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Abstract. Certain financial market strategies are known to exhibit a hysteretic structure
similar to the memory observed in plasticity, ferromagnetism, or magnetostriction. The
main difference is that in financial markets, the spontaneous occurrence of discontinuities in
the time evolution has to be taken into account. We show that one particular market model
considered here admits a representation in terms of Prandtl-Ishlinskii hysteresis operators,
which are extended in order to include possible discontinuities both in time and in memory.
The main analytical tool is the Kurzweil integral formalism, and the main result proves the
well-posedness of the process in the space of right-continuous regulated functions.
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1. Introduction

Hysteresis and memory in economics has been a subject of interest for some time,

see, e.g., [5], [4], [7]. In the recent papers [13], [12] it was shown that the Prandtl-

Ishlinskii hysteresis model (which is popular, for example, in the control engineering

community for its simplicity and easy numerical implementation for real time control

of smart material sensors and actuators, see [15], [1]) can serve as a useful tool for

modeling economic processes. In particular, it illustrates a certain analogy between

hysteretic memory in the mechanics of plastic materials and in economics. We note
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that modeling economic processes using mechanical analogies has a long history (see,

for example, [6] for some review of applications of Phillips machines based on fluidic

logic).

The Prandtl-Ishlinskii model was introduced in [8], [17] as a linear combination of

single-yield mechanical elastoplastic elements called stops with unit elasticity modu-

lus and one threshold (yield point), see [9]. Here, we use an equivalent representation

based on the dual concept of play operators , which are complementary to the stops

in the sense that the sum of a stop and a play with the same threshold value is

the identity mapping. For our purposes, it is convenient to instead define the play

operator with possibly discontinuous inputs as the solution operator of an evolu-

tion variational inequality in the Kurzweil integral setting, as in [10]. Note that

the concept of the Kurzweil integral goes back to [16], for further information see,

e.g., [18], [20].

The main feature of the Prandtl-Ishlinskii model is that all hysteretic trajectories

can be represented by a single function called the primary response curve, possibly

shifted and rotated according to the input history. Moreover, a superposition of

two Prandtl-Ishlinskii operators is again a Prandtl-Ishlinskii operator with primary

response curve obtained by superposition of the original primary response curves.

This property, proved for the case of continuous primary response curves in [11], has

been extended to the discontinuous case in [12], where the Kurzweil integral was

used with respect to both the time and the memory variables.

The aim of this paper is to set up a rigorous mathematical background for studying

discontinuous processes with hysteresis. We first show that a discrete-time process,

describing a simple trading strategy, can be represented by a Prandtl-Ishlinskii op-

erator in a Kurzweil integral form. As the main result, we prove that this integral

defines a well-posed operator in the space of right-continuous regulated functions of

time.

The paper is structured as follows. In Section 2, we present the motivating example

of trading strategies and state Proposition 2.1 about the relation between trading

strategies and play operators. Section 3 is a survey of known results on the play

operator in the space of right-continuous regulated functions, which are used for

proving Proposition 2.1 in Section 4. The main result on the well-posedness of the

Kurzweil integral definition of the Prandtl-Ishlinskii operator in the space of right-

continuous regulated functions is stated as Proposition 5.1 and proved in Section 5.

Some consequences for the market model are given in Section 6. In Appendix A we

prove an elementary approximation formula for right-continuous BV functions.
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2. Motivating example

Consider the market in one commodity over the time interval t ∈ [0, T ]. Let q(t)

be the market price of this commodity at time t. We assume that the price is defined

by the formula

(2.1)
q(t)

p̄
= ̺κ(t)

(p(t)
p̄

)
,

where p(t) is the exogenous information stream received by the traders; p̄ is a fixed

currency unit; ̺(t) > 0 is a dimensionless quantity characterizing the market sen-

timent at time t; and κ > 0 is an empirical exponent. The exogenous information

stream is typically modeled by a random process such as, for example, geomet-

ric Brownian motion and, in reality, is determined by many factors such as changing

production costs, transportation costs, political situations, natural catastrophes, etc.

The model (2.1) is motivated by, for example, [5] where the introduction of a mar-

ket sentiment term, together with its evolution equation, is offered as a potential

explanation for rapid and/or large price movements due to coupling and cascading

effects between market participants. This is in contrast to the standard models of

mathematical finance that assume the price is only driven by the Brownian (memory-

free) exogenous new information.

In practice, financial processes are discrete in time. In this section we shall model

them with functions of time which are piecewise-constant and right-continuous.

Later, in Section 5, we extend the theory to the space of regulated and right-

continuous functions. Recall that a function f : [0, T ] → R is said to be regulated

if both the left and the right limits f(t−), f(t+) exist for each t ∈ [0, T ], with the

convention f(0−) = f(0), f(T+) = f(T ). The set of right-continuous regulated

functions is denoted by GR[0, T ], and endowed with seminorms

(2.2) ‖f‖[t1,t2] = sup{|f(t)| : t1 6 t 6 t2},

and with norm ‖f‖[0,T ]; it is a Banach space with right-continuous piecewise-constant

functions as a dense subset.

Let A be the set of traders who buy or sell the asset. They do not react to

price fluctuations continuously and will have differing approaches to risk-taking and

market forecasting. The set of strategies used in practice is vast but in [13] it was

argued that a subset of such strategies, based upon recent price changes, serves as

a useful proxy for those traders attempting to predict and profit from significant

changes in market sentiment.

We introduce threshold parameters d, a ∈ (0, 1), and divide the traders into classes

Ad,a ⊂ A parameterized by d, a according to the threshold values in their trading
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strategy. A trader α ∈ A belongs to the class Ad,a if his trading strategy with respect

to the market price evolution q ∈ GR[0, T ] is the following:

(a) If α buys the asset at time t0 at price q(t0), he keeps it until the relative decrease

with respect to the maximal value for t > t0 is larger or equal to d; that is, the

selling time is

t1 = min

{
t > t0 :

q(t)

sup{q(τ) : t0 6 τ 6 t}
6 1− d

}
.

(b) If α sells the asset at time t1 at price q(t1), he decides to buy it back if the relative

increase with respect to the minimal value for t > t1 is larger or equal a; that

is, the buying time is

t2 = min

{
t > t1 :

q(t)

inf{q(τ) : t1 6 τ 6 t}
> 1 + a

}
.

We now introduce the logarithmic input variable v(t) = log(p(t)/p), the logarith-

mic price w(t) = log(q(t)/p), and the logarithmic market sentiment σ(t) = log ̺(t),

so that we have

(2.3) w(t) = v(t) + κσ(t).

The strategies of traders from Ad,a in terms of the log-price now read:

(a′) If α buys the asset at time t0 for the log-price w(t0), the next selling time t1 is

defined as the minimum of t > t0 such that

w(t) − sup{w(τ) : t0 6 τ 6 t} 6 log(1− d).

(b′) If α sells the asset at time t1 for the log-price w(t1), the next buying time t2 is

defined as the minimum of t > t1 such that

w(t) − inf{w(τ) : t1 6 τ 6 t} > log(1 + a).

Here, for simplicity, we assume that d = d(r) and a = a(r) are functions of one

parameter r defined by

(2.4) − log(1− d(r)) = log(1 + a(r)) = r;

the general case will be treated in a subsequent paper. More specifically, we assume

the following rules:
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(a′′) If α buys the asset at time t0 for the log-price w(t0), the next selling time t1 is

defined as the minimum of t > t0 such that

w(t) − sup{w(τ) : t0 6 τ 6 t} 6 −r.

(b′′) If α sells the asset at time t1 for the log-price w(t1), the next buying time t2 is

defined as the minimum of t > t1 such that

w(t)− inf{w(τ) : t1 6 τ 6 t} > r.

All traders in Ar := Ad(r),a(r) follow the same strategy, hence, they all simultaneously

are or are not in possession of the asset. The fact of possession or non-possession of

the asset at time t is described by a function

(2.5) Sr(t) =

{
+1 if the traders from Ar possess the asset,

−1 if the traders from Ar do not possess the asset.

We need to avoid the price becoming infinitely large or infinitely small. Hence, we

fix some w0 > 0 sufficiently large and assume that

(2.6) w(t) ∈ [−w0, w0] ∀ t ∈ [0, T ].

For simplicity, we further assume that all traders sold their assets at some moment

prior to t = 0 for the log-price −w0, and let the history start at t = 0. That is,

(2.7) w(0−) = −w0, Sr(0−) = −1 ∀ r > 0

and traders from Ar start buying as soon as the log-price reaches −w0 + r. Other

choices of initial conditions are of course possible but the formulas then become more

complicated.

We now show that this model can be interpreted in terms of a hysteresis operator

well-known in continuum mechanics, more precisely, the play operator pr parame-

terized by r > 0. It was introduced in [9], first for continuous piecewise-monotone

inputs and then extended to arbitrary continuous functions by a density argument.

More specifically, if u ∈ C[0, T ] is a given function which is monotone (nondecreasing

or nonincreasing) in an interval [t0, t1], and if the output ξr(t0) ∈ [u(t0)−r, u(t0)+r]

is known, then we define ξr(t) for t ∈ [t0, t1] by the formula

(2.8) ξr(t) = ξr(t0) + Pr(u(t)− ξr(t0)),
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where Pr : R → R is the dead-zone function

(2.9) Pr(x) = max{x− r,min{0, x+ r}} for x ∈ R.

A convenient way to define the initial condition for ξr is to define the memory state

space

(2.10) Λ = {λ ∈W 1,∞
loc (0,∞) : |λ′(r)| 6 1 a.e.},

and put

(2.11) ξr(0) = λ(r) + Pr(u(0)− λ(r))

for λ ∈ Λ. We then consider the play operator as a mapping which, with a given

memory state λ and a given input u, produces the output ξr and write ξr = pr[λ, u].

This definition was extended to regulated functions in [3]. Here, we proceed dif-

ferently and use the variational definition of the play, see (3.1) below. We also

choose a special initial condition which fits with the initial condition for the trading

strategies stated in the previous paragraph, namely

(2.12) λ0(r) = min{−2w0 + r, 0},

and write for simplicity pr[u] instead of pr[λ0, u] whenever the initial memory state

is chosen as in (2.12).

We now state the following result, referring to some background material summa-

rized below in Section 3. The proof will be given at the end of Section 3.

Proposition 2.1. Let pr be the play operator defined in (3.2) with initial memory

state (2.12). Let w be a given right-continuous piecewise-constant function satisfy-

ing (2.6), and let Sr be the function defined in (2.5) by the trading strategy (a
′′), (b′′).

Then, for every t ∈ [0, T ] and every r ∈ (0, 2w0], we have

(2.13) Sr(t) = −
∂−

∂r
pr[2w](t),

where ∂−/∂r denotes the left derivative.

R em a r k 2.2. According to (2.6), traders from classes Ar for r > 2w0 are never

active in the market and the initial state Sr(t) = −1 remains for all times t ∈ [0, T ]

and all r > 2w0. This is why we restrict ourselves in Proposition 2.1 to the interval

r ∈ [0, 2w0] of potentially nontrivial processes.
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It remains to define an evolution law for the logarithmic market sentiment σ(t).

We first consider a simplified model in which the evolution of σ(t) is driven only by

the relative “strength” of the classes Ar. More specifically, we assume that there

exists a non-negative nondecreasing function ψ(r) characterizing the relative weight

of the opinion of the traders in Ar, and that

(2.14) σ(t) =

∫ 2w0

0

Sr(t) dψ(r).

In view of Remark 2.2, it makes no sense to suppose that traders from classes Ar for

r > 2w0 have any influence on the market sentiment. Thus we integrate only from 0

to 2w0 in (2.14).

Formally, we can use Proposition 2.1 and represent σ by play operators, namely

(2.15) σ(t) = −

∫ 2w0

0

∂−

∂r
pr[2w](t) dψ(r).

We will see at the beginning of Section 5 that this is a Prandtl-Ishlinskii operator Pψ
of the form (5.1), with the primary response curve ψ, that is,

(2.16) σ(t) = Pψ[2w](t).

Formula (2.3) now has the form

(2.17) 2w(t) = 2v(t) + 2κPψ[2w](t).

This is an equation for the unknown function w under a given evolution of v. It was

shown in [12] that it has, for every continuous input v, a continuous solution

w(t) =
1

2
(I − 2κPψ)

−1(2v)(t)

if and only if the function x 7→ x − 2κψ(x) admits a continuous increasing inverse

(cf. Corollary 5.6). If this condition is violated, singularities necessarily occur even

if the input stream v is regular. An example will be shown in Section 6.

We can also consider n markets for different assets but driven by one exogenous

information stream. We assume that the prices in these markets correlate so that

the price in one market is affected by the sentiment of other markets. More precisely,

we suppose that the log-price in the i-th market is defined by

(2.18) wi(t) = v(t) + κi

n∑

j=1

aijσj(t)
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with a non-negative interaction matrix A = (aij) and coefficients κi > 0. Here σi is

the logarithmic sentiment of the i-th market

(2.19) σi(t) = Pψi
[2wi],

with possibly different functions ψi. The log-prices wi(t) are then determined as

solutions of the system

(2.20) 2wi(t) = 2v(t) + 2κi

n∑

j=1

aijPψj
[2wj ](t), i = 1, . . . , n,

which is a vector counterpart of (2.17). The solvability of such systems was discussed

in [12].

3. Play operator

The main goal of this section is to give some preliminary lemmas for the proof

of Proposition 2.1. We first survey known results on the play operator pr with

threshold r > 0. The parameter r plays the role of memory variable and loosely

correlates to the memory depth of the system. For a right-continuous regulated

input u ∈ GR[0, T ], an initial memory state λ ∈ Λ, see (2.10), and a parameter

r > 0, consider the variational inequality for the unknown function ξr ∈ BVR[0, T ]:

(3.1)





ξr(0) = λ(r) + Pr(u(0)− λ(r)),

|u(t)− ξr(t)| 6 r ∀ t ∈ [0, T ],
∫ T
0 (u(t)− ξr(t)− y(t)) dξr(t) > 0 ∀ y ∈ G[0, T ], |y(t)| 6 r, ∀ t ∈ [0, T ],

where Pr is the dead-zone function (2.9). The solution ξr ∈ BVR[0, T ] of (3.1) exists

and is unique, see [14]. This enables us to define the play as the solution mapping

(3.2) pr : Λ×GR[0, T ] → BVR[0, T ] : u 7→ ξr,

and we write ξr(t) = pr[λ, u](t). Moreover, the play is Lipschitz continuous with

respect to the sup-norm. More specifically, for λ, µ ∈ Λ and u, v ∈ GR[0, T ] (see [14]):

(3.3) |pr[λ, u](t)− pr[µ, v](t)| 6 max{|λ(r)− µ(r)|, ‖u − v‖[0,t]}.

As a consequence, we also have for each 0 6 t < t+ h 6 T that

(3.4) |pr[λ, u](t+ h)− pr[λ, u](t)| 6 ‖u(·)− u(t)‖[t,t+h].
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In particular, for a piecewise-constant input

(3.5) u(t) =

m∑

j=1

uj−1χ[tj−1,tj)(t) + umχ{tm}(t),

corresponding to a division 0 = t0 < t1 < . . . < tm = T of the interval [0, T ], with

given real values u0, u1, . . . , um, the solution ξr of (3.1) has the same form

(3.6) ξr(t) =

m∑

j=1

ξj−1(r)χ[tj−1 ,tj)(t) + ξm(r)χ{tm}(t),

where χB is the characteristic function of a set B ⊂ R, that is, χB(r) = 1 if r ∈ B,

χB(r) = 0 if r /∈ B. The coefficients ξj in (3.6) are given by the recursive formula

(3.7) ξj(r) = ξj−1(r) + Pr(uj − ξj−1(r))

with ξ0(r) and Pr as in (3.1) and (2.9), respectively.

We now state and prove a few technical lemmas which will be useful in the sequel.

Lemma 3.1. Let λ ∈ Λ and u ∈ GR[0, T ] be given, and let ξr = pr[λ, u]. Let

there exist h > 0, t ∈ [0, T − h], and ω > 0 such that for all τ ∈ [t, t+ h]

(3.8) u(τ)− ξr(τ) − r 6 −ω.

Then, the function τ 7→ p̺[λ, u](τ) is nonincreasing in [t, t + h] for every ̺ > r.

Similarly, if for all τ ∈ [t, t+ h]

(3.9) u(τ)− ξr(τ) + r > ω,

then the function τ 7→ p̺[λ, u](τ) is nondecreasing in [t, t+ h] for every ̺ > r.

P r o o f. Let (3.8) hold. By [10], Lemma 2.2 we have for all t 6 a < b 6 t+h that

(3.10)

∫ b

a

(u(τ)− ξr(τ)− y(τ)) dξr(τ) > 0 ∀ y ∈ G[a, b], |y(τ)| 6 r, ∀ τ ∈ [a, b].

In particular, y(τ) = u(τ)− ξr(τ) + ω is an admissible choice. Then (3.10) yields

(3.11) −ω

∫ b

a

dξr(τ) = ω(ξr(a)− ξr(b)) > 0.

We thus have proved that τ 7→ pr[λ, u](τ) is nonincreasing in [t, t + h]. To check

that the assertion holds for all ̺ > r, it suffices to realize that the function

̺ 7→ ̺ + p̺[λ, u](t) is nondecreasing. Hence, if (3.8) holds for some r, then it

holds for all ̺ > r. The case (3.9) is similar. �
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Lemma 3.2. Let λ, µ ∈ Λ and u, v ∈ GR[0, T ] be given, and let ξr = pr[λ, u],

ηr = pr[µ, v]. Assume that u(t) > v(t) for all t in an interval [a, b] ⊂ [0, T ], and that

ξr(a) > ηr(a). Then ξr(t) > ηr(t) for all t ∈ [a, b].

P r o o f. Every right-continuous regulated function can be uniformly approxi-

mated by step functions of the form (3.5) and the play operator is continuous with

respect to uniform convergence, see [14]. Hence, it suffices to prove the statement

for piecewise-constant functions u, v as in (3.5). More precisely, we prove that if for

some j we have
ξj(r) = ξj−1(r) + Pr(uj − ξj−1(r)),

ηj(r) = ηj−1(r) + Pr(vj − ηj−1(r)),

and uj > vj , ξj−1(r) > ηj−1(r), then ξj(r) > ηj(r). Lemma 3.2 then follows by

induction. We have

ξj(r) − ηj(r) = uj − vj − (I − Pr)(uj − ξj−1(r)) + (I − Pr)(vj − ηj−1(r)).

The function (I − Pr)(x) = max{−r,min{x, r}} is nondecreasing and Lipschitz con-

tinuous with Lipschitz constant 1. In particular, (I − Pr)(x) − (I − Pr)(y) > 0 if

x > y, (I − Pr)(x) − (I − Pr)(y) > x− y if x 6 y. Hence, we have either

uj − ξj−1(r) 6 vj − ηj−1(r) =⇒ ξj(r)− ηj(r) > uj − vj > 0,

or

uj − ξj−1(r) > vj − ηj−1(r) =⇒ ξj(r) − ηj(r) > ξj−1(r) − ηj−1(r) > 0,

and the assertion follows. �

4. Proof of Proposition 2.1

The proof of Proposition 2.1 will be carried out in several steps. We fix a right-

continuous piecewise-constant function w : [0, T ] → [−w0, w0], a parameter r > 0,

and a time t ∈ [0, T ], and find all switching points 0 6 t1 < . . . < tn 6 t of Sr(τ)

in the interval [0, t], and include an artificial “switching” point t0 < 0 as a starting

point. By the choice (2.7) of the initial conditions, Sr switches from (−1)j to (−1)j+1

at the point tj , j = 0, 1, . . . , n. The following two lemmas deal separately with the

switching points and with the intermediate points.

Lemma 4.1. For all j = 0, 1, . . . , n and all ̺ ∈ [0, r] we have

p̺[2w](tj) = 2w(tj) + (−1)j̺.
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P r o o f. The statement is true for j = 0 by (2.7). We continue by induction and

assume that it holds for j− 1. Let us assume for definiteness that j is odd, the other

case is fully analogous.

Put w♭ = inf
[tj−1,tj]

w, and let t∗ ∈ [tj−1, tj ] be such that w
♭ = min{w(t∗−), w(t∗)}.

We define an auxiliary function

(4.1) w∗(t) =

{
w♭ for t ∈ [tj−1, t∗),

w(tj) for t ∈ [t∗, tj ],

and set

pr[2w
∗](tj−1) = 2w♭ + r if t∗ > tj−1,

pr[2w
∗](tj−1) = 2w(tj)− r if t∗ = tj−1.

For t∗ > tj−1 we have by the induction hypothesis

pr[2w](tj−1) = 2w(tj−1) + r > pr[2w
∗](tj−1),

and

w(t) > w∗(t) in [tj−1, t∗).

Hence, by Lemma 3.2, pr[2w](t) > pr[2w
∗](t) in [tj−1, t∗). In particular,

2w♭ + r = pr[2w
∗](t∗−) 6 pr[2w](t∗−) 6 2w(t∗−) + r.

We further have

pr[2w
∗](t∗) = max{2w(tj)− r, 2w♭ + r} = 2w(tj)− r

from the fact that tj is a switching point of Sr, and so

pr[2w](t∗) = max{2w(t∗)− r,min{pr[2w](t∗−), 2w(t∗) + r}}.

We have either w(t∗−) = w♭, pr[2w](t∗−) = 2w♭ + r, or w(t∗) = w♭ and

pr[2w](t∗−) > 2w♭ + r. In both cases we obtain

pr[2w](t∗) = max{2w(t∗)− r, 2w♭ + r} 6 pr[2w
∗](t∗).

Furthermore, w(t) 6 w∗(t) in [t∗, tj ]. Hence, by Lemma 3.2,

pr[2w](tj) 6 pr[2w
∗](tj) = 2w(tj)− r.

By definition of the play, we always have pr[2w](tj) > 2w(tj) − r. Hence,

pr[2w](tj) = 2w(tj)− r. Since p0[2w](tj) = 2w(tj) and pr is Lipschitz continuous in

r with Lipschitz constant 1, we obtain p̺[2w](tj) = 2w(tj)− ̺ for all ̺ ∈ [0, r]. �
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Lemma 4.2. Assume that the interval (tn, t] does not contain any switching point

of Sr, and assume for definiteness that n is even. Then there exists a δ > 0 such

that p̺[2w](t) = 2w♭ + ̺ for all ̺ ∈ [r − δ, r].

P r o o f. As in the proof of Lemma 4.1, let t∗ ∈ [tn, t] be such that w
♭ := inf

[tn,t]
w =

min{w(t∗−), w(t∗)}. By virtue of the trading strategy (b
′′), we have w(τ) < w♭ + r

for all τ ∈ [tn, t]. Since w is piecewise constant, there exists δ > 0 such that

(4.2) τ ∈ [t∗, t] ⇒ w(τ) 6 w♭ + r − δ.

We use again Lemma 3.2 and define auxiliary functions

(4.3) w∗(τ) =

{
w♭ for τ ∈ [tn, t∗),

w♭ + r − δ for τ ∈ [t∗, t],
w∗(τ) = w♭ for τ ∈ [tn, t],

and set p̺[2w
∗](tn) = p̺[2w∗](tn) = 2w♭ + ̺ for ̺ ∈ [r − δ, r]. If t∗ > tn, then we

argue as in the proof of Lemma 4.1 and obtain

2w♭ + ̺ = p̺[2w
∗](t∗−) 6 p̺[2w](t∗−) 6 2w(t∗−) + ̺.

By virtue of (4.2) we have for ̺ ∈ [r − δ, r] in this case that

p̺[2w
∗](t∗) = max{2w(t∗)− ̺, 2w♭ + ̺} = 2w♭ + ̺,

and similarly

p̺[2w](t∗) = max{2w(t∗)− ̺,min{p̺[2w](t∗−), 2w(t∗) + ̺}} = 2w♭ + ̺.

In [t∗, t] we have by Lemma 3.2 that

2w♭ + ̺ = p̺[2w∗](τ) 6 p̺[2w](τ) 6 p̺[2w
∗](τ) = 2w♭ + ̺,

which we wanted to prove. �

P r o o f of Proposition 2.1. Let w be a given right-continuous piecewise-constant

function and let t ∈ [0, T ] be given. By Lemmas 4.1, 4.2 for each r ∈ (0,∞) there

exists δ(r) ∈ [0, r) such that for all ̺ ∈ [r−δ(r), r] we have S̺(t) = −(∂/∂̺)p̺[2w](t).

In particular, for every r ∈ (0,∞) we have

(4.4) Sr(t) = −
∂−

∂r
pr[2w](t),

which completes the proof. �
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5. Prandtl-Ishlinskii operator

Let ψ : [0,∞) → R with ψ(0) = 0 be an arbitrary right-continuous function with

bounded variation. The Prandtl-Ishlinskii operator Pψ : Λ × GR[0, T ] → GR[0, T ]

generated by ψ is defined by the Kurzweil integral formula

(5.1) Pψ[u](t) = −

∫ ∞

0

∂−

∂r
pr[u](t) dψ(r).

The function ψ is called the primary response curve of Pψ. Note that the play pr0

with threshold r0 can be considered as a special case of the Prandtl-Ishlinskii operator

with the choice ψ(r) = (r − r0)
+.

To see that the integral in (2.15) coincides with (5.1) for u = 2w under the

assumption (2.6), it suffices to note that in (5.1) we have pr[u](t) = 0 for all r > 2w0

and all t ∈ [0, T ]. Indeed, in the definition (3.1) of the play, we choose the test

function

(5.2) y(t) = χ[0,t0](t)u(t) + χ(t0,T ](t)(u(t)− ξr(t))

with an arbitrarily fixed time t0 ∈ (0, T ]. For r > 2w0, (5.2) is admissible. Then we

have

(5.3) 0 6

∫ T

0

(u(t)− ξr(t)− y(t)) dξr(t)

= −

∫ t0

0

ξr(t) dξr(t)−

∫ T

t0

χ{t0}(t)ξr(t0) dξr(t)

= −

∫ t0

0

ξr(t) dξr(t).

By the right-continuity of ξr we have

(5.4)

∫ t0

0

ξr(t) dξr(t) =
1

2
(ξ2r (t0)− ξ2r (0)) +

1

2

∑

t∈[0,t0]

(ξr(t)− ξr(t−))2.

We have by hypothesis that ξr(0) = 0 for r > 2w0, so that (5.3)–(5.4) imply ξr(t0) = 0

for all t0 ∈ (0, T ] and all r > 2w0, which we wanted to check.

Formula (5.1) extends the classical definition of the Prandtl-Ishlinskii operator.

If ψ is differentiable and its right derivative ψ′
+ is regulated, then we can integrate

by parts and rewrite (5.1) as

(5.5) Pψ[u](t) = ψ′
+(0)u(t) +

∫ ∞

0

pr[u](t) dψ
′
+(r).
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For example, if ψ′
+ is piecewise constant with jumps at points rj , then (5.5) reads

(5.6) Pψ[u](t) = a0u(t) +
n∑

j=1

ajprj [u](t),

which corresponds to the original construction in [17] as a finite linear combination

of simple elastoplastic elements.

In this section, we prove the following statement which guarantees that for-

mula (5.1) is meaningful.

Proposition 5.1. Let u ∈ GR[0, T ] be given such that ‖u‖[0,T ] < 2w0, and let ψ

be a nondecreasing right continuous function, ψ(0) = 0. Then the function σ defined

for t ∈ [0, T ] by the Kurzweil integral

(5.7) σ(t) = −

∫ ∞

0

∂−

∂r
pr[u](t) dψ(r)

belongs to GR[0, T ].

We split the proof of Proposition 5.1 into several steps. We first show that the

value of σ(t) is well-defined.

Lemma 5.2. Under the hypotheses of Proposition 5.1, the integral on the right-

hand side of (5.7) exists in the Kurzweil sense for every t ∈ [0, T ].

P r o o f. Let t ∈ [0, T ] be fixed, and put r0 = sup
τ∈[0,t]

u(τ). By [3], Proposition 2.7.6

there exists a sequence {rj}
∞
j=0, called the memory sequence of u at time t, such that

r0 > r1 > . . . > rn > rn+1 > . . . > 0, and either rn+1 = 0 or rj−1 > rj for all j ∈ N

and lim
j→∞

rj = 0 with the property that

(5.8) pr[u](t) =





λ0(r) for r > r0,

λ0(r0) +
j−1∑
i=0

(−1)i(ri − ri+1) + (−1)j(rj − r) for r ∈ [rj+1, rj ].

In particular, we have

(5.9) u(t) = λ0(r0) +
∞∑

i=0

(−1)i(ri − ri+1).

Note that by the choice of λ0 in (2.12) and by the condition ‖u‖[0,T ] < 2w0, we

always have 2w0 > r0 > r1. From (5.8) it follows that

(5.10)
∂−

∂r
pr[u](t) =





0 for r > 2w0,

1 for r ∈ (r0, 2w0],

(−1)j+1 for r ∈ (rj+1, rj ], j = 0, 1, . . .
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The value of p0 = (∂−/∂r)pr[u](0) can be chosen arbitrarily. Indeed, we have

∫ ∞

0

p0χ{0}(r) dψ(r) = p0(ψ(0+)− ψ(0)) = 0.

Then (5.7) can be written as

(5.11) σ(t) =

∫ ∞

0

∞∑

j=−1

(−1)jχ(rj+1,rj](r) dψ(r)

with the convention r−1 = 2w0, provided we prove that the integral on the right-hand

side of (5.11) exists.

Put f(r) =
∞∑

j=−1

(−1)jχ(rj+1,rj](r) and ψ
(n)(r) = χ[rn,∞)(r)ψ(r) for r > 0. Note

that f(0+) does not exist if the sequence {rj} is infinite, so that f is possibly not

regulated. We further have ψ(r) − ψ(n)(r) = χ[0,rn)(r)ψ(r), hence

(5.12) lim
n→∞

Var
[0,∞)

(ψ − ψ(n)) = 0.

For every n ∈ N we have the explicit formula

∫ ∞

0

f(r) dψ(n)(r) = (−1)nψ(rn) +

∫ ∞

rn

n−1∑

j=−1

(−1)jχ(rj+1,rj ](r) dψ
(n)(r)(5.13)

= (−1)nψ(rn) +
n−1∑

j=−1

(−1)j(ψ(rj)− ψ(rj+1)).

We thus have

(5.14) lim
n→∞

∫ ∞

0

f(r) dψ(n)(r) =

∞∑

j=−1

(−1)j(ψ(rj)− ψ(rj+1)),

which is a convergent series. Together with (5.12), we may use [19], Theorem 4.18

to conclude that the integral in (5.7) exists and equals

(5.15) σ(t) = −

∫ ∞

0

∂−

∂r
pr[u](t) dψ(r) =

∞∑

j=−1

(−1)j(ψ(rj)− ψ(rj+1)).

�

Lemma 5.3. Under the hypotheses of Proposition 5.1, the function σ : [0, T ] → R

defined by (5.7) is regulated.
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P r o o f. With the sequence {ψk} constructed in Proposition A.1 (see Appendix),

we define the functions

(5.16) σk(t) = −

∫ ∞

0

∂−

∂r
pr[u](t) dψk(r) =

∫ ∞

0

pr[u](t) dψ
′
k(r).

It follows from (3.4) that the functions σk are regulated and right-continuous. We

now prove that they converge pointwise to σ. We have by (5.15) that

(5.17) σk(t)− σ(t) =

∞∑

j=−1

(−1)j((ψk(rj)− ψ(rj))− (ψk(rj+1)− ψ(rj+1))).

Hence, for each n ∈ N,

|σk(t)− σ(t)| 6
∞∑

j=n

(|ψk(rj)− ψk(rj+1)|+ |ψ(rj)− ψ(rj+1)|)(5.18)

+

∣∣∣∣
n−1∑

j=−1

(−1)j((ψk(rj)− ψ(rj))− (ψk(rj+1)− ψ(rj+1)))

∣∣∣∣.

We estimate the first term on the right-hand side of (5.18) independently of k as

∞∑

j=n

(|ψk(rj)− ψk(rj+1)|+ |ψ(rj)− ψ(rj+1)|) = ψk(rn) + ψ(rn) 6 2ψ(2rn),

and easily conclude that lim
k→∞

σk(t) = σ(t) for all t ∈ [0, T ].

The results of [2], Theorem 2.2 and Proposition 2.3 state that a pointwise limit

of a sequence of regulated functions with uniformly bounded oscillation is regulated.

Recall that functions σk have uniformly bounded oscillation on [0, T ] if there exists

a function N independent of k such that

(5.19) Osc
σk,[0,T ]

(d) 6 Nσ(d) ∀ d > 0,

where the oscillation Osc
σk,[0,T ]

(d) of σk on amplitude level d is defined as the maxi-

mum of all n ∈ N for which there exist pairwise disjoint intervals (ai, bi) ⊂ [0, T ],

i = 1, . . . , n such that

(5.20) |σ(bi)− σ(ai)| > d for i = 1, . . . , n.

We now check that this condition is satisfied, which will conclude the proof of

Lemma 5.3. To this end, we choose a sequence {ul}l∈N of right-continuous step

functions on [0, T ] such that

(5.21) lim
l→∞

‖ul − u‖[0,T ] = 0,
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and for k, l ∈ N put

(5.22) σkl(t) =

∫ ∞

0

pr[ul](t) dψ
′
k(r).

It follows from (3.3) that

(5.23) ‖σkl − σk‖[0,T ] 6 ‖ul − u‖[0,T ] Var
[0,2w0]

ψ′
k.

To prove that the σkl have uniformly bounded oscillation, we proceed as in [3],

Section 2.6. In the rainflow decomposition, each Madelung pair (σ1
kl, σ

2
kl) of σkl

corresponds to a Madelung pair (u1l , u
2
l ) of ul, and we have

(5.24) |σ1
kl − σ2

kl| = 2ψk

( |u1l − u2l |

2

)
.

Similarly, each consecutive pair (σ1
kl, σ

2
kl) in the rainflow residual of σkl corresponds

to an analogous pair (u1l , u
2
l ) in the rainflow residual of ul, and thanks to the

choice of the initial memory distribution λ0 in (2.12), formula (5.24) holds. By [3],

Lemma 2.6.16 we have for each d > 0 that

(5.25) Osc
σkl,[0,T ]

(d) = 4Mσkl
(d) + Rσkl

(d),

where Mσkl
(d) is the number of Madelung pairs of σkl of amplitude larger or equal

to d, and Rσkl
(d) is the number of residual pairs of σkl of amplitude larger than or

equal to d.

Now let d > 0 be given. For each Madelung pair and each residual pair of σkl of

amplitude larger than or equal to d we associate a Madelung pair or residual pair

(u1l , u
2
l ) of ul, and by virtue of (5.24), they all have the property

(5.26) ψk

( |u1l − u2l |

2

)
>
d

2
.

We have ψk(r) 6 ψ(2r) for all r > 0, hence

(5.27) ψ(|u1l − u2l |) >
d

2
.

Set d̂ = inf{r > 0;ψ(r) > d/2} > 0. Then |u1l − u2l | > d̂ for each l ∈ N and each

Madelung pair and each residual pair of ul. Since the sequence {ul} is uniformly

convergent, it has uniformly bounded oscillation and Osc
ul,[0,T ]

(d̂) 6 Nu(d̂), and conse-

quently Osc
σkl,[0,T ]

(d) 6 Nu(d̂) independently of k and l. It follows from the uniform

convergence in (5.23) that σk have uniformly bounded oscillation, hence σ is regula-

ted, which we wanted to prove. �
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Lemma 5.4. Let the hypotheses of Proposition 5.1 hold. Then the function σ

given by (5.7) is right-continuous.

P r o o f. We proceed by contradiction. Assume that there exists t such that

lim sup
τցt

|σ(τ) − σ(t)| = 2η > 0. We choose a sequence tk ց t and a number r∗ > 0

such that

(5.28) lim
k→∞

∣∣∣∣
∫ ∞

r∗

(∂−
∂r

pr[u](tk)−
∂−

∂r
pr[u](t)

)
dψ(r)

∣∣∣∣ > η.

Let {rj} be the memory sequence of u at time t as in Lemma 5.2. We choose

r∗ ∈ (rn+1, rn), and assume for definiteness that n is odd, that is, by virtue of (5.10),

(5.29)
∂−

∂r
pr[u](t) = 1 for r ∈ (rn+1, rn].

In other words, there exists u ∈ R such that

(5.30) pr[u](t) = u+ r for r ∈ [rn+1, rn].

From the inequalities u(t) − rn+1 6 prn+1
[u](t) 6 u(t) + rn+1 and from (5.30) it

follows that

(5.31) u 6 u(t) 6 u+ 2rn+1.

We further fix some r∗ ∈ (rn, rn−1) and k ∈ N such that

(5.32) δ := sup
τ∈[t,tk]

|u(τ)− u(t)| < min{r∗ − rn+1, r
∗ − rn}.

For τ ∈ [t, tk] we have by virtue of (3.4) and (5.30)–(5.31) that

u(τ)− pr∗ [u](τ) 6 u(t)− pr∗ [u](t) + 2δ 6 2rn+1 − r∗ + 2δ,

hence

u(τ)− pr∗ [u](τ) − r∗ 6 2(δ − (r∗ − rn+1)) =: −ω < 0.

It follows from Lemma 3.1 that

(5.33) pr[u](τ) 6 pr[u](t) ∀ τ ∈ [t, tk], ∀ r > r∗.

On the other hand, we have pr∗ [u](t) = u+2rn−r
∗ by (5.8), and a similar argument

as above yields

u(τ) − pr∗ [u](τ) + r∗ > u(t)− pr∗ [u](t) + r∗ − 2δ > 2(r∗ − rn − δ) =: ω > 0,

278



and by Lemma 3.1 we have

(5.34) pr[u](τ) > pr[u](t) ∀ τ ∈ [t, tk], ∀ r > r∗.

In particular, by (5.33)–(5.34),

(5.35) pr[u](τ) = pr[u](t) ∀ τ ∈ [t, tk], ∀ r > r∗.

We now distinguish two cases.

A: u(τ) > u ∀ τ ∈ [t, tk].

By [14], Lemma 4.1 we have for all r > 0 that

(5.36) pr[u](t) = max{u(t)− r,min{pr[u](t−), u(t) + r}}.

By hypothesis, we have for r ∈ [rn+1, rn] that pr[u](t) = u+r. Hence, either u(t) = u

and pr[u](t−) > u+ r, or u(t) > u and pr[u](t−) = u+ r.

We define for τ ∈ [0, tk] an auxiliary function

(5.37) u♭(τ) =

{
u(τ) for τ ∈ [0, t),

u for τ ∈ [t, tk].

Then, still by [14], Lemma 4.1 we have pr[u
♭](t) = min{pr[u](t−), u+ r} = u+ r for

all r ∈ [0, rn]. By Lemma 3.2, we have

(5.38) pr[u](τ) > pr[u
♭](τ) for r ∈ [0, rn] and τ ∈ [t, tk].

Comparing (5.38) with (5.35), (5.33), and (5.30) we obtain that

(5.39) pr[u](τ) = pr[u](t) ∀ τ ∈ [t, tk], ∀ r ∈ [r∗, rn] ∪ [r∗,∞).

We have in particular prn [u](τ) = u + rn by (5.30) and pr∗ [u](τ) = u + 2rn − r∗

by (5.8), hence

pr∗ [u](τ) − prn [u](τ) = rn − r∗.

Since |(∂−/∂r)pr[u](τ)| 6 1 for all r > 0, we necessarily have

∂−

∂r
pr[u](τ) = −1 =

∂−

∂r
pr[u](t) ∀ r ∈ (rn, r

∗],

which, together with (5.39), is in contradiction with (5.28).
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B: ∀ k ∈ N ∃τk ∈ [t, tk] : u(τk) < u.

The right-continuity of u implies that u(t) = u and (5.30) holds for r ∈ [0, rn],

that is, rn+1 = 0. Set uk = inf{u(τ) : τ ∈ [t, tk]}, and

(5.40) u♭(τ) =

{
u(τ) for τ ∈ [0, t),

uk for τ ∈ [t, tk].

From (5.36) it follows that pr[u](t−) > u+ r for r ∈ [0, rn] and pr[u](t−) = pr[u](t)

for r > rn. We have again for τ ∈ [t, tk] that

(5.41) pr[u
♭](τ) = min{pr[u](t−), uk + r} =

{
uk + r for r ∈ [0, r∗k],

pr[u](t) for r > r∗k,

where

(5.42) r∗k = rn +
1

2
(u− uk).

By Lemma 3.2 we have for τ ∈ [t, tk] and for all r > 0 that

(5.43) pr[u](τ) > pr[u
♭](τ).

There are still two cases to distinguish:

B1: u(tk) = uk for infinitely many indices k.

Then

(5.44) pr[u](tk) =

{
uk + r for r ∈ [0, r∗k],

pr[u](t) for r > r∗k,

so that
∂−

∂r
pr[u](tk) =

∂−

∂r
pr[u](t) ∀ r ∈ [0, rn] ∪ [r∗k,∞),

and
∂−

∂r
pr[u](tk)−

∂−

∂r
pr[u](t) = 2

in (rn, r
∗
k]. Hence,

(5.45)

∫ ∞

r∗

(∂−
∂r

pr[u](tk)−
∂−

∂r
pr[u](t)

)
dψ(r) =

∫ ∞

r∗

2χ(rn,r∗k]
(r) dψ(r)

= 2(ψ(r∗k)− ψ(rn)).
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We have lim
k→∞

r∗k = rn by (5.42). Since ψ is right-continuous, the right-hand side

of (5.45) tends to 0 as k → ∞, which contradicts the hypothesis (5.28).

B2: u(tk) > uk ∀ k > k0.

For each k > k0 we find a sequence {τi} in (t, tk) such that u(τi) ց uk as i→ ∞.

We have for all r > 0 the inequality pr[u](τi) 6 u(τi) + r by definition of the play,

and pr[u](τi) > pr[u
♭](τi) = uk + r by (5.43). For τ ∈ [τi, tk] we have

u(τ)− pr∗ [u](τ)− r∗ 6 u(τi)− pr∗ [u](τi)− r∗ + 2 sup
s∈[τi,τ ]

|u(s)− u(τi)|

6 u(τi)− uk − 2r∗ + 2δ < 0

and we may use Lemma 3.1 to conclude that pr[u](tk) 6 pr[u](τi) for r > r∗. Letting

i → ∞ we obtain pr[u](tk) = uk + r for r ∈ [0, r∗k] and we argue as in the case B1

to contradict the inequality (5.28). This completes the proof for the case that n is

even. For n odd, the argument is similar. �

We now easily finish the proof of Proposition 5.1. It suffices to combine the three

Lemmas 5.2, 5.3, 5.4.

We conclude this section by recalling Prandtl-Ishlinskii superposition and inversion

formulas proved in [12], Corollaries 3.3, 3.4.

Proposition 5.5. Let u ∈ GR[0, T ] be given and let ϕ, ψ be nondecreasing right-

continuous functions, ϕ(0) = ψ(0) = 0. For t ∈ [0, T ] put v(t) := Pϕ[u](t). Then we

have

(5.46) Pψ[λϕ, v] = Pψ◦ϕ[u]

with initial condition

(5.47) λϕ(r) = min{−ϕ(2w0) + r, 0}

analogous to (2.12).

Corollary 5.6. Let ψ be as in Proposition 5.5 and let the equation

(5.48) ϕ(r) = ψ(ϕ(r)) + r ∀ r > 0

admit a nondecreasing right-continuous solution ϕ. For v ∈ GR[0, T ] set w = Pϕ[u].

Then

(5.49) w(t) = Pψ[λϕ, w](t) + v(t)

for all t ∈ [0, T ].
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Corollary 5.6 deals precisely with the situation in equation (2.17), where w is

replaced with 2w, v with 2v, and ψ with 2κψ.

6. An application in financial markets

In the situation of Corollary 5.6, we can formally define ϕ as the inverse mapping

(I − ψ)−1 to I − ψ, where I is the identity. However, if I − ψ is not monotone,

the inverse is not uniquely defined. Figures 1–2 illustrate the possibilities that can

happen if the function x 7→ x−ψ(x) does not admit a continuous inverse. In view of

the definition of the market sentiment in (2.14), singular behavior is to be expected

whenever classes Ar of traders in some interval [r1, r2] have too big an influence on

the overall market sentiment. This will then initiate a cascade.

x

y

y = ψ(x)

y = x− ψ(x)

Figure 1. Primary response curves of Pψ and I−Pψ.

w(t)

v(t)

Figure 2. A financial crash.

In this case, there exists a continuum of nondecreasing solutions ϕ(r) of the equa-

tion ϕ(r) = ψ(ϕ(r)) + r, which generate different Prandtl-Ishlinskii operators with

nondecreasing primary response curves according to Corollary 5.6. Consider an in-

creasing input v(t). Then equation (5.49) admits an increasing (possibly discontin-

uous even if v is continuous) solution w. However, it admits singular solutions w as
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well, with downward jumps (a financial crash!) represented on Figure 2. The full

line is the ascending branch of the operator I−Pψ, the dashed line is the descending

branch, and the bold path with arrows is the trajectory of a singular solution of

equation (2.17).

Appendix: Approximation of right-continuous functions

Proposition A.1. Let ψ : [0,∞) → [0,∞) be a right-continuous nondecreasing

function, ψ(0) = 0, and let {δk}k∈N be a sequence in (0, 1] such that lim
k→∞

δk = 0,

kδk > 1, lim
k→∞

kδk = +∞. Let ψk for k ∈ N be the solution of the equation

(A.1)
1

k
ψ′
k(r) + ψk(r) = ψ((1 + δk)r), ψk(0) = 0.

Then ψk are smooth, nondecreasing, and lim
k→∞

ψk(r) = ψ(r) for every r > 0.

P r o o f. We have the explicit formula

(A.2) ψk(r) = k

∫ r

0

ek(̺−r)ψ((1 + δk)̺) d̺.

Since ψ is nondecreasing, we have

ψk(r) 6 ψ((1 + δk)r)k

∫ r

0

ek(̺−r) d̺ = (1 − e−kr)ψ((1 + δk)r),

so that ψ′
k(r)/k > e−krψ((1 + δk)r) > 0 by virtue of (A.1).

We now fix R > 0 and prove that ψk(r) → ψ(r) for each r ∈ [0, R]. On [0, R], the

function ψ can be represented by the sum

(A.3) ψ(r) = ψ0(r) +

∞∑

i=1

αiψ
i(r),

where ψ0 is continuous and nondecreasing,

ψi(r) =

{
1 for r > si,

0 for r ∈ [0, si),
for i ∈ N.

The set {si : i ∈ N} ⊂ (0, R] contains all discontinuity points of ψ
∣∣
[0,R]
, αi > 0 for

all n ∈ N, and
∞∑
i=1

αi <∞. We define the sequence of functions {ψik} as solutions of

the equations

(A.4)
1

k
(ψik)

′(r) + ψik(r) = ψi((1 + δk)r), ψik(0) = 0.
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It is easy to see that

(A.5) ψ0
k → ψ0 uniformly on [0, R].

Indeed, by formula (A.2) we have for r ∈ [0, R] that

(A.6) ψ0(r)− ψ0
k(r) = e−krψ0(r) + k

∫ r

0

ek(̺−r)(ψ0(r) − ψ0((1 + δk)r)) d̺.

Let ε > 0 be given. We find ω > 0 such that ψ0(r) < ε/4 in [0, ω], and k0 ∈ N

such that e−kω|ψ0|[0,R] < ε/4 for k > k0. Then the first term on the right-hand side

of (A.6) satisfies

(A.7) e−krψ0(r) <
ε

2
for k > k0.

By substituting ̺ = r − z/k we rewrite the integral term on the right-hand side

of (A.6) as ∫ kr

0

e−z
(
ψ0(r) − ψ0

(
r + δkr − (1 + δk)

z

k

))
dz.

We split this integral into two parts:

I1k =

∫ kr

r/δk

e−z
(
ψ0(r) − ψ0

(
r + δkr − (1 + δk)

z

k

))
dz,

I2k =

∫ r/δk

0

e−z
(
ψ0(r) − ψ0

(
r + δkr − (1 + δk)

z

k

))
dz.

We have indeed

|I1k | 6 2e−r/δk |ψ0|[0,(1+δk)r],

|I2k | 6 max
|δ̂|6δ̂k

|ψ0(r)− ψ0(r + δ̂)|, δ̂k = R
(
δk +

1

kδk
+

1

k

)
.

We now find k1 ∈ N such that for k > k1 we have |I
1
k |+ |I2k | < ε/2, and (A.5) follows.

The proof of the convergence ψik(r) → ψi(r) for i > 1 is straightforward. We have

by (A.2) that

(A.8) ψik(r) =





0 for r <
si

1 + δk
,

1− ek(si/(1+δk)−r) for r >
si

1 + δk
.
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In particular, we have ψik(si) = 1 − e−kδksi/(1+δk), and we easily check that

ψik(r) → ψi(r) as k → ∞ for all r ∈ [0, R].

The above argument shows that putting for n ∈ N

ψ(n)(r) = ψ0(r) +

n∑

i=1

αiψ
i(r)

and denoting by ψ
(n)
k the solution of (A.1) corresponding to ψ(n), we have

ψ
(n)
k (r) → ψ(n)(r) as k → ∞ for all r ∈ [0, R]. Since the convergences ψ

(n)
k → ψk and

ψ(n) → ψ as n→ ∞ are uniform independently of k, we obtain the assertion. �
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