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Abstract. We use the general Riemann approach to define the Stratonovich integral with
respect to Brownian motion. Our new definition of Stratonovich integral encompass the
classical Stratonovich integral and more importantly, satisfies the ideal Itô formula without
the “tail” term, that is,

f(Wt) = f(W0) +

∫ t

0

f
′(Ws) ◦ dWs.

Further, the condition on the integrands in this paper is weaker than the classical one.
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1. Introduction

Since the 1950s, Henstock and Kurzweil independently introduced a Riemann-type

definition of integrals using non-uniform meshes (where meshes vary from point to

point) [5], [6]. This approach makes it possible to give an alternative definition of

the Itô integral with respect to Brownian motion using Riemann sums [7], [9], [13],

[14], [16], [17]. Protter [13] and Toh [1], [15] used this Riemann approach to define

the stochastic integral with respect to a semimartingale. This new approach turned

out to encompass the classical stochastic integral.

Based on the success of using the Henstock-Kurzweil method in defining the Itô in-

tegral, we believe that we also can define the Stratonovich integral using this method

as well.
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Gradinaru and Nourdin [3], [10] showed that the classical Stratonovich formula

holds with respect to fractional Brownian motion and converges in law in the Skoro-

hod space of the right continuous functions with left limit. One approach of defining

the Stratonovich integral is to define it as the sum of an Itô integral and an addi-

tional term (see [4], [12]). We tap on this definition to consider a new way to define

the Stratonovich integral using the Henstock-Kurzweil approach. We will also show

that the two integrals, that is, the classical Stratonovich integral and the Henstock-

Kurzweil Stratonovich integral, agree.

To align with the classical definition of the Stratonovich integral with Brownian

motion, we consider the case where the integrands are continuous.

2. Classical Stratonovich integral

In this section, we present the definition of the Brownian motion and of its prop-

erties, and the definition of the classical Stratonovich integral.

Definition 2.1. Let (Ω,F , P ) be a probability space. A one-dimensional stan-

dard Brownian motion is a real-valued process Wt = {W (ω, t), t > 0, ω ∈ Ω} that

has the following properties:

(a) If t0 < t1 < . . . < tn, then Wt0 , Wt1 −Wt0 , . . . ,Wtn −Wtn−1
are independent.

(b) If s, t > 0 then P (Ws+t −Ws ∈ A) =
∫
A(2πt)−1/2 exp(−x2/2t) dx.

(c) With probability one, t → Wt is continuous and W0 = 0.

Due to (a) and (b), Wt has independent increment and the increment Ws+t −Ws

has a normal distribution with mean 0 and variance t. It is not difficult to verify

that E(Wt) = 0 and E[WtWs] = min{s, t} = s∧ t and E(Wt−Ws)
4 = 3(t− s)2 (see,

for example [2], page 302).

Let C2(R) denote the class of functions which have continuous second derivatives.

Definition 2.2 (see [12], page 75, and [4], page 156). If f ∈ C2(R), then the clas-

sical Stratonovich integral (henceforth, Stratonovich integral) of f(Wt) with respect

to the standard Brownian motion Wt is

(2.1)

∫ t

0

f(Ws) ◦ dWs ,

∫ t

0

f(Ws) dWs +
1

2

∫ t

0

f ′(Ws) ds

where the first integral on the right-hand side of (2.1) is the classical Itô integral and

the other one is the Lebesgue integral.

We know that if f ∈ C2(R) and W is a Brownian motion, then f(Wt) is a semi-

martingale (see [4], page 149). This is the setting for which the classical Stratonovich

integral is defined.
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R em a r k. For any fixed ω ∈ Ω and t > 0, Wt is bounded for 0 6 s 6 t, so

f(Ws) is bounded on this interval. By Itô integral definition (see [4], page 146),∫ t

0
f(Ws) dWs is a continuous local martingale. Also,

∫ t

0
f ′(Wt) ds is well-defined

since f ′(Wt) is continuous. Therefore, the condition on f ∈ C2 guarantees that∫ t

0 f(Wt) ◦ dWs is well-defined. In other words, for f ∈ C2 the Stratonovich integral

of f(Wt) with respect to the standard Brownian motion Wt exists.

3. Henstock-Kurzweil approach to define Stratonovich

integral with respect to Brownian motion

In this section, we still keep the δ-fine division introduced in [9], page 52,

and [15], to define the Stratonovich integral. To be consistent with the result

of the Stratonovich integral, we shall modify the definition of the Itô-McShane

integral in [9], page 52.

Definition 3.1 (see [14], [15]). Let 0 = ξ1 < . . . < ξn < ξn+1 = 1 and let Ik
be a compact subinterval of [0, 1] for k = 1, . . . , n. Let δ : [0, 1] → R

+. A finite

collection of interval-point pairs D = (Ik, ξk)
n
k=1 is called a (δ, η)-fine belated partial

division of [0, 1] if Ik, k = 1, . . . , n, are non-overlapping subintervals of T ; and each

Ik ⊂ [ξk, ξk + δ(ξk)); and
∣∣∣[0, 1] \

n⋃
k=1

Ik

∣∣∣ < η.

Given δ(ξ) > 0, unlike in the case of a δ-fine full division of [0, 1], a δ-fine belated

full division of T may not exist. Given an example, δ(ξ) = (1− ξ)/2 on [0, 1], the

right hand side may not be covered. By the Vitali covering theorem for all η > 0,

there exists a δ-fine belated partial division D = {(Ik, ξk)}
n
k=1 (see [9], page 52,

and [15]) such that
∣∣∣

n⋃
k=1

Ik − [0, 1]
∣∣∣ < η for sufficiently large k, see [9], page 52.

In other words, we may not have a δ-fine full division of [0, 1], but we can have a

(δ, η)-fine belated partial division which covers [0, 1] except for a set of arbitrarily

small measure η.

Definition 3.2. An adapted process Yt in (Ω,Ft,P) is said to be Stratonovich-

Henstock belated (denoted by SHB) integrable with respect to the Brownian mo-

tion Wt on [0, 1] to a random variable A ∈ L2(Ω,F ,P), if for all ε > 0 there exists

a (δ, η)-fine belated partial division D = {([ξi, ti], ξi) : i = 1, 2, . . . , n} of [0, 1] such

that

E

∣∣∣∣
n∑

i=1

Yξi + Yξi+1

2
(Wti −Wξi)−A

∣∣∣∣
2

< ε

where and henceforth ξn+1 = 1.
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Proposition 3.3. If an adapted process Yt in (Ω,Ft,P) is SHB integrable with

respect to the Brownian motionWt, then the Stratonovich-Henstock belated integral

of Yt is unique almost surely.

P r o o f. Suppose both A1, A2 ∈ L2(Ω) are the Stratonovich-Henstock belated

integral of Yt. By the definition of the Stratonovich-Henstock belated integral, for

every ε > 0 there exists a (δ, η)-fine belated partial division D1 = {([ξi, ti], ξi) : i =

1, 2, . . . , n} of [0, 1] such that

E

∣∣∣∣
n∑

i=1

Yξi + Yξi+1

2
(Wti −Wξi)−A1

∣∣∣∣
2

<
1

4
ε.

And for the same ε > 0 there exists another (δ, η)-fine belated partial division D2 =

{([ξ′i, t
′
i], ξ

′
i) : i = 1, 2, . . . , n} of [0, 1] such that

E

∣∣∣∣
n∑

i=1

Yξ′
i
+ Yξ′

i+1

2
(Wt′

i
−Wξ′

i
)−A2

∣∣∣∣
2

<
1

4
ε.

Hence, for every ε > 0,

E(|A1 −A2|
2) = E

∣∣∣∣A1 −

n∑

i=1

Yξi + Yξi+1

2
(Wti −Wξi)

+

n∑

i=1

Yξ′
i
+ Yξ′

i+1

2
(Wt′

i
−Wξ′

i
)−A2

∣∣∣∣
2

6 2E

∣∣∣∣A1 −

n∑

i=1

Yξi + Yξi+1

2
(Wti −Wξi)

∣∣∣∣
2

+ 2E

∣∣∣∣
n∑

i=1

Yξ′
i
+ Yξ′

i+1

2
(Wt′

i
−Wξ′

i
)− A2

∣∣∣∣
2

<
1

2
ε+

1

2
ε = ε.

Since ε is arbitrary, we have E(|A1 −A2|
2) = 0. Hence, A1 −A2 = 0, a.s. �

In view of Proposition 3.3, we will denote the integral of the process Yt with respect

to a Brownian motion Wt by (SH)
∫ 1

0 Yt ◦ dWt , A.

Proposition 3.4. An adapted process Yt in (Ω,Ft,P) is SHB integrable with

respect to a Brownian motion Wt if and only if for every ε > 0 there exists a positive

function δ and a constant η > 0 such that whenever both D = {([ξi, ti], ξi) : i =

1, 2, . . . , n} and D′ = {([ξ′i, t
′
i], ξ

′
i) : i = 1, 2, . . . , n} are (δ, η)-fine belated partial

divisions of [0, 1], then

E

∣∣∣∣
n∑

i=1

Yξi + Yξi+1

2
(Wti −Wξi)−

n∑

i=1

Yξ′
i
+ Yξ′

i+1

2
(Wt′

i
−Wξ′

i
)

∣∣∣∣
2

< ε.
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P r o o f. Suppose that the adapted process Yt in (Ω,Ft,P) is SHB integrable with

respect to a Brownian motion Wt to A. Then for every ε > 0 there exists a positive

function δ and a constant η > 0 such that for any (δ, η)-fine belated partial division

D = {([ξi, ti], ξi) : i = 1, 2, . . . , n} of [0, 1] we have

(3.1) E

∣∣∣∣
n∑

i=1

Yξi + Yξi+1

2
(Wti −Wξi)−A

∣∣∣∣
2

<
ε

4
.

Let D′ = {([ξ′i, t
′
i], ξ

′
i) : i = 1, 2, . . . , n} be another (δ, η)-fine belated partial division

of [0, 1]. Then we have

(3.2) E

∣∣∣∣
n∑

i=1

Yξ′
i
+ Yξ′

i+1

2
(Wt′

i
−Wξ′

i
)−A

∣∣∣∣
2

<
ε

4
.

From (3.1) and (3.2) we have

E

∣∣∣∣
n∑

i=1

Yξi + Yξi+1

2
(Wti −Wξi)−

n∑

i=1

Yξ′
i
+ Yξ′

i+1

2
(Wt′

i
−Wξ′

i
)

∣∣∣∣
2

< 2E

∣∣∣∣
n∑

i=1

Yξi + Yξi+1

2
(Wti −Wξi)−A

∣∣∣∣
2

+ 2E

∣∣∣∣
n∑

i=1

Yξ′
i
+ Yξ′

i+1

2
(Wt′

i
−Wξ′

i
)−A

∣∣∣∣
2

< ε.

Conversely, for every ε > 0 there is a (δ, η)-fine belated partial division D =

{([ξi, ti], ξi) : i = 1, 2, . . . , n} of [0, 1] such that for any (δ, η)-fine belated partial

division Dj = {([ξji , t
j
i ], ξ

j
i ) : i = 1, 2, . . . , n} ; j = 1, 2, . . ., of [0, 1] we have

E

∣∣∣∣
n∑

i=1

Yξi + Yξi+1

2
(Wti −Wξi)−

n∑

i=1

Yξj
i
+ Yξj

i+1

2
(Wtj

i
−Wξj

i
)

∣∣∣∣
2

< ε.

For brevity, we may write ‖D(Y )−Dj(Y )‖2 < ε. Hence, for all j we have

‖D(Y )−Dj(Y )‖2 < ε ⇒ 2‖D(Y )−Dj(Y )‖2 + 2‖D(Y )‖2 < ε+ 2‖D(Y )‖2

⇒ ‖Dj(Y )‖2 < ε+ 2‖D(Y )‖2.

Therefore, the sequence {‖Dj(Y )‖2}∞j=1 is bounded, i.e., the upper limit exists. Let

a random variable A be the upper limit of the sequence {‖Dj(Y )‖2}∞j=1. In other

words, there exists a subsequence {‖Djk(Y )‖2}∞k=1 such that lim
k→∞

‖Djk(Y )‖ = A.
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Hence, for the same ε > 0 exists k′ ∈ N, such that ‖Djk′ (Y ) − A‖ < ε. Now,

whenever Dj is a (δ, ε)-fine belated partial division then

‖Dj(Y )−A‖2 < ‖Dj(Y )−Djk′ (Y ) +Djk′ (Y )−A‖2

< ‖Dj(Y )−Djk′ (Y )‖2 + ‖Djk′ (Y )−A‖2 < 2ε.

That is, Yt is SHB integrable. �

Proposition 3.5. Let Xt and Yt be adapted processes on [0, 1] which are SHB

integrable with respect to Wt, and α ∈ R. Then Xt + Yt, αXt are SHB integrable

with respect to Wt on [0, 1]. Furthermore,

(i) (SH)
∫ 1

0
(Xt + Yt) ◦ dWt = (SH)

∫ 1

0
Xt ◦ dWt + (SH)

∫ 1

0
Yt ◦ dWt,

(ii) (SH)
∫ 1

0 αXt ◦ dWt = α(SH)
∫ 1

0 Xt ◦ dWt.

P r o o f. (i) Let (SH)
∫ 1

0
Xt ◦ dWt = A1, (SH)

∫ 1

0
Yt ◦ dWt = A2.

By the definition of the SHB integral, for every ε > 0 there is a (δ1, η1)-fine belated

partial division D1 = {([ξ′i, t
′
i], ξ

′
i) : i = 1, 2, . . . , n} of [0, 1] such that

E

∣∣∣∣
n∑

i=1

Xξ′
i
+Xξ′

i+1

2
(Wt′

i
−Wξ′

i
)−A1

∣∣∣∣
2

<
ε

4
.

Similarly, for the same ε > 0, there is a (δ2, η2)-fine belated partial division D2 =

{([ξ′′i , t
′′
i ], ξ

′′
i ) : i = 1, 2, . . . , n} of [0, 1] such that

E

∣∣∣∣
n∑

i=1

Yξ′′
i
+ Y ′′

ξi+1

2
(Wt′′

i
−Wξ′′

i
)−A2

∣∣∣∣
2

<
ε

4
.

Now let D , D1 ∪ D2, i.e., the division points and associated points of D are the

union of those from D1 and D2. Then D = {([ξi, ti], ξi) : i = 1, 2, . . . , n} is a (δ, η)-

fine belated partial division including the (δ, η)-fine belated partial division D1 and

the (δ, η)-fine belated partial division D2. Hence, for the same ε > 0,

E

∣∣∣∣
n∑

i=1

[Xξi +Xξi+1

2
+

Yξi + Yξi+1

2

]
(Wti −Wξi)−A1 − A2

∣∣∣∣
2

6 2E

∣∣∣∣
n∑

i=1

Xξi +Xξi+1

2
(Wti −Wξi)−A1

∣∣∣∣
2

+ 2E

∣∣∣∣
n∑

i=1

Yξi + Yξi+1

2
(Wti −Wξi)−A2

∣∣∣∣
2

< ε.
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In other words,

(3.3) (SH)

∫ 1

0

(Xt + Yt) ◦ dWt = A1 +A2 = (SH)

∫ 1

0

Xt ◦ dWt + (SH)

∫ 1

0

Yt ◦ dWt.

(ii) Assume that α 6= 0 (since α = 0 is trivial). Since the adapted process Xt on

[0, 1] is SHB integrable, then by the definition, for every ε > 0 there is a (δ3, η3)-fine

belated partial division D3 = {([ξi, ti], ξi) : i = 1, 2, . . . , n} of [0, 1] such that

(3.4) E

∣∣∣∣
n∑

i=1

Xξi +Xξi+1

2
(Wti −Wξi )−A1

∣∣∣∣
2

<
ε

α2
.

Then,

E

∣∣∣∣
n∑

i=1

αXξi + αXξi+1

2
(Wti −Wξi)− αA1

∣∣∣∣
2

= α2E

∣∣∣∣
n∑

i=1

Xξi +Xξi+1

2
(Wti −Wξi )−A1

∣∣∣∣
2

< ε.

By the definition of the SHB integral, we have (SH)
∫ 1

0
αXt ◦ dWt = αA1 =

α(SH)
∫ 1

0 Xt ◦ dWt. �

Proposition 3.6. If an adapted process Yt is SHB integrable with respect to Wt

on [0, 1], then so it is on any subinterval [c, d] of [0, 1].

P r o o f. Take any two (δ, η/2)-fine belated partial divisions D = {([ξi, ti], ξi) : i =

1, 2, . . . , n} of [c, d] and D′ = {([ξ′i, t
′
i], ξ

′
i) : i = 1, 2, . . . , n} of [c, d] and denote by A1

and A2, respectively, the Riemann sums over D and D′. That is,

A1 =
∑

D

Yξi + Yξi+1

2
(Wti −Wξi),(3.5)

A2 =
∑

D′

Yξ′
i
+ Yξ′

i+1

2
(Wt′

i
−Wξ′

i
).(3.6)

Similarly, take another (δ, η/2)-fine belated partial division D′′ = {([ξ′′i , t
′′
i ], ξ

′′
i ) : i =

1, 2, . . . , n} of [0, 1] \ [c, d] and denote by A3 the corresponding Riemann sum, i.e.,

A2 =
∑
D′′

(Yξ′′
i
+ Yξ′′

i+1
)(Wt′′

i
−Wξ′′

i
)/2. Then the union D ∪ D′′ forms a (δ, η)-fine

belated partial division of [0, 1]. Here, the division points and the associated points

of D ∪ D′′ are the union of those from D and D′′. The Riemann sum of Yt over

D ∪D′′ is A1 +A3, and likewise, that over D
′ ∪D′′ is A2 +A3. By Proposition 3.4,

we have E|A1 − A2|
2 6 E|A1 + A3 − (A2 + A3)|

2 < ε for all ε > 0. Hence, the

process Yt is SHB integrable on the interval [c, d] by Proposition 3.4. �
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Now, we say that Yt · χ[c,d] is SHB integrable on [0, 1] if Yt is SHB integrable on

[c, d] ⊂ [0, 1], where χ[c,d] is the characteristic function of [c, d] (see [8]).

Proposition 3.7. Let an adapted process Yt be SHB integrable on [0, a] and [a, 1]

with respect to Wt. Then Yt is SHB integrable on [0, 1] and furthermore,

(3.7) (SH)

∫ 1

0

Yt ◦ dWt = (SH)

∫ a

0

Yt ◦ dWt + (SH)

∫ 1

a

Yt ◦ dWt.

P r o o f. First, we have

(SH)

∫ 1

0

Yt · χ[0,a] ◦ dWt = (SH)

∫ a

0

Yt ◦ dWt,

(SH)

∫ 1

0

Yt · χ[a,1] ◦ dWt = (SH)

∫ 1

a

Yt ◦ dWt.

Then, by Proposition 3.5, we have

(SH)

∫ 1

0

Yt · χ[0,a] ◦ dWt + (SH)

∫ 1

0

Yt · χ[a,1] ◦ dWt

= (SH)

∫ 1

0

(Yt · χ[0,a] + Yt · χ[a,1]) ◦ dWt.

Since, Yt · χ[0,a] + Yt · χ[a,1] = Yt · χ[0,1], then we get

(SH)

∫ 1

0

Yt · χ[0,1] ◦ dWt = (SH)

∫ 1

0

Yt ◦ dWt

= (SH)

∫ a

0

Yt ◦ dWt + (SH)

∫ 1

a

Yt ◦ dWt.

�

4. Itô formula for SHB integral

As far as we know, one of the most important properties of the Stratonovich

integral is that there is no second order term in the classical Stratonovich analogue

of the Itô transformation formula (see [11], page 44). Therefore, in the following part

we will verify the Itô formula for the SHB integral. Simply, we will prove the formula

(4.1) f(Wt) = f(W0) + (SH)

∫ t

0

f ′(Ws) ◦ dWs

where f is of class C2(R).
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Lemma 4.1. If f(x) ∈ C2(R) with bounded first and second derivatives, then

the adapted process f(Wt) is SHB integrable with respect to the Brownian motion

to
∫ t

0
f(Ws) ◦ dWs on [0, 1].

P r o o f. Let D = {([ξi, ti], ξi) : i = 1, 2, . . . , n} be a belated partial divi-

sion (see [15]) of [0, 1]. By the mean value theorem, (f(Wξi) + f(Wξi+1
))/2 =

f(Wξi) + [f(Wξi+1
)− f(Wξi)]/2 = f(Wξi) + ∂f/∂x[(W̃i)(Wξi+1

−Wξi)]/2, where

W̃i ∈ [Wξi ,Wξi+1
]. Since Wt is continuous with respect to t, there is a ξ̂i ∈ [ξi, ξi+1]

such that Wξ̂i
= W̃i a.s. We have

E

∣∣∣∣
n∑

i=1

1

2
(f(Wξi ) + f(Wξi+1

))(Wti −Wξi)−

∫ 1

0

f(Wt) ◦ dWt

∣∣∣∣
2

= E

∣∣∣∣
n∑

i=1

[
f(Wξi) +

1

2

∂f(Wξ̂i
)

∂x
(Wξi+1

−Wξi)
]
(Wti −Wξi)−

∫ 1

0

f(Wt) ◦ dWt

∣∣∣∣
2

= E

∣∣∣∣
n∑

i=1

[
f(Wξi) +

1

2

∂f(Wξ̂i
)

∂x
(Wξi+1

−Wξi)
]
(Wti −Wξi)

−

∫ 1

0

f(Wt) dWt −
1

2

∫ 1

0

∂f

∂x
(Wt) dt

∣∣∣∣
2

6 2E

∣∣∣∣
n∑

i=1

f(Wξi)(Wti −Wξi)−

∫ 1

0

f(Wt) dWt

∣∣∣∣
2

+ E

∣∣∣∣
n∑

i=1

∂f

∂x
(Wξ̂i

)(Wti −Wξi)(Wξi+1
−Wξi)−

∫ 1

0

∂f

∂x
(Wt) dt

∣∣∣∣
2

= 2R1 +R2

where

R1 = E

∣∣∣∣
n∑

i=1

f(Wξi)(Wti −Wξi)−

∫ 1

0

f(Wt) dWt

∣∣∣∣
2

and

R2 = E

∣∣∣∣
n∑

i=1

∂f

∂x
(Wξ̂i

)(Wti −Wξi)(Wξi+1
−Wξi)−

∫ 1

0

∂f

∂x
(Wt) dt

∣∣∣∣
2

.

In the previous paper [15], we have already proved that for every ε > 0 there exists

a (δ1, η1)-fine belated partial division D1 = {([ξi, ti], ξi) : i = 1, 2, . . . , n} of [0, 1] such

that R1 < ε. We now consider R2:

R2 = E

∣∣∣∣
n∑

i=1

∂f

∂x
(Wξ̂i

)(Wti −Wξi )(Wξi+1
−Wξi)−

∫ 1

0

∂f

∂x
(Wt) dt

∣∣∣∣
2
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6 2E

∣∣∣∣
n∑

i=1

∂f

∂x
(Wξ̂i

)(Wti −Wξi)(Wξi+1
−Wti)

∣∣∣∣
2

+ 2E

∣∣∣∣
n∑

i=1

∂f

∂x
(Wξ̂i

)(Wti −Wξi )(Wti −Wξi)−

∫ 1

0

∂f

∂x
(Wt) dt

∣∣∣∣
2

= 2b1 + 2b2

where

b1 = E

∣∣∣∣
n∑

i=1

∂f

∂x
(Wξ̂i

)(Wti −Wξi)(Wξi+1
−Wti)

∣∣∣∣
2

=

n∑

i=1

M × E(Wti −Wξi)
2 × E(Wξi+1

−Wti)
2,

b2 = E

∣∣∣∣
n∑

i=1

∂f

∂x
(Wξ̂i

)(Wti −Wξi)(Wti −Wξi)−

∫ 1

0

∂f

∂x
(Wt) dt

∣∣∣∣
2

where M , sup{f ′(Wt) : 0 6 t 6 1; ω ∈ Ω}. Since E(Wξi+1
−Wti)

2 = ξi+1 − ti and∣∣∣[0, 1] \
n⋃

i=1

[ξi, ti]
∣∣∣ < η, we have b1 < Mη. Further,

b2 = E

∣∣∣∣
n∑

i=1

∂f

∂x
(Wξ̂i

)(Wti −Wξi)(Wti −Wξi)−

∫ 1

0

∂f

∂x
(Wt) dt

∣∣∣∣
2

6 E

∣∣∣∣
n∑

i=1

∂f

∂x
(Wξ̂i

)(Wti −Wξi)
2 −

∂f

∂x
(Wξ̄i )(Wti −Wξi)

2

∣∣∣∣
2

+Mη

6
∥∥∥∂f
∂x

(Wξ̂i
)−

∂f

∂x
(Wξ̄i)

∥∥∥
2

∞

n∑

i=1

E|Wti −Wξi |
4 +Mη.

Since f ′(x) is bounded, ‖∂f/∂x(Wξ̂i
) − ∂f/∂x(Wξ̄i)‖

2
∞ is also bounded by a con-

stant 4M2. We choose a positive function δ < ε, that is, max
i

|ti − ξi| < ε. In

addition, E|Wti −Wξi |
4 = 3(ti − ξi)

2. Then

b2 6 4M2
n∑

i=1

C(ti − ξi)
2 +Mη 6 4M2ε

n∑

i=1

C(ti − ξi) +Mη < C′ε+Mη.

In particular, C′ is a constant number. Hence, for the same ε > 0, let δ = min{δ1, ε}

and η = η1 < ε. Whenever D = {([ξi, ti], ξi)}
i=1
n is a (δ, η)-fine belated partial

division of [0, 1] then

E

∣∣∣∣
n∑

i=1

f(Wξi) + f(Wξi+1
)

2
(Wti −Wξi)−

∫ 1

0

f(Wt) ◦ dWt

∣∣∣∣
2

< R1 + 2b1 + 2b2 < Mε

whereM is a constant. That is, f(Xt) is SHB integrable to
∫ t

0
f(Ws) ◦ dWs on [0, 1].

�
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Theorem 4.2. If f(x) ∈ C2(R) then the adapted process f(Wt) is SHB integrable

with respect to the Brownian motion to
∫ t

0 f(Ws) ◦ dWs on [0, 1].

P r o o f. We first let g(x) = f(x) · 1{|x|6m}, where m is an integer. The func-

tion g(x) has bounded first and second derivatives on the compact set {|x| 6 m}.

By Lemma 4.1, we get for all ε > 0,

(4.2) E

∣∣∣∣
n∑

i=1

g(Wξi) + g(Wξi+1
)

2
(Wti −Wξi)−

∫ 1

0

g(Wt) ◦ dWt

∣∣∣∣
2

< ε

for every (δ, η)-fine belated partial divisionD = {([ξi, ti], ξi) : i = 1, 2, . . . , n} of [0, 1].

Substituting g(x) with f(x) · 1{|x|6m} in (4.2), then

E

∣∣∣∣
n∑

i=1

f(Wξi) + f(Wξi+1
)

2
· 1{|Wt|6m}(Wti −Wξi)−

∫ 1

0

f(Wt) · 1{|Wt|6m} ◦ dWt

∣∣∣∣
2

= E

[∣∣∣∣
n∑

i=1

f(Wξi) + f(Wξi+1
)

2
(Wti −Wξi)−

∫ 1

0

f(Wt) ◦ dWt

∣∣∣∣
2

· 1{|Wt|6m}

]
< ε.

Given that lim
m→∞

f(Wt) · 1{|Wt|6m} = 1 a.s., we have

E

[∣∣∣∣
n∑

i=1

f(Wξi)+f(Wξi+1
)

2
(Wti −Wξi)−

∫ 1

0

f(Wt)◦dWt

∣∣∣∣
2

·1{|Wt|6m}

]
< ε

⇒ lim inf
m→∞

E

[∣∣∣∣
n∑

i=1

f(Wξi)+f(Wξi+1
)

2
(Wti −Wξi)−

∫ 1

0

f(Wt)◦dWt

∣∣∣∣
2

·1{|Wt|6m}

]
< ε

⇒ E

[
lim inf
m→∞

∣∣∣∣
n∑

i=1

f(Wξi)+f(Wξi+1
)

2
(Wti −Wξi)−

∫ 1

0

f(Wt)◦dWt

∣∣∣∣
2

·1{|Wt|6m}

]
< ε

⇒ E

∣∣∣∣
n∑

i=1

f(Wξi)+f(Wξi+1
)

2
(Wti −Wξi)−

∫ 1

0

f(Wt)◦dWt

∣∣∣∣
2

< ε.

Altogether, f(Wt) is SHB integrable on [0, 1]. In addition,

(4.3) (SH)

∫ 1

0

f(Wt) ◦ dWt =

∫ 1

0

f(Wt) ◦ dWt a.s.

�

E x am p l e 4.3. Using the definition of the SHB integral, verify

(SH)

∫ 1

0

Wt ◦ dWt =
1

2
W 2

1 .
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P r o o f. Let D = {([ξi, ti], ξi) : i = 1, 2, . . . , n} be a (δ, η)-fine belated partial

division of [0, 1].

E

∣∣∣∣
n∑

i=1

Wξi +Wξi+1

2
(Wti −Wξi)−

1

2
W 2

1

∣∣∣∣
2

= E

∣∣∣∣
n∑

i=1

Wξi +Wξi+1

2
(Wξi+1

−Wξi)−
1

2
W 2

1 −
Wξi +Wξi+1

2
(Wξi+1

−Wti)

∣∣∣∣
2

= E

∣∣∣∣
n∑

i=1

Wξi +Wξi+1

2
(Wξi+1

−Wti)−
Wti −Wξi

2
(Wξi+1

−Wti)

+
Wti −Wξi

2
(Wξi+1

−Wti)

∣∣∣∣
2

= E

∣∣∣∣
n∑

i=1

Wξi(Wξi+1
−Wti) +

Wξi+1
−Wti

2
(Wξi+1

−Wti)

+
Wti −Wξi

2
(Wξi+1

−Wti)

∣∣∣∣
2

6 3E

∣∣∣∣
n∑

i=1

Wξi(Wξi+1
−Wti)

∣∣∣∣
2

+ 3E

∣∣∣∣
n∑

i=1

Wξi+1
−Wti

2
(Wξi+1

−Wti)

∣∣∣∣
2

+ 3E

∣∣∣∣
n∑

i=1

Wti −Wξi

2
(Wξi+1

−Wti)

∣∣∣∣
2

= 3

n∑

i=1

EW 2
ξi(Wξi+1

−Wti)
2 +

3

2

n∑

i=1

E|(Wξi+1
−Wti)|

4

+
3

2

n∑

i=1

E(Wξi+1
−Wti)

2(Wti −Wξi)
2

6 3

n∑

i=1

(ξi+1 − ti) +
3

2

n∑

i=1

E(W1)
4(ξi − ti)

2 +
3

2

n∑

i=1

(ξi+1 − ti)(ti − ξi).

SinceD = {([ξi, ti], ξi) : i = 1, 2, . . . , n} is a (δ, η)-fine belated partial division of [0, 1],

we have
n∑

i=1

(ξi+1−ti) < η and in addition
n∑

i=1

(ξi+1−ti)
2 < η. Also, by the Itô formula,

E(W1)
4 = 4 · 3

2

∫ 1

0 EW 2
t dt = 3.

Hence, for ε > 0, let η < ε/9 and thus

E

∣∣∣∣
n∑

i=1

Wξi +Wξi+1

2
(Wti −Wξi)−

1

2
W 2

1

∣∣∣∣
2

< 3η +
9

2
η +

3

2
η < ε.

That is, (SH)
∫ 1

0
Wt ◦ dWt =

1
2W

2
1 . �
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We note that from Theorem 4.2, we obtain that if f is of class C2(R), f(Wt) is

SHB integrable to
∫ 1

0 f(Wt) ◦ dWt. Now we consider the Itô formula for Stratonovich

integral: if f ∈ C3, then

(4.4) f(Wt) = f(W0) +

∫ 1

0

f ′(Wt) ◦ dWt

and we substitute (SH)
∫ 1

0 f ′(Wt) ◦ dWt for
∫ 1

0 f ′(Wt) ◦ dWt. Then

(4.5) f(Wt) = f(W0) + (SH)

∫ 1

0

f ′(Wt) ◦ dWt.

As shown in Example 4.3 and (4.5), the SHB integral is more “natural” than the Itô

integral. There is no second order term in (4.5). This matches our intuitive sense of

the integration formula. With this slight modification of integral, we keep the form

of the fundamental theorem of calculus.

5. Conclusion

In conclusion, from the definition of the Stratonovich integral using the Henstock-

Kurzweil method, we not only keep the important properties of the classical

Stratonovich integral, but also probably enlarge the scope of the integrands which

satisfy the ideal “Itô formula”.
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