖20 + 2λν∆t‖θ1/2‖21 = 2∆t(g(t1/2), θ
1/2).

We derive from (3.5) that

|−2kν2∆t(jθ1/2,u1/2)| 6 2kν2∆t‖θ1/2‖0‖u
1/2‖0 6

ν∆t

3
‖u1/2‖21 + 3C2

1k
2ν3∆t‖θ1/2‖20,

|2∆t(f(t1/2),u
1/2)| 6 2∆t‖f(t1/2)‖0‖u

1/2‖0 6
ν∆t

3
‖u1/2‖21 +

3C2
1∆t

ν
‖f(t1/2)‖

2
0,

|−2∆t(∇p0,u1/2)| 6 2∆t‖p0‖1‖u
1/2‖0 6

ν∆t

3
‖u1/2‖21 +

3C2
1∆t

ν
‖p0‖21,

|2∆t(g(t1/2), θ
1/2)| 6 2∆t‖g(t1/2)‖0‖θ

1/2‖0 6 λν∆t‖θ1/2‖21 +
C2

1∆t

λν
‖g(t1/2)‖

2
0.
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Combining the above inequalities with (3.10), we find that

‖u1‖20 − ‖u0‖20 + ν∆t‖u1/2‖21 6 3C2
1k

2ν3∆t‖θ1/2‖20 +
3C2

1∆t

ν
‖f(t1/2)‖

2
0

+
3C2

1∆t

ν
‖p0‖21, ‖θ

1‖20 − ‖θ0‖20 + λν∆t‖θ1/2‖21

6
C2

1∆t

λν
‖g(t1/2)‖

2
0.

From (3.8) at J = 0 we obtain

(3.11) ∆t2‖p1‖21 −∆t2‖p0‖21 6 ∆t2‖p1 − p0‖21 6
1

α2
‖u1‖20.

The proof of Theorem 3.2 is completed. �

4. Error estimates of the projection schemes

This section is devoted to presenting the convergence of the velocity, temperature,

and pressure for the projection schemes.

In order to simplify the descriptions, for any function w(t) we denote

w̃(tn+1/2) =
1
2 (w(tn+1) + w(tn)),

and we also set

Enu = u(tn)− un, Enθ = θ(tn)− θn, qn = p(tn)− pn.

Let us define the truncation errors Rnu and R
n
θ by

(4.1)






u(tn+1)− u(tn)

∆t
− ν∆ũ(tn+1/2) + (ũ(tn+1/2) · ∇)ũ(tn+1/2) +∇p(tn)

= −kν2jθ̃(tn+1/2) + f(tn+1/2) +Rnu,

∇ · u(tn+1) = 0,

θ(tn+1)− θ(tn)

∆t
− λν∆θ̃(tn+1/2) + (ũ(tn+1/2) · ∇)θ̃(tn+1/2)

= g(tn+1/2) +Rnθ .
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Theorem 4.1. Under the assumptions (A1)–(A3), for all 0 6 J 6 [T/∆t]− 1 the

following results hold:

‖Rnu‖0 6M∆t, ‖Rnθ ‖0 6M∆t, ∆t

J∑

n=0

‖Rnu‖
2
0 6M∆t2, ∆t

J∑

n=0

‖Rnθ ‖
2
0 6M∆t2.

P r o o f. We arrange Rnu as follows:

Rnu =
(u(tn+1)− u(tn)

∆t
− ν∆ũ(tn+1/2) + (ũ(tn+1/2) · ∇)ũ(tn+1/2) +∇p̃(tn+1/2)

+ kν2jθ̃(tn+1/2)− f(tn+1/2)
)
+ (∇p(tn)−∇p̃(tn+1/2))

= Rnu1 +Rnu2.

We have proved the convergence for Rnu1 and R
n
θ in [12].

For the term Rnu2, we can easily find

Rnu2 = ∇p(tn)−∇p̃(tn+1/2) = − 1
2 (∇p(tn+1)−∇p(tn)).

Then, setting p(tn+1)− p(tn) = ∆tpt(εn), we have

‖Rnu2‖0 =
1

2
‖p(tn+1)− p(tn)‖1 = C∆t‖pt(εn) +O(∆t)‖1,

∆t
J∑

n=0

‖Rnu2‖
2
0 = C∆t3

J∑

n=0

‖pt(εn) +O(∆t)‖1 6M∆t2.(4.2)

We completed the proof. �

Theorem 4.2. Under the assumptions (A1)–(A3) and α > 1
4 , for every fixed

integer i, there exists a positive constant M such that

‖Eiu‖
2
0 + ‖Eiθ‖

2
0 +∆t2‖qi‖21 6M∆t4, ‖Eiu‖

2
1 + ‖Eiθ‖

2
1 6M∆t3.

P r o o f. From schemes (1.7)–(1.8) and (4.1), we have

(4.3)






En+1
u − Enu

∆t
− ν∆En+1/2

u +∇qn = −kν2jE
n+1/2
θ +Rnu +NLT n1 ,

En+1
θ − Enθ

∆t
− λν∆E

n+1/2
θ = Rnθ +NLT n2 ,

and

(4.4) (∇ ·En+1
u , χ) = α∆t(∇p(tn+1)−∇p(tn),∇χ)

− α∆t(∇qn+1 −∇qn,∇χ) ∀χ ∈ H1(Ω)/R,
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where

NLT n1 = −B(ũ(tn+1/2), ũ(tn+1/2)) +B(un, un+1/2)

= − 1
2B(u(tn+1)− u(tn), ũ(tn+1/2))−B(Enu , ũ(tn+1/2))−B(un, En+1/2

u ),

NLT n2 = −B(ũ(tn+1/2), θ̃(tn+1/2)) +B(un, θn+1/2)(4.5)

= − 1
2B(u(tn+1)− u(tn), θ̃(tn+1/2))−B(Enu , θ̃(tn+1/2)) −B(un, E

n+1/2
θ ).

Taking the inner product of (4.3) with 2∆tE
n+1/2
u and 2∆tE

n+1/2
θ , we get

(4.6)






‖En+1
u ‖20 − ‖Enu‖

2
0 + 2ν∆t‖E

n+1/2
u ‖21 +∆t(∇qn, En+1

u + Enu )

= 2∆t(Rnu, E
n+1/2
u )− 2kν2∆t(jE

n+1/2
θ , E

n+1/2
u ) + 2∆t(NLT n1 , E

n+1/2
u ),

‖En+1
θ ‖20 − ‖Enθ ‖

2
0 + 2λν∆t‖E

n+1/2
θ ‖21

= 2∆t(Rnθ , E
n+1/2
θ ) + 2∆t(NLT n2 , E

n+1/2
θ ).

Replacing χ by qn in (4.4), we obtain

(4.7) (∇ · En+1
u , qn) = α∆t(∇p(tn+1)−∇p(tn),∇q

n)− α∆t(∇qn+1 −∇qn,∇qn).

Since 2E
n+1/2
u = En+1

u + Enu , using (2.2), (3.2) and summing (4.6)–(4.7), we get

(4.8)





‖En+1
u ‖20 − ‖Enu‖

2
0 + 2ν∆t‖En+1/2

u ‖21

+
1

2
α∆t2(‖qn+1‖21 − ‖qn‖21 − ‖qn+1 − qn‖21)

= −∆t(∇qn, Enu ) + α∆t2(∇p(tn+1)−∇p(tn),∇q
n)

− 2kν2∆t(jE
n+1/2
θ , En+1/2

u )− 2∆tb(Enu , ũ(tn+1/2), E
n+1/2
u )

+ 2∆t(Rnu, E
n+1/2
u )−∆tb(u(tn+1)− u(tn), ũ(tn+1/2), E

n+1/2
u ),

‖En+1
θ ‖20 − ‖Enθ ‖

2
0 + 2λν∆t‖E

n+1/2
θ ‖21

= − 2∆tb(Enu , θ̃(tn+1/2), E
n+1/2
θ )

+ 2∆t(Rnθ , E
n+1/2
θ )−∆tb(u(tn+1)− u(tn), θ̃(tn+1/2), E

n+1/2
θ ).

On the other hand, setting δ = α− 1
4 , using p(tn+1)−p(tn) = ∆tpt(εn), and replacing

χ by qn+1 − qn in (4.4), we have

α∆t‖qn+1 − qn‖21 = (En+1
u ,∇qn+1 −∇qn)(4.9)

+ α∆t(∇p(tn+1)−∇p(tn),∇q
n+1 −∇qn)
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6 ∆t
(α
2
−

3δ

8

)
‖qn+1 − qn‖21 +

1

4∆t(α/2− 3δ/8)
‖En+1

u ‖20

+
3δ∆t

8
‖qn+1 − qn‖21 +M∆t‖p(tn+1)− p(tn)‖

2
1

=
α∆t

2
‖qn+1 − qn‖21 +

2

(1 + δ)∆t
‖En+1

u ‖20

+M∆t3‖pt(εn)‖
2
1.

We then derive from (4.9) that

α∆t2‖qn+1 − qn‖21 6
4

1 + δ
‖En+1

u ‖20 +M∆t4‖pt(εn)‖
2
1.

Hence,

(4.10)
α∆t2

2
‖qn+1 − qn‖21 =

(1 + δ/2)α∆t2

4
‖qn+1 − qn‖21

+
(1− δ/2)α∆t2

4
‖qn+1 − qn‖21

6
1 + δ/2

1 + δ
‖En+1

u ‖20 +M∆t4‖pt(εn)‖
2
1

+
(1− δ/2)α∆t2

2
(‖qn+1‖21 + ‖qn‖21).

Setting u(tn+1) − u(tn) = ∆tut(εn), the terms on the right-hand side of (4.8) can

be handled as follows:

|−∆t(Enu ,∇q
n)| 6 ∆t‖Enu‖0‖q

n‖1 6 ‖Enu‖
2
0 +M∆t2‖qn‖21,

|α∆t2(∇(p(tn+1)− p(tn)),∇q
n)| 6 α∆t2‖p(tn+1)− p(tn)‖1‖q

n‖1

6M∆t4‖pt(εn)‖
2
1 +M∆t2‖qn‖21,

|−2kν2∆t(jE
n+1/2
θ , En+1/2

u )| 6 2kν2∆t‖E
n+1/2
θ ‖0‖E

n+1/2
u ‖0

6
δ

8(1 + δ)
‖En+1/2

u ‖20 +M∆t2‖E
n+1/2
θ ‖20

6
δ

16(1 + δ)
‖En+1

u ‖20 +
δ

16(1 + δ)
‖Enu‖

2
0 +M∆t2‖E

n+1/2
θ ‖20,

|2∆t(Rnu, E
n+1/2
u )| 6 2∆t‖Rnu‖0‖E

n+1/2
u ‖0 6

δ

8(1 + δ)
‖En+1/2

u ‖20 +M∆t2‖Rnu‖
2
0

6
δ

16(1 + δ)
‖En+1

u ‖20 +
δ

16(1 + δ)
‖Enu‖

2
0 +M∆t2‖Rnu‖

2
0,
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|−2∆tb(Enu , ũ(tn+1/2), E
n+1/2
u )| 6 2C2∆t‖E

n
u‖1‖ũ(tn+1/2)‖2‖E

n+1/2
u ‖0

6
δ

8(1 + δ)
‖En+1/2

u ‖20 +M∆t2‖Enu‖
2
1,

6
δ

16(1 + δ)
‖En+1

u ‖20 +
δ

16(1 + δ)
‖Enu‖

2
0 +M∆t2‖Enu‖

2
1,

|−∆tb(u(tn+1)− u(tn), ũ(tn+1/2), E
n+1/2
u )|

6 C2∆t‖u(tn+1)− u(tn)‖1‖ũ(tn+1/2)‖2‖E
n+1/2
u ‖0

6
δ

8(1 + δ)
‖En+1/2

u ‖20 +M∆t4‖ut(εn)‖
2
1

6
δ

16(1 + δ)
‖En+1

u ‖20 +
δ

16(1 + δ)
‖Enu‖

2
0 +M∆t4‖ut(εn)‖

2
1,

|2∆t(Rnθ , E
n+1/2
θ )| 6 2∆t‖Rnθ ‖0‖E

n+1/2
θ ‖0 6

1

3
‖E

n+1/2
θ ‖20 +M∆t2‖Rnθ ‖

2
0

6
1

6
‖En+1

θ ‖20 +
1

6
‖Enθ ‖

2
0 +M∆t2‖Rnθ ‖

2
0,

|−2∆tb(Enu , θ̃(tn+1/2), E
n+1/2
θ )| 6 2C3∆t‖E

n
u‖1‖θ̃(tn+1/2)‖2‖E

n+1/2
θ ‖0

6
1

3
‖E

n+1/2
θ ‖20 +M∆t2‖Enu‖

2
1 6

1

6
‖En+1

θ ‖20 +
1

6
‖Enθ ‖

2
0 +M∆t2‖Enu‖

2
1,

|−∆tb(u(tn+1)− u(tn), θ̃(tn+1/2), E
n+1/2
θ )|

6 C3∆t‖u(tn+1)− u(tn)‖1‖θ̃(tn+1/2)‖2‖E
n+1/2
θ ‖0

6
1

3
‖E

n+1/2
θ ‖20 +M∆t4‖ut(εn)‖

2
1 6

1

6
‖En+1

θ ‖20 +
1

6
‖Enθ ‖

2
0 +M∆t4‖ut(εn)‖

2
1.

Combining the above inequalities and (4.10) with (4.8), we obtain

(4.11)






δ

4(1 + δ)
‖En+1

u ‖20 + 2ν∆t‖En+1/2
u ‖21 +

δα∆t2

4
‖qn+1‖21

6M‖Enu‖
2
0 +M∆t2‖qn‖21 +M∆t2‖Rnu‖

2
0 +M∆t2‖Enu‖

2
1

+M∆t4‖pt(εn)‖
2
1 +M∆t2‖E

n+1/2
θ ‖20 +M∆t4‖ut(εn)‖

2
1,

1

2
‖En+1

θ ‖20 + 2λν∆t‖E
n+1/2
θ ‖21

6M‖Enθ ‖
2
0 +M∆t2‖Rnθ ‖

2
0 +M∆t2‖Enu‖

2
1 +M∆t4‖ut(εn)‖

2
1.

First, we present the results of Theorem 4.2 at i = 1.

Since E0
u = E0

θ = q0 = 0, thanks to Theorem 4.1, problem (4.11) at n = 0 can be

transformed to

1

2
‖E1

θ‖
2
0 + 2λν∆t‖E

1/2
θ ‖21(4.12)

6M‖E0
θ‖

2
0 +M∆t2‖R0

θ‖
2
0 +M∆t2‖E0

u‖
2
1 +M∆t4‖ut(ε0)‖

2
1

=M∆t2‖R0
θ‖

2
0 +M∆t4‖ut(ε0)‖

2
1 6M∆t4,
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δ

4(1 + δ)
‖E1

u‖
2
0 + 2ν∆t‖E1/2

u ‖21 +
δα∆t2

4
‖q1‖21(4.13)

6M‖E0
u‖

2
0 +M∆t2‖q0‖21 +M∆t2‖R0

u‖
2
0 +M∆t2‖E0

u‖
2
1

+M∆t4‖pt(ε0)‖
2
1 +M∆t2‖E

1/2
θ ‖20 +M∆t4‖ut(ε0)‖

2
1

=M∆t2‖R0
u‖

2
0 +M∆t4‖pt(ε0)‖

2
1 +M∆t2‖E1

θ‖
2
0 +M∆t4‖ut(ε0)‖

2
1

6M∆t4.

From (4.12) and the triangle inequality, we get that

‖E1
u‖

2
0 + ‖E1

θ‖
2
0 +∆t2‖q1‖21 6M∆t4,

‖E1
u‖

2
1 6 ‖2E1/2

u ‖21 + ‖E0
u‖

2
1 6M∆t3,

‖E1
θ‖

2
1 6 ‖2E

1/2
θ ‖21 + ‖E0

θ‖
2
1 6M∆t3.

Secondly, assuming that Theorem 4.2 holds for all i 6 m− 1, we have

‖Em−1
u ‖20 + ‖Em−1

θ ‖20 +∆t2‖qm−1‖21 6M∆t4,

‖Em−1
u ‖21 6 ‖2Em−3/2

u ‖21 + ‖Em−2
u ‖21 6M∆t3,

‖Em−1
θ ‖21 6 ‖2E

m−3/2
θ ‖21 + ‖Em−2

θ ‖21 6M∆t3.(4.14)

Finally, we begin to verify that Theorem 4.2 is true at i = m.

Letting n = m − 1 in (4.11), under the established conditions of (4.14) and

‖E
m−1/2
θ ‖20 6 ‖Emθ ‖20 + ‖Em−1

θ ‖20, we derive

(4.15)






1

2
‖Emθ ‖20 + 2λν∆t‖E

m−1/2
θ ‖21 6M‖Em−1

θ ‖20 +M∆t2‖Rm−1
θ ‖20

+M∆t2‖Em−1
u ‖21 +M∆t4‖ut(εm−1)‖

2
1 6M∆t4,

δ

4(1 + δ)
‖Emu ‖20 + 2ν∆t‖Em−1/2

u ‖21 +
δα∆t2

4
‖qm‖21 6M‖Em−1

u ‖20

+M∆t2‖qm−1‖21 +M∆t2‖Rm−1
u ‖20 +M∆t2‖Em−1

u ‖21

+M∆t4‖pt(εm−1)‖
2
1 +M∆t2‖E

m−1/2
θ ‖20 +M∆t4‖ut(εm−1)‖

2
1

6M∆t4.

Hence,

‖Emu ‖21 6 ‖2Em−1/2
u ‖21 + ‖Em−1

u ‖21 6M∆t3,

‖Emθ ‖21 6 ‖2E
m−1/2
θ ‖21 + ‖Em−1

θ ‖21 6M∆t3.(4.16)

By the mathematical induction and deduction methods, we complete the proof. �
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R em a r k 4.1. Assume the initial data (u0, p0, θ0) for the schemes (1.7)–(1.8)

satisfies

‖u0 − u(t0)‖0 + ‖θ0 − θ(t0)‖0 6 C∆t2,(4.17)

‖u0 − u(t0)‖1 + ‖θ0 − θ(t0)‖1 6 C∆t3/2,

‖p0 − p(t0)‖1 6 C∆t.(4.18)

Then we can get the convergence of strongly second order in time for the velocity

and temperature and of strongly first order in time for the pressure.

R em a r k 4.2. Assume that we are given initial data (u0, φ0, θ0) which are the cor-

responding approximations to (u(t0), p(t0), θ(t0)) for the projection schemes (1.2)–

(1.3) and (1.5)–(1.6). If the initial data satisfy (4.17) and

‖φ0 − p(t0)‖1 6 C∆t,

or the schemes start with (u0, θ0) = (u(t0), θ(t0)) and ‖φ0 − p(t0)‖1 6 C∆t, we can

also achieve the same results as those in Theorem 4.2.
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