Czechoslovak Mathematical Journal

Pavel Híc; Milan Pokorný
Remarks on D-integral complete multipartite graphs

Czechoslovak Mathematical Journal, Vol. 66 (2016), No. 2, 457-464

Persistent URL: http://dml.cz/dmlcz/145736

Terms of use:

© Institute of Mathematics AS CR, 2016

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

REMARKS ON D-INTEGRAL COMPLETE MULTIPARTITE GRAPHS

Pavel Híc, Milan Pokorný, Trnava

(Received May 21, 2015)

Abstract. A graph is called distance integral (or D-integral) if all eigenvalues of its distance matrix are integers. In their study of D-integral complete multipartite graphs, Yang and Wang (2015) posed two questions on the existence of such graphs. We resolve these questions and present some further results on D-integral complete multipartite graphs. We give the first known distance integral complete multipartite graphs $K_{p_{1}, p_{2}, p_{3}}$ with $p_{1}<$ $p_{2}<p_{3}$, and $K_{p_{1}, p_{2}, p_{3}, p_{4}}$ with $p_{1}<p_{2}<p_{3}<p_{4}$, as well as the infinite classes of distance

Keywords: distance spectrum; integral graph; distance integral graph; complete multipartite graph

MSC 2010: 05C50

1. INTRODUCTION AND PRELIMINARIES

The study of graphs with integral adjacency spectrum was initiated by Harary and Schwenk in 1974 (see [7]). A survey of papers up to 2002 appears in [3], but more than a hundred new studies on integral graphs have been published in the last ten years.

Let $G=(V, E)$ be a simple, connected graph with $n=|V|$ vertices. A distance matrix of G is the $n \times n$ matrix D, indexed by V, such that $D_{u, v}$ is the distance between the vertices u and v. Among the earliest users of a distance matrix in chemistry were Clark and Kettle in 1975 (see [4]). Topological indices based on the distance matrix, in particular its largest eigenvalue and its energy, play a significant role in research (see, for example, [5], [6], [8], [9], [13], [16]). A survey on the distance spectra of graphs appears in [2].

The research has been supported by the VEGA grant No. 1/0042/14 of Slovak Ministry of Education.

The distance characteristic polynomial (or D-polynomial) of G is $D_{G}(x)=$ $\left|x I_{n}-D(G)\right|$. A graph G is called D-integral if all the eigenvalues of its D polynomial are integers. Distance integral graphs are studied only in [8], [11] in the case of some special, highly symmetric graphs, and in [10], [14], [15].

Complete multipartite graphs, in the case of integer distance spectrum, are studied in [14], [15]. In [15], Yang and Wang show that the D-characteristic polynomial of a complete multipartite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}$ with $p_{1}+p_{2}+\ldots+p_{r}=n$ vertices is equal to

$$
\begin{equation*}
P\left(K_{p_{1}, p_{2}, \ldots, p_{r}} ; x\right)=\prod_{i=1}^{r}(x+2)^{\left(p_{i}-1\right)} \prod_{i=1}^{r}\left(x-p_{i}+2\right)\left(1-\sum_{i=1}^{r} \frac{p_{i}}{x-p_{i}+2}\right) . \tag{1.1}
\end{equation*}
$$

If $p_{1}^{\prime}, p_{2}^{\prime}, \ldots, p_{s}^{\prime}$ denote all the distinct integers among $p_{1}, p_{2}, \ldots, p_{r}$ and $a_{i}, i=$ $1,2, \ldots, s$, denotes the multiplicity of p_{i}^{\prime} in the family $p_{1}, p_{2}, \ldots, p_{r}$, then $K_{p_{1}, p_{2}, \ldots, p_{r}}$ will also be denoted by $K_{a_{1} p_{1}^{\prime}, a_{2} p_{2}^{\prime}, \ldots, a_{s} p_{s}^{\prime}}$.

In [15], the following sufficient and necessary conditions for complete r-partite graphs to be distance integral are given.

Theorem 1.1 ([15], Theorem 2.6). If a complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=$ $K_{a_{1} p_{1}, a_{2} p_{2}, \ldots, a_{s} p_{s}}$ on n vertices is distance integral, then there exist integers $\mu_{i}, i=$ $1,2, \ldots, s$, such that $-2<p_{1}-2<\mu_{1}<p_{2}-2<\mu_{2}<\ldots<p_{s-1}-2<\mu_{s-1}<$ $p_{s}-2<\mu_{s}<\infty$, and the numbers $a_{1}, a_{2}, \ldots, a_{s}$ defined by

$$
\begin{equation*}
a_{k}=\frac{\prod_{i=1}^{s}\left(\mu_{i}-p_{k}+2\right)}{p_{k} \prod_{i=1, i \neq k}^{s}\left(p_{i}-p_{k}\right)}, \quad k=1,2, \ldots, s \tag{1.2}
\end{equation*}
$$

are positive integers.
Conversely, suppose that there exist integers $\mu_{i}, i=1,2, \ldots, s$, such that $-2<$ $p_{1}-2<\mu_{1}<p_{2}-2<\mu_{2}<\ldots<p_{s-1}-2<\mu_{s-1}<p_{s}-2<\mu_{s}<\infty$ and that the numbers a_{k}, in (1.2) are positive integers. Then the complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} p_{1}, a_{2} p_{2}, \ldots, a_{s} p_{s}}$ is distance integral.

Corollary 1.1 ([15], Corollary 2.9). For any positive integer q, the complete r partite graph $K_{p_{1} q, p_{2} q, \ldots, p_{r} q}=K_{a_{1} p_{1} q, a_{2} p_{2} q, \ldots, a_{s} p_{s} q}$ is distance integral if and only if the complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} p_{1}, a_{2} p_{2}, \ldots, a_{s} p_{s}}$ is distance integral.

Theorem 1.2 ([15], Theorem 3.2). Let a complete r-partite graph $K_{p_{1}, p_{2}, \ldots, p_{r}}=$ $K_{a_{1} p_{1}, a_{2} p_{2}, \ldots, a_{s} p_{s}}$ be distance integral with eigenvalues μ_{i}. Let $\mu_{i} \geqslant 0$ and $p_{i}>0$, $i=1,2, \ldots, s$, be integers such that $-2<p_{1}-2<\mu_{1}<p_{2}-2<\mu_{2}<\ldots<$ $p_{s-1}-2<\mu_{s-1}<p_{s}-2<\mu_{s}<\infty$ and let

$$
\begin{equation*}
a_{k}=\frac{\prod_{i=1}^{s}\left(\mu_{i}-p_{k}+2\right)}{p_{k} \prod_{i=1, i \neq k}^{s}\left(p_{i}-p_{k}\right)}, \quad k=1,2, \ldots, s \tag{1.3}
\end{equation*}
$$

be positive integers. Then for

$$
\begin{align*}
b_{k} & =\frac{\prod_{i=1}^{s-1}\left(\mu_{i}-p_{k}+2\right)\left(\mu_{s}-p_{k}+2+r t\right)}{p_{k} \prod_{i=1, i \neq k}^{s}\left(p_{i}-p_{k}\right)}, \quad k=1,2, \ldots, s, \tag{1.4}\\
r & =\operatorname{LCM}\left(r_{1}, r_{2}, \ldots, r_{s}\right), \quad r_{k}=\frac{p_{k} \prod_{i=1, i \neq k}^{s}\left(p_{i}-p_{k}\right)}{d_{k}}, \quad k=1,2, \ldots, s, \tag{1.5}\\
d_{k} & =\operatorname{GCD}\left(\prod_{i=1}^{s-1}\left(\mu_{i}-p_{k}+2\right), p_{k} \prod_{i=1, i \neq k}^{s}\left(p_{i}-p_{k}\right)\right), \quad k=1,2, \ldots, s, \tag{1.6}
\end{align*}
$$

the complete m-partite graph $K_{p_{1}, p_{2}, \ldots, p_{m}}=K_{b_{1} p_{1}, b_{2} p_{2}, \ldots, b_{s} p_{s}}$ is distance integral for every nonnegative integer t with eigenvalues $\mu_{1}, \mu_{2}, \ldots, \mu_{s-1}, \mu_{s}^{\prime}=\mu_{s}+r t$.

In [15], Yang and Wang concluded their study with the following questions. The first of them is answered affirmatively in [14], the other we answer affirmatively here.

Question 1.1 ([15], Question 4.1). Are there any distance integral complete r-partite graphs $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} p_{1}, a_{2} p_{2}, \ldots, a_{s} p_{s}}$ for $s \geqslant 5$?

Question 1.2 ([15], Question 4.2). Are there any distance integral complete r-partite graphs $K_{p_{1}, p_{2}, \ldots, p_{r}}=K_{a_{1} p_{1}, a_{2} p_{2}, \ldots, a_{s} p_{s}}$ with $a_{1}=a_{2}=\ldots=a_{s}=1$ for $s \geqslant 3$?

The rest of the present paper is organized as follows. In Section 2, we study complete multipartite graphs $K_{a_{1} p_{1}, a_{2} p_{2}}$ and give sufficient and necessary conditions for their distance integrality. Our conditions are more easily applicable than the conditions published in Theorem 3.1 of [15]. In Section 3, we give the first known distance integral complete multipartite graphs $K_{p_{1}, p_{2}, p_{3}}$ with $p_{1}<p_{2}<p_{3}$, and $K_{p_{1}, p_{2}, p_{3}, p_{4}}$ with $p_{1}<p_{2}<p_{3}<p_{4}$. In Section 4, we give infinite classes of distance integral complete multipartite graphs $K_{a_{1} p_{1}, a_{2} p_{2}, \ldots, a_{s} p_{s}}$ with $s=5,6$, which are different from those of Yang and Wang in [14].

2. Distance integral complete multipartite graphs $K_{a_{1} p_{1}, a_{2} p_{2}}$

Let us start with the definition of the join of graphs G_{1} and G_{2} and the notation of the spectrum of the adjacency matrix $A(G)$ of G and the spectrum of the distance matrix $D(G)$ of G.

Definition 2.1. The join $G_{1} \nabla G_{2}$ of graphs G_{1} and G_{2} is the graph obtained from the union of G_{1} and G_{2} by adding the edges joining every vertex of G_{1} to every vertex of G_{2}.

Definition 2.2. Let $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{t}$ be t distinct eigenvalues of the adjacency matrix $A(G)$ of G with the corresponding multiplicities $k_{1}, k_{2}, \ldots, k_{t}$. The spectrum of $A(G)$ is also called the spectrum of G and denoted by $\operatorname{Spec}(G)=$ $\left\{\lambda_{1}^{\left(k_{1}\right)}, \lambda_{2}^{\left(k_{2}\right)}, \ldots, \lambda_{t}^{\left(k_{t}\right)}\right\}$.

Definition 2.3. Let $\mu_{1}<\mu_{2}<\ldots<\mu_{t}$ be t distinct eigenvalues of the distance matrix $D(G)$ of G with the corresponding multiplicities $k_{1}, k_{2}, \ldots, k_{t}$. The spectrum of $D(G)$ is also called the distance spectrum of G and denoted by $\operatorname{Spec}_{D}(G)=$ $\left\{\mu_{1}^{\left(k_{1}\right)}, \mu_{2}^{\left(k_{2}\right)}, \ldots, \mu_{t}^{\left(k_{t}\right)}\right\}$.

The following theorem is useful for getting conditions for D-integrality of $K_{a_{1} p_{1}, a_{2} p_{2}}$.

Theorem 2.1 ([12]). For $i=1,2$, let G_{i} be an r_{i}-regular graph with n_{i} vertices and the eigenvalues $\lambda_{i, 1}=r_{i} \geqslant \ldots \geqslant \lambda_{i, n_{i}}$ of the adjacency matrix of G_{i}. The distance spectrum of $G_{1} \nabla G_{2}$ consists of the eigenvalues $-\lambda_{i, j}-2$ for $i=1,2$ and $j=2,3, \ldots, n_{i}$, and two further simple eigenvalues $n_{1}+n_{2}-2-\left(r_{1}+r_{2}\right) / 2 \pm$ $\sqrt{\left(n_{1}-n_{2}-\left(r_{1}-r_{2}\right) / 2\right)^{2}+n_{1} n_{2}}$.

It is clear that $K_{a_{1} p_{1}, a_{2} p_{2}}=K_{a_{1} p_{1}} \nabla K_{a_{2} p_{2}}$. Using the above theorem for $K_{a_{1} p_{1}}$, $K_{a_{2} p_{2}}$, we have the following theorem.

Theorem 2.2. The graph $K_{a_{1} p_{1}, a_{2} p_{2}}$ is D-integral if and only if

$$
\frac{\left(a_{1}+1\right) p_{1}+\left(a_{2}+1\right) p_{2}-4}{2} \pm \sqrt{\frac{\left(\left(a_{1}+1\right) p_{1}-\left(a_{2}+1\right) p_{2}\right)^{2}}{4}+a_{1} a_{2} p_{1} p_{2}}
$$

are integers and its distance spectrum is

$$
\begin{aligned}
& \left\{\frac{\left(a_{1}+1\right) p_{1}+\left(a_{2}+1\right) p_{2}-4}{2} \pm \sqrt{\frac{\left(\left(a_{1}+1\right) p_{1}-\left(a_{2}+1\right) p_{2}\right)^{2}}{4}+a_{1} a_{2} p_{1} p_{2}}\right. \\
& \left.\quad\left(p_{1}-2\right)^{\left(a_{1}-1\right)},\left(p_{2}-2\right)^{\left(a_{2}-1\right)},(-2)^{\left(a_{1} p_{1}-a_{1}+a_{2} p_{2}-a_{2}\right)}\right\}
\end{aligned}
$$

Proof. The A-spectrum of $K_{a_{1} p_{1}}$ is $\left\{p_{1}\left(a_{1}-1\right), 0^{\left(p_{1} a_{1}-a_{1}\right)},\left(-p_{1}\right)^{\left(a_{1}-1\right)}\right\}$ and the A-spectrum of $K_{a_{2} p_{2}}$ is $\left\{p_{2}\left(a_{2}-1\right), 0^{\left(p_{2} a_{2}-a_{2}\right)},\left(-p_{2}\right)^{\left(a_{2}-1\right)}\right\}$. Now it is sufficient to use Theorem 2.1.

Using $\left(a_{1}, a_{2}\right)=(1,1),(2,1),(2,2),(3,1)$ in Theorem 2.2, we have the following corollary.

Corollary 2.1.

1. The graph $K_{p_{1}, p_{2}}$ is D-integral if and only if $p_{1}^{2}-p_{1} p_{2}+p_{2}^{2}$ is a perfect square. Moreover, its distance spectrum is $\left\{(-2)^{\left(p_{1}+p_{2}-2\right)}, p_{1}+p_{2}-2 \pm\right.$ $\left.\sqrt{p_{1}^{2}-p_{1} p_{2}+p_{2}^{2}}\right\}$.
2. The only distance integral graph among stars is K_{2}.
3. The graph $K_{2 p_{1}, p_{2}}$ is distance integral if and only if $9 p_{1}^{2}-4 p_{1} p_{2}+4 p_{2}^{2}$ is a perfect square. Moreover, its distance spectrum is $\left\{(-2)^{\left(2 p_{1}+p_{2}-3\right)}, p_{1}-2\right.$, $\left.\left(3 p_{1}+2 p_{2}-4 \pm \sqrt{9 p_{1}^{2}-4 p_{1} p_{2}+4 p_{2}^{2}}\right) / 2\right\}$.
4. The graph $K_{2 p_{1}, 2 p_{2}}$ is distance integral if and only if $9 p_{1}^{2}-2 p_{1} p_{2}+9 p_{2}^{2}$ is a perfect square. Moreover, its distance spectrum is $\left\{(-2)^{\left(2 p_{1}+2 p_{2}-4\right)}, p_{1}-2\right.$, $\left.p_{2}-2,\left(3 p_{1}+3 p_{2}-4 \pm \sqrt{9 p_{1}^{2}-2 p_{1} p_{2}+9 p_{2}^{2}}\right) / 2\right\}$.
5. The graph $K_{3 p_{1}, p_{2}}$ is distance integral if and only if $4 p_{1}^{2}-p_{1} p_{2}+p_{2}^{2}$ is a perfect square. Moreover, its distance spectrum is $\left\{(-2)^{\left(3 p_{1}+p_{2}-4\right)},\left(p_{1}-2\right)^{2}, 2 p_{1}+p_{2}-\right.$ $\left.2 \pm \sqrt{4 p_{1}^{2}-p_{1} p_{2}+p_{2}^{2}}\right\}$.

The following corollary gives sufficient and necessary conditions for complete bipartite graphs to be D-integral.

Corollary 2.2. $K_{p_{1}, p_{2}}$ is D-integral if and only if there exist integers k, u and v such that $p_{1}=k\left(v^{2}+2 u v\right), p_{2}=k\left(v^{2}-u^{2}\right)$, or $p_{1}=k\left(v^{2}-u^{2}\right), p_{2}=k\left(v^{2}+2 u v\right)$, where $u, v \in \mathbb{Z}$ and $k \in \mathbb{Q}$ are such that $3 k \in \mathbb{Z}$.

Proof. Part 1 of Corollary 2.1 yields that the necessary and sufficient condition for $K_{p_{1}, p_{2}}$ to be D-integral is that for some integer $r, p_{1}^{2}-p_{1} p_{2}+p_{2}^{2}=r^{2}$. According to [1], page 90 , all integral solutions to $p_{1}^{2}-p_{1} p_{2}+p_{2}^{2}=r^{2}$ are given by $p_{1}=$ $k\left(v^{2}+2 u v\right), p_{2}=k\left(v^{2}-u^{2}\right)$, or $p_{1}=k\left(v^{2}-u^{2}\right), p_{2}=k\left(v^{2}+2 u v\right)$, where $u, v \in \mathbb{Z}$ and $k \in \mathbb{Q}$ is such that $3 k \in \mathbb{Z}$.

3. Distance integral complete multipartite graphs

$$
K_{p_{1}, p_{2}, p_{3}} \text { and } K_{p_{1}, p_{2}, p_{3}, p_{4}}
$$

Using computers, we have found $292 D$-integral complete 3-partite graphs $K_{p_{1}, p_{2}, p_{3}}$ for $p_{1}<p_{2}<p_{3} \leqslant 1,000$. The primitive graphs (those, where $\operatorname{GCD}\left(p_{1}, p_{2}, p_{3}\right)=1$) with less than 180 vertices are given in Table 1, rows 2-7.

Using Theorem 1.2, we can construct infinite classes of D-integral complete multipartite graphs for each graph from Table 1.

Corollary 3.1. Let $K_{p_{1}, p_{2}, p_{3}}$ be a D-integral complete 3-partite graph from Table 1, rows 2-4. Then $K_{b_{1} p_{1}, b_{2} p_{2}, b_{3} p_{3}}$ is a D-integral complete multipartite graph for every $t \in \mathbb{N}$, where b_{1}, b_{2}, b_{3} are those of Table 1 , rows 9-11.

No.	1	2	3	4	5	6	7	8
p_{1}	12	7	28	25	20	23	39	35
p_{2}	21	33	33	30	39	39	48	54
p_{3}	28	81	60	81	84	81	56	75
μ_{1}	12	7	28	25	22	25	40	38
μ_{2}	22	42	42	43	50	50	50	61
μ_{3}	82	187	166	198	208	205	190	223
r	504	9,828	3,780	5,950	11,970	11,592	2,448	8,550
b_{1}	$1+7 t$	$1+54 t$	$1+27 t$	$1+34 t$	$1+63 t$	$1+63 t$	$1+16 t$	$1+45 t$
b_{2}	$1+8 t$	$1+63 t$	$1+28 t$	$1+35 t$	$1+70 t$	$1+69 t$	$1+17 t$	$1+50 t$
b_{3}	$1+9 t$	$1+91 t$	$1+35 t$	$1+50 t$	$1+95 t$	$1+92 t$	$1+18 t$	$1+57 t$

Table 1. D-integral complete multipartite graphs $K_{p_{1}, p_{2}, p_{3}}$.

Proof. It is sufficient to use the formulas (1.3)-(1.6) from Theorem 1.2.
Similarly, using computers, we have found the D-integral complete 4-partite graph $K_{143,192,228,468}$. Using Theorem 1.2, we have the following corollary.

Corollary 3.2. The graph $K_{(1+1,368 t) \cdot 143,(1+1,425 t) \cdot 192,(1+1,470 t) \cdot 228,(1+1,862 t) \cdot 468}$ is a D-integral complete multipartite graph for every $t \in \mathbb{N}$.

Proof. It is sufficient to use (1.3)-(1.6) from Theorem 1.2 for $\mu_{1}=154$, $\mu_{2}=206, \mu_{3}=328, \mu_{4}=1,366, r=1,675,800$.

4. Distance integral complete multipartite graphs
 $$
K_{a_{1} p_{1}, a_{2} p_{2}, \ldots, a_{s} p_{s}} \text { wITH } s=5,6
$$

Using a computer search based on Theorem 1.1, we have found examples of D integral complete multipartite graphs $K_{a_{1} p_{1}, a_{2} p_{2}, a_{3} p_{3}, a_{4} p_{4}, a_{5} p_{5} \text {; they are given in Ta- }}$ ble 2 , rows $2-11$. Using Theorem 1.2, we can construct infinite classes of D-integral complete multipartite graphs for each graph from Table 2.

Corollary 4.1. Let $K_{a_{1} p_{1}, a_{2} p_{2}, a_{3} p_{3}, a_{4} p_{4}, a_{5} p_{5}}$ be a D-integral complete multipartite graph from Table 2, rows $2-11$. Then $K_{b_{1} p_{1}, b_{2} p_{2}, b_{3} p_{3}, b_{4} p_{4}, b_{5} p_{5}}$ is a D-integral complete multipartite graph for every $t \in \mathbb{N}$, where $b_{1}, b_{2}, b_{3}, b_{4}, b_{5}$ are those of Table 2, rows 18-22.

Proof. It is sufficient to use (1.3)-(1.6) from Theorem 1.2.
Similarly, using a computer search based on Theorem 1.1, we have found an example of D-integral complete multipartite graph $K_{a_{1} p_{1}, a_{2} p_{2}, a_{3} p_{3}, a_{4} p_{4}, a_{5} p_{5}, a_{6} p_{6}}$.

No.	1	2	3	4	5	6	7
a_{1}	11	31	44	56	23	39	44
p_{1}	3	11	4	10	10	7	8
a_{2}	1	9	52	2	39	37	52
p_{2}	12	35	8	22	14	10	16
a_{3}	2	2	12	13	6	23	12
p_{3}	18	45	23	37	22	23	46
a_{4}	3	3	11	9	6	31	11
p_{4}	28	49	25	46	35	28	50
a_{5}	1	1	6	3	21	7	6
p_{5}	39	56	29	57	55	50	58
μ_{1}	4	19	3	17	9	6	8
μ_{2}	11	40	13	22	18	12	28
μ_{3}	19	45	22	40	26	23	46
μ_{4}	34	53	26	53	38	44	54
μ_{5}	226	978	1,332	1,700	2,308	2,413	2,666
r	37,800	10,445,820	22,621,305	100,792,440	8,208,200	1,721,720	45,242,610
b_{1}	$11+1,848 t$	$31+334,180 t$	$44+748,374 t$	$56+3,335,920 t$	$23+82,082 t$	$39+27,885 t$	$44+748,374 t$
b_{2}	$1+175 t$	$9+99,484 t$	$52+887,110 t$	$2+119,991 t$	$39+139,425 t$	$37+26,488 t$	$52+887,110 t$
b_{3}	$2+360 t$	$2+22,344 t$	$12+207,060 t$	$13+786,968 t$	$6+21,525 t$	$23+16,555 t$	$12+207,060 t$
b_{4}	$3+567 t$	$3+33,660 t$	$11+190,095 t$	$9+547,785 t$	$6+21,648 t$	$31+22,360 t$	$11+190,095 t$
b_{5}	$1+200 t$	$1+11,305 t$	$6+104,006 t$	$3+183,816 t$	$21+76,440 t$	$7+5,096 t$	$6+104,006 t$

Table 2. D-integral complete multipartite graphs $K_{a_{1} p_{1}, a_{2} p_{2}, a_{3} p_{3}, a_{4} p_{4}, a_{5} p_{5}}$.
Corollary 4.2. 1. The graph $K_{722,608 \cdot 4,706,668 \cdot 8,364,041 \cdot 14,73,308 \cdot 23,73,420 \cdot 25,214,524 \cdot 32}$ is a D-integral complete multipartite graph and $\mu_{1}=3, \mu_{2}=9, \mu_{3}=18, \mu_{4}=22$, $\mu_{5}=26, \mu_{6}=24,026,718$.
2. Let $b_{1}=722,608+825,792 t, b_{2}=706,668+807,576 t, b_{3}=364,041+416,024 t$, $b_{4}=73,308+83,776 t, b_{5}=73,420+83,904 t, b_{6}=214,524+245,157 t$. The graph $K_{b_{1} \cdot 4, b_{2} \cdot 8, b_{3} \cdot 14, b_{4} \cdot 23, b_{5} \cdot 25, b_{6} \cdot 32}$ is a D-integral complete multipartite graph for every $t \in \mathbb{N}$.

Proof. For case 1 it is sufficient to use Theorem 1.1. For Case 2 it is sufficient to use (1.3)-(1.6) from Theorem $1.2(r=27,457,584)$.

5. Conclusion

In the paper, we give new results for D-integrality of complete multipartite graphs $K_{a_{1} p_{1}, a_{2} p_{2}, \ldots, a_{s} p_{s}}$, where $s=1,2,3,4,5,6$, and answer affirmatively questions 4.1 and 4.2 of Yang and Wang (see [15]). However, when $s>6$, we have not found such D-integral graphs. Thus, we raise the following questions.

Question 5.1. Are there any distance integral complete multipartite graphs $K_{a_{1} p_{1}, a_{2} p_{2}, \ldots, a_{s} p_{s}}$ for $s \geqslant 7$?

Question 5.2. Are there any distance integral complete multipartite graphs $K_{a_{1} p_{1}, a_{2} p_{2}, \ldots, a_{s} p_{s}}$ with $a_{1}=a_{2}=\ldots=a_{s}=1$ for $s \geqslant 5$?

Acknowledgment. The authors are grateful to the anonymous referees for their valuable comments and suggestions, which led to an improvement of the original manuscript.

References

[1] T. Andreescu, D. Andrica, I. Cucurezeanu: An Introduction to Diophantine Equations. A Problem-Based Approach. Birkhäuser, New York, 2010.
[2] M. Aouchiche, P. Hansen: Distance spectra of graphs: a survey. Linear Algebra Appl. 458 (2014), 301-386.
[3] K. Balińska, D. Cvetković, Z. Radosavljević, S. Simić, D. Stevanović: A survey on integral graphs. Publ. Elektroteh. Fak., Univ. Beogr., Ser. Mat. 13 (2002), 42-65.
[4] J. Clark, S. F. A. Kettle: Incidence and distance matrices. Inorg. Chim. Acta 14 (1975), 201-205.
[5] Z. Du, A. Ilić, L. Feng: Further results on the distance spectral radius of graphs. Linear Multilinear Algebra 61 (2013), 1287-1301.
[6] A.D. Güngör, Ş. B. Bozkurt: On the distance spectral radius and the distance energy of graphs. Linear Multilinear Algebra 59 (2011), 365-370.
[7] F. Harary, A. J. Schwenk: Which graphs have integral spectra? Graphs Combinatorics, Proc. Capital Conf., Washington, 1973, Lect. Notes Math. 406. Springer, Berlin, 1974, pp. 45-51.
[8] A. Ilić: Distance spectra and distance energy of integral circulant graphs. Linear Algebra Appl. 433 (2010), 1005-1014.
[9] G. Indulal, I. Gutman, A. Vijayakumar: On distance energy of graphs. MATCH Commun. Math. Comput. Chem. 60 (2008), 461-472.
[10] M. Pokorný, P. Híc, D. Stevanović, M. Milošević: On distance integral graphs. Discrete Math. 338 (2015), 1784-1792.
[11] P. Renteln: The distance spectra of Cayley graphs of Coxeter groups. Discrete Math. 311 (2011), 738-755.
[12] D. Stevanović, G. Indulal: The distance spectrum and energy of the compositions of regular graphs. Appl. Math. Lett. 22 (2009), 1136-1140.
[13] D. Stevanović, M. Milošević, P. Híc, M. Pokorný: Proof of a conjecture on distance energy of complete multipartite graphs. MATCH Commun. Math. Comput. Chem. 70 (2013), 157-162.
[14] R. Yang, L. Wang: Distance integral complete multipartite graphs with $s=5,6$. Preprint (2015), 6 pages. arXiv:1511.04983v1 [math.CO].
[15] R. Yang, L. Wang: Distance integral complete r-partite graphs. Filomat 29 (2015), 739-749.
[16] B. Zhou, A. Ilić: On distance spectral radius and distance energy of graphs. MATCH Commun. Math. Comput. Chem. 64 (2010), 261-280.

Authors' address: Pavel Híc, Milan Pokorný, Trnava University, Faculty of Education, Priemyselná 4, P.O. Box 9, 91843 Trnava, Slovakia, e-mail: phic@truni. sk, mpokorny @truni.sk.

