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OF 5-DIMENSIONAL 2-STEP HOMOGENEOUS NILMANIFOLDS

Mehri Nasehi, Isfahan
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Abstract. In this paper we study parallel and totally geodesic hypersurfaces of two-step
homogeneous nilmanifolds of dimension five. We give the complete classification and ex-
plicitly describe parallel and totally geodesic hypersurfaces of these spaces. Moreover, we
prove that two-step homogeneous nilmanifolds of dimension five which have one-dimensional
centre never admit parallel hypersurfaces. Also we prove that the only two-step homo-
geneous nilmanifolds of dimension five which admit totally geodesic hypersurfaces have
three-dimensional centre.
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1. Introduction

Parallel submanifolds play an important role in geometry and general relativity.

A submanifold is called parallel if its second fundamental form is covariantly constant

and it is called totally geodesic if its second fundamental form vanishes identically.

Consequently, parallel submanifolds can be considered as a natural extension of to-

tally geodesic submanifolds.

A classification of totally geodesic and parallel submanifolds of a certain manifold

helps to enrich our knowledge and understanding of the geometry of this manifold

(see [14]). Therefore, the classification of these submanifolds is very important and

attracts special attention of geometers. For example, parallel and totally geodesic

submanifolds of some (pseudo)-Riemannian real space forms with different (indexes

and) dimensions have been classified by several authors (see for instance [11], [10],

[18], [20]).
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Homogeneous spaces, which are manifolds for which the action of the isometry

group is transitive, generalize spaces of constant sectional curvature [12] (see also [3],

[1], [2], [5], [6], [16] for some examples of these spaces). Thus it is interesting to

choose these spaces as ambient spaces. Concerning this choice, the following results

are known. Complete classification of parallel and totally geodesic surfaces in all

three-dimensional Riemannian homogeneous spaces is given in [4], [15], [14]. Parallel

and totally geodesic surfaces in three-dimensional Lorentzian homogeneous spaces

are classified in [9], [8]. In [7], complete classification of parallel hypersurfaces of

four-dimensional oscillator groups, equipped with a one-parameter family of left-

invariant Lorentzian metrics, is given. In [12], totally geodesic hypersurfaces of

four-dimensional generalized symmetric spaces are classified.

Hence, a natural problem is now to give a classification of parallel and totally

geodesic hypersurfaces of homogeneous spaces with dimension 5. In the present pa-

per, we deal with this problem for two-step homogeneous nilmanifolds of dimension 5.

A two-step homogeneous nilmanifold is a two-step nilpotent Lie group N which is

equipped with a left-invariant metric g (see [13]). These spaces play an important

role in Lie groups, geometrical analysis and mathematical physics. All homogeneous

nilmanifolds (not necessary two-step) of dimension three and four, up to isometry,

are classified in [17]. In [13], the classification of two-step homogeneous nilmanifolds

of dimension five is given, and Randers metrics of Berwald type on these spaces have

been studied in [19]. Our aim in the present paper is to classify parallel and totally

geodesic hypersurfaces of these spaces.

The structure of the paper is as follows. In Section 2 we report the classification

and the curvature tensor of two-step homogeneous nilmanifolds of dimension five.

In Section 3 we first recall some facts and definitions about parallel and totally

geodesic hypersurfaces. Then we give the complete classification of parallel and

totally geodesic hypersurfaces of these spaces and describe some of the results of this

classification which are related to the dimension of these spaces.

2. Two-step homogeneous nilmanifolds of dimension five

Let N be a simply connected two-step nilpotent Lie group of dimension five and

N be its corresponding Lie algebra. We denote by 〈 , 〉 an inner product on N which

is induced by a left invariant Riemannian metric g on N and we adopt the following

conventions for the curvature tensor R:

R(Xi, Xj) = ∇[Xi,Xj ] − [∇Xi
,∇Xj

], Rijkt = 〈R(Xi, Xj)Xk, Xt〉,

where ∇ is the Levi-Cività connection and Xi, Xj, Xk, Xt are left-invariant vector

fields on N .
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Here we recall the classification of simply connected two-step homogeneous nil-

manifolds of dimension 5 which is given in [13], and their invariant curvatures which

are explicitly given in [19].

(A1) Lie algebras with 1-dimensional centre: For this type there exists an or-

thonormal basis {X1, . . . , X5} of N such that the nonzero brackets are

[X1, X2] = λX5, [X3, X4] = µX5,

where λ > µ > 0 and {X5} is a basis for the centre of N . The nonzero connection

components and the nonzero curvature components are given by

∇X1
X2 = −∇X2

X1 =
λ

2
X5, ∇X1

X5 = ∇X5
X1 =

−λ

2
X2,(2.1)

∇X2
X5 = ∇X5

X2 =
λ

2
X1, ∇X3

X4 = −∇X4
X3 =

µ

2
X5,

∇X3
X5 = ∇X5

X3 = −
µ

2
X4, ∇X4

X5 = ∇X5
X4 =

µ

2
X3,

and R1212 = −3λ2/4, R1234 = −λµ/2, R1515 = R2525 = λ2/4, R3434 = −3µ2/4,

R3535 = R4545 = µ2/4.

(A2) Lie algebras with 2-dimensional centre: For this type there exists an or-

thonormal basis {X1, . . . , X5} of N such that the nonzero brackets are

[X1, X2] = λX4, [X1, X3] = µX5,

where λ > µ > 0 and {X4, X5} is a basis for the centre of N . The nonzero connection

components and the nonzero curvature components are given by

∇X1
X2 = −∇X2

X1 =
λ

2
X4, ∇X1

X3 = −∇X3
X1 =

µ

2
X5,(2.2)

∇X1
X4 = ∇X4

X1 = −
λ

2
X2, ∇X1

X5 = ∇X5
X1 = −

µ

2
X3,

∇X2
X4 = ∇X4

X2 =
λ

2
X1, ∇X3

X5 = ∇X5
X3 =

µ

2
X1,

and R1212 = −3λ2/4, R1313 = −3µ2/4, R1414 = R2424 = λ2/4, R2345 = −λµ/4,

R3535 = R1515 = µ2/4.

(A3) Lie algebras with 3-dimensional centre: For this type there exists an or-

thonormal basis {X1, . . . , X5} of N such that the nonzero bracket is

[X1, X2] = λX3,
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where λ > 0 and {X3, X4, X5} is a basis for the centre of N . The nonzero connection

components and the nonzero curvature components are given by

∇X1
X2 = −∇X2

X1 =
λ

2
X3, ∇X1

X3 = ∇X3
X1 = −

λ

2
X2,(2.3)

∇X2
X3 = ∇X3

X2 =
λ

2
X1,

and R1212 = −3λ2/4, R1313 = R2323 = λ2/4.

3. Parallel and totally geodesic hypersurfaces of two-step

homogeneous nilmanifolds of dimension five

Let F : Mn → Nn+1 be an isometric immersion of Riemannian manifolds (M, 〈 , 〉)

and (N, 〈 , 〉). Denote by ξ a unit normal vector field on the hypersurface M and by

∇M and ∇ the Levi-Civita connections of M and N , respectively. Let us define the

shape operator S by SX = −∇Xξ and identify vector fields tangent to M with their

images under dF . Then the formula of Gauss is given by

(3.1) ∇XY = ∇M
X Y + h(X,Y )ξ,

where X and Y are vector fields tangent toM and h is the second fundamental form

defined by h(X,Y ) = 〈SX, Y 〉. If R is the Riemann-Christoffel curvature of N , then

the Codazzi equation can be expressed by

(3.2) 〈R(X,Y )Z, ξ〉 = (∇Mh)(X,Y, Z)− (∇Mh)(Y,X,Z),

where X , Y , Z and W are vector fields tangent to M and (∇Mh) is defined by

(∇Mh)(X,Y, Z) = X(h(Y, Z))− h(∇M
X Y, Z)− h(Y,∇M

X Z).

We say that Mn is totally geodesic in Nn+1 if h = 0, and that Mn is parallel in

Nn+1 if ∇Mh = 0.

In order to classify parallel hypersurfaces of two-step homogeneous nilmanifolds

of dimension five, we prove the following result.

Lemma 3.1. Let F : M4 → (N, g) be a parallel hypersurface of a two-step ho-

mogeneous nilmanifold of dimension five. Also let ξ be a unit normal vector field on

M and let {X1, . . . , X5} be the orthonormal field on N . Then every point of M has

a neighbourhood U ⊆ M on which ξ has one of the following forms:

(a) ξ = ±X5, where N is of the type (A1),

(b) ξ = ±X1, where N is of the type (A2),

(c) ξ = ±X1,±X2,±X3,±X4,±X5, sin θX1 + cos θX2 or ξ = cos θX4 + sin θX5,

where N is of the type (A3) and θ : U → R is a function.
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P r o o f. Assume that ξ =
5
∑

i=1

aiXi, where ai : U ⊆ M → R are functions. Then

the vector fields

V1 = a1X2 − a2X1, V2 = a1X3 − a3X1, V3 = a1X4 − a4X1,

V4 = a1X5 − a5X1, V5 = a2X3 − a3X2, V6 = a2X4 − a4X2,

V7 = a2X5 − a5X2, V8 = a3X4 − a4X3, V9 = a3X5 − a5X3,

V10 = a4X5 − a5X4

are tangent to the hypersurface M3. Since M is a parallel hypersurface we have

∇Mh = 0. Thus (3.2) gives us

(3.3) 〈R(Vi, Vj)Vk, ξ〉 = 0, i, j, k ∈ {1, . . . , 10}.

In order to obtain suitable forms of ξ we apply (3.3) to the types (A1), (A2) and (A3),

which are given in Section 2.

Type (A1): For this type 0 = 〈R(V1, V2)V1, ξ〉 = a1a3(a
2
1+a22)3λ

2/4 gives us three

subcases a1 = 0, a3 = 0 and a1 = a2 = 0.

Case 1 : a1 = 0. In this case 0 = R(V1, V5)V1, ξ〉 = a32a33λ
2/4 implies two subcases

a2 = 0 and a3 = 0.

Case 1.1 : a2 = 0. In this case 0 = 〈R(V6, V10)V6, ξ〉 = a34a5λ
2/4 yields two

subcases a4 = 0 and a5 = 0.

Case 1.1.1 : a4 = 0. In this case from 0 = 〈R(V2, V5)V8, ξ〉 = a43λµ/2 we have

ξ = ±X5.

Case 1.1.2 : a5 = 0. In this case 0 = 〈R(V2, V6)V8, ξ〉 = a3a4(a
2
3+a24)λµ/2 gives us

either a3 = 0 or a4 = 0 or a3 = a4 = 0. If a3 = 0, then we have 0 = 〈R(V3, V6)V8, ξ〉 =

a44λµ/2. If a4 = 0, then we have 0 = 〈R(V2, V5)V8, ξ〉 = a43λµ/2. If a3 = a4 = 0, then

we have ξ = 0. Therefore, these three cases give us the contradiction ξ = 0 (since

〈ξ, ξ〉 = 1).

Case 1.2 : a3 = 0. In this case 0 = 〈R(V1, V8)V10, ξ〉 = a22a4a5(−λµ/4) yields three

subcases a2 = 0, a4 = 0 and a5 = 0.

Case 1.2.1 : a2 = 0. In this case 0 = 〈R(V4, V6)V9, ξ〉 = a25a
2
4λµ/2 gives us either

a4 = 0 or a5 = 0. If a4 = 0, then we have ξ = ±X5. If a5 = 0, then from

0 = 〈R(V3, V6)V8, ξ〉 = a44λµ/2 we have the contradiction ξ = 0.

Case 1.2.2 : a4 = 0. In this case we obtain 0 = 〈R(V1, V5)V10, ξ〉 = a32a5λµ/4.

If a2 = 0, then we have ξ = ±X5. If a5 = 0, then from 0 = 〈R(V1, V5)V6, ξ〉 =

a42(−λµ/4) we obtain the contradiction ξ = 0.

Case 1.2.3 : a5 = 0. In this case 0 = 〈R(V1, V5)V6, ξ〉 = a22(a
2
4+a22)(−µλ/4) gives us

either a2 = 0 or a2 = a4 = 0. If a2 = 0, then we have 0 = 〈R(V3, V6)V8, ξ〉 = a44λµ/2.
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If a2 = a4 = 0, then a similar argument yields ξ = 0. Therefore, both cases imply

the contradiction ξ = 0.

Case 2 : a3 = 0. In this case from 0 = 〈R(V2, V3)V2, ξ〉 = a31a4(−3µ2/4) we have

two subcases a1 = 0 and a4 = 0.

Case 2.1 : a1 = 0. This case coincides with the case 1.2.

Case 2.2 : a4 = 0. In this case 0 = 〈R(V5, V7)V5, ξ〉 = a5a
3
2µ

2/4 gives us two

subcases a2 = 0 and a5 = 0.

Case 2.2.1 : a2 = 0. In this case 0 = 〈R(V1, V2)V3, ξ〉 = a41(−λµ/4) gives us

ξ = ±X5.

Case 2.2.2 : a5 = 0. In this case 0 = 〈R(V2, V1)V6, ξ〉 = a1a2(a
2
1 + a22)λµ/4

yields that either a1 = 0 or a2 = 0 or a1 = a2 = 0. If a1 = 0, then we have

0 = 〈R(V1, V5)V6, ξ〉 = a42(−λµ/4). If a2 = 0, then 0 = 〈R(V1, V2)V3, ξ〉 = a41(−λµ/4)

gives us ξ = 0. If a1 = a2 = 0, then we have ξ = 0. Therefore, these three cases give

us the contradiction ξ = 0.

Case 3 : a1 = a2 = 0. This case coincides with the case 1.1.

Type (A2): For this type from 0 = 〈R(V9, V4)V4, ξ〉 = −a35a3µ
2 we obtain two

subcases a5 = 0 and a3 = 0.

Case 1 : a5 = 0. In this case from 0 = 〈R(V7, V6)V6, ξ〉 = a22a3a4(−λµ/2) we have

three subcases a2 = 0, a4 = 0 and a3 = 0.

Case 1.1 : a2 = 0. In this case 0 = 〈R(V9, V8)V5, ξ〉 = a43(−λµ/4) gives us a3 = 0.

Thus we obtain 0 = 〈R(V2, V1)V4, ξ〉 = a31a4(−λµ/4). If a4 = 0, then we have

ξ = ±X1. If a1 = 0, then 0 = 〈R(V6, V8)V10, ξ〉 = a44λµ/4 gives us the contradiction

ξ = 0.

Case 1.2 : a4 = 0. In this case 0 = 〈R(V9, V8)V5, ξ〉 = a23(a
2
3 + a22)(−µλ/4) yields

that either a3 = 0 or a3 = a2 = 0. If a3 = 0, then we have 0 = 〈R(V7, V6)V5, ξ〉 =

a42(−λµ/4). If a3 = a2 = 0, then we have ξ = ±X1. Therefore, both cases imply

that ξ = ±X1.

Case 1.3 : a3 = 0. In this case from 0 = 〈R(V1, V2)V2, ξ〉 = a31a2(−3µ2/4) we have

two subcases a1 = 0 and a2 = 0.

Case 1.3.1 : a2 = 0. In this case 0 = 〈R(V10, V6)V8, ξ〉 = a44(−λµ/4) gives us

ξ = ±X1.

Case 1.3.2 : a1 = 0. In this case 0 = 〈R(V1, V6)V1, ξ〉 = λ2a32a4 gives us either

a2 = 0 or a3 = 0. If a2 = 0, then we have 0 = 〈R(V10, V6)V8, ξ〉 = a44(−λµ/4). If

a4 = 0, then we have 0 = 〈R(V5, V6)V7, ξ〉 = a42(−λµ/2). Therefore, both cases yield

the contradiction ξ = 0.

Case 2 : a3 = 0. In this case from 0 = 〈R(V1, V2)V2, ξ〉 = a2a
3
1(−3µ2/4) we have

subcases a1 = 0 and a2 = 0.
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Case 2.1 : a1 = 0. In this case 0 = 〈R(V8, V10)V10, ξ〉 = a24a5a2(−λµ/2) yields

three subcases a4 = 0, a5 = 0 and a2 = 0.

Case 2.1.1 : a4 = 0. In this case 0 = 〈R(V7, V5)V6, ξ〉 = a25a
2
2λµ/4 implies that

either a5 = 0 or a2 = 0. If a2 = 0, then we have 0 = 〈R(V7, V9)V10, ξ〉 = a45λµ/4. If

a5 = 0, then we obtain 0 = 〈R(V6, V5)V7, ξ〉 = a42λµ/4. Therefore, both cases yield

the contradiction ξ = 0.

Case 2.1.2 : a5 = 0. In this case 0 = 〈R(V1, V6)V1, ξ〉 = λ2a4a
3
2 implies that either

a2 = 0 or a4 = 0. If a2 = 0, then we have 0 = 〈R(V6, V10)V8, ξ〉 = a44λµ/4. If

a4 = 0, then we obtain 0 = 〈R(V6, V5)V7, ξ〉 = a42λµ/4. Therefore, both cases imply

the contradiction ξ = 0.

Case 2.1.3 : a2 = 0. In this case 0 = 〈R(V6, V8)V10, ξ〉 = a24(a
2
5 + a24)µλ/4 implies

that either a4 = 0 or a5 = a4 = 0. If a4 = 0, then we have 0 = 〈R(V7, V9)V10, ξ〉 =

a45λµ/4. If a4 = a5 = 0, then we have ξ = 0. Therefore, both cases imply the

contradiction ξ = 0.

Case 2.2 : a2 = 0. In this case 0 = 〈R(V6, V9)V10, ξ〉 = a4a5(a
2
5 + a24)λµ/4

yields that either a4 = 0 or a5 = 0 or a4 = a5 = 0. If a4 = 0, then we have

〈R(V7, V9)V10, ξ〉 = a45λµ/4. If a5 = 0, then we have 0 = 〈R(V6, V8)V10, ξ〉 = a44λµ/4.

Therefore, these three cases imply that ξ = ±X1.

Type (A3): For this type 0 = 〈R(V1, V2)V4, ξ〉 = λ2a1a2a3a5 gives us four subcases

a1 = 0, a2 = 0, a3 = 0 and a5 = 0.

Case 1 : a1 = 0. In this case from 0 = 〈R(V1, V5)V1, ξ〉 = λ2a32a3 we have two

subcases a2 = 0 and a3 = 0.

Case 1.1 : a2 = 0. In this case 0 = 〈R(V2, V8)V2, ξ〉 = a33a4(−λ2/4) gives us either

a3 = 0 or a4 = 0. If a3 = 0, then 〈ξ, ξ〉 = 1 implies that ξ = cos θX4 + sin θX5.

If a4 = 0, then 0 = 〈R(V2, V9)V2, ξ〉 = a33a5(−λ2/4) yields that either ξ = ±X5 or

ξ = ±X3.

Case 1.2 : a3 = 0. In this case 0 = 〈R(V5, V6)V5, ξ〉 = a32a4(−λ2/4) implies that

either a2 = 0 or a4 = 0. If a2 = 0, then we have ξ = cos θX4 + sin θX5. If a4 = 0,

then we have 0 = 〈R(V4, V7)V4, ξ〉 = a35a23λ
2/4, which gives us either ξ = ±X5 or

ξ = ±X2.

Case 2 : a2 = 0. In this case 0 = 〈R(V1, V2)V1, ξ〉 = λ2a31a3 gives us two subcases

a1 = 0 and a3 = 0.

Case 2.1 : a1 = 0. This case coincides with the Case 1.1.

Case 2.2 : a3 = 0. In this case 0 = 〈R(V1, V3)V1, ξ〉 = a31a43λ
2/4 yields that either

a1 = 0 or a4 = 0. If a1 = 0, then we have ξ = cos θX4 + sin θX5. If a4 = 0, then

〈R(V1, V4)V1, ξ〉 = a31a53λ
2/4 = 0 implies that either ξ = ±X5 or ξ = ±X1.

Case 3 : a3 = 0. In this case 0 = 〈R(V2, V4)V2, ξ〉 = a31a5(−λ2/4) implies two

subcases a1 = 0 and a5 = 0.
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Case 3.1 : a1 = 0. This case coincides with the Case 1.2.

Case 3.2 : a5 = 0. In this case 0 = 〈R(V1, V3)V1, ξ〉 = a1a4(a
2
1 + a22)3λ

2/4 implies

that either a1 = 0 or a4 = 0 or a1 = a2 = 0. If a1 = 0, then 0 = 〈R(V1, V6)V1, ξ〉 =

a32a43λ
2/4 = 0 implies that either ξ = ±X4 or ξ = ±X2. If a4 = 0, then we have

ξ = sin θX1 + cos θX2. If a1 = a2 = 0, then we have ξ = ±X4.

Case 4 : a5 = 0. In this case 0 = 〈R(V5, V6)V6, ξ〉 = a2a
2
4a3(−λ2/4) gives us three

subcases a2 = 0, a4 = 0 and a3 = 0.

Case 4.1 : a2 = 0. In this case 0 = 〈R(V1, V3)V1, ξ〉 = a31a43λ
2/4 yields that either

a1 = 0 or a4 = 0. If a1 = 0, then 0 = 〈R(V5, V8)V5, ξ〉 = a33a4(−λ2/4) gives us that

either ξ = ±X4 or ξ = ±X3. If a4 = 0, then 〈R(V1, V2)V5, ξ〉 = −λ2a21a
2
3 gives us

either ξ = ±X1 or ξ = ±X3.

Case 4.2 : a4 = 0. In this case 0 = 〈R(V1, V5)V1, ξ〉 = λ2a2a3(a
2
1 + a22) implies

that either a2 = 0 or a3 = 0 or a1 = a2 = 0. If a2 = 0, then 0 = 〈R(V2, V5)V5, ξ〉 =

−λ2a1a
3
3 gives us that either ξ = ±X3 or ξ = ±X1. If a3 = 0, then ξ = sin θX1 +

cos θX2. If a1 = a2 = 0, then we have ξ = ±X3.

Case 4.3 : a3 = 0. This case coincides with the Case 3.2. �

Theorem 3.2. Let F : M4 → (N, g) be a parallel hypersurface of a two-step

homogeneous nilmanifold with dimension five. Then there exist local coordinates

(w1, w2, w3, w4) onM such that the immersion with respect to these coordinates, up

to isometry, is given by one of the following expressions:

(1) F (w1, . . . , w4) = (0, w1, w2, w3, w4),(3.4)

(2) F (w1, . . . , w4) = (w1, 0, w2, w3, w4),

(3) F (w1, . . . , w4) = (w1, w2, w3, 0, w4),

(4) F (w1, . . . , w4) = (w1, w2, w3, w4, 0),

(5) F (w1, . . . , w4) = (cos θw1,− sin θw1, w2, w3, w4),

(6) F (w1, . . . , w4) = (w1, w2, w3,− sin θw4, cos θw4),

where θ is a real constant. Conversely, all these hypersurfaces are parallel.

P r o o f. Assume that M is a parallel hypersurface. Then ξ has one of the forms

given in (a), (b) and (c) of Lemma 3.1. Let us start with (a), i.e., ξ = ±X5. Then

the following vector fields span the tangent space to M at each point:

(3.5) Y1 = X1, Y2 = X2, Y3 = X3, Y4 = X4.

It follows from (2.1) and (3.5) that the nonzero connection components are ∇Y1
Y2 =

−∇Y2
Y1 = ξλ/2 and ∇Y3

Y4 = −∇Y4
Y3 = ξµ/2. Thus by using the formula of
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Gauss (3.1), the second fundamental form is determined by h(Y1, Y2) = −h(Y2, Y1) =

λ/2 and h(Y3, Y4) = −h(Y4, Y3) = µ/2, where the remaining cases are zero. There-

fore, the symmetry condition for h yields the contradiction λ = µ = 0. If we

consider (c) of Lemma 3.1, for ξ = ±X3, then by a similar argument we have the

contradiction λ = 0.

Let us consider (b) of Lemma 3.1, i.e., ξ = ±X1. Then the following vector fields

span the tangent space to M at each point:

(3.6) Y2 = X2, Y3 = X3, Y4 = X4, Y5 = X5.

From the equations (2.2) and (3.6) we can see that the nonzero connection com-

ponents are ∇Y2
Y4 = ∇Y4

Y2 = ξλ/2 and ∇Y3
Y5 = ∇Y5

Y3 = ξµ/2. Thus by using

the formula of Gauss, the second fundamental form is determined by h(Y2, Y4) =

h(Y4, Y2) = λ/2 and h(Y3, Y5) = h(Y5, Y3) = µ/2, where the remaining cases are

zero. Hence, ∇Mh = 0 and the hypersurface is parallel. In order to obtain this

hypersurface we put ∂w1 = Y2, . . ., ∂w4 = Y5 and denote by

F : M → N : (w1, . . . , w4) 7→ (F1(w1, . . . , w4), . . . , F5(w1, . . . , w4))

the immersion of the hypersurface. Thus by (3.6) the derivatives of F are

(∂F1

∂w1
, . . . ,

∂F5

∂w1

)

= (0, 1, 0, 0, 0),
( ∂F1

∂w2
, . . . ,

∂F5

∂w2

)

= (0, 0, 1, 0, 0),

(∂F1

∂w3
, . . . ,

∂F5

∂w3

)

= (0, 0, 0, 1, 0),
( ∂F1

∂w4
, . . . ,

∂F5

∂w4

)

= (0, 0, 0, 0, 1).

From these equations, we immediately obtain

(3.7) F1 = c1, F2 = w1 + c2, F3 = w2 + c3, F4 = w3 + c4, F5 = w4 + c5,

where c1, . . . , c5 are real constants. This hypersurface is isometric with the case (1)

of the theorem.

Let us consider (c) of Lemma 3.1 for ξ = ±X2. Then the following vector fields

span the tangent space to M at each point:

(3.8) Y1 = X1, Y2 = X3, Y3 = X4, Y4 = X5,

and by (2.3) the nonzero connection components are ∇Y1
Y2 = ξ(−λ/2) and ∇Y2

Y1 =

ξ(−λ/2). Thus by the formula of Gauss, the second fundamental form is determined

by h(Y1, Y2) = h(Y2, Y1) = −λ/2, where the remaining cases are zero. Thus the

hypersurface is parallel and if we put ∂w1 = Y1, . . ., ∂w4 = Y4 and use (3.8) we
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obtain F1 = w1 + c1, F2 = c2, F3 = w2 + c3, F4 = w3 + c4, F5 = w4 + c5, where

c1, . . . , c5 are real constants. This hypersurface is isometric with the case (2) of the

theorem.

Let us consider (c) of Lemma 3.1 with ξ = ±X4 and ξ = ±X5. Then by a similar

argument as above, in both cases for all i, j ∈ {1, . . . , 4} we obtain h(Yi, Yj) = 0.

Thus these hypersurfaces are parallel and they are given, respectively, by

(3.9) F1 = w1 + c1, F2 = w2 + c2, F3 = w3 + c3, F4 = c4, F5 = w4 + c5,

and

(3.10) F1 = w1 + c1, F2 = w2 + c2, F3 = w3 + c3, F4 = w4 + c4, F5 = c5,

where c1, . . . , c5 are real constants. These hypersurfaces are isometric with the

cases (3) and (4) of the theorem.

Let us consider (c) of Lemma 3.1 with ξ = sin θX1 + cos θX2. Then the following

vector fields span the tangent space to M at each point:

(3.11) Y1 = cos θX1 − sin θX2, Y2 = X3, Y3 = X4, Y4 = X5.

A direct computation, using (2.3) and (3.11), gives

∇Yi
Y1 = −Yi(θ)ξ, ∇Y1

Y2 =
−λ

2
ξ, ∇Y2

Y1 = −
(

Y2(θ) +
λ

2

)

ξ,

where i = 1, 3, 4 and the other connection components are zero. Thus from the

formula of Gauss, the second fundamental form is determined by h(Yi, Y1) = −Yi(θ),

h(Y1, Y2) = −λ/2 and h(Y2, Y1) = −Y2(θ)−λ/2, where i = 1, 3, 4 and the remaining

cases are zero. Hence, by applying the symmetry condition for h we have Y1(θ) =

0, . . ., Y4(θ) = 0, which implies that θ is a real constant and the hypersurface is

parallel. In order to obtain this immersion we put ∂w1 = Y1, . . ., ∂w4 = Y4 and use

(3.11), which implies that

(∂F1

∂w1
, . . . ,

∂F5

∂w1

)

= (cos θ,− sin θ, 0, 0, 0),
(∂F1

∂w2
, . . . ,

∂F5

∂w2

)

= (0, 0, 1, 0, 0),

(∂F1

∂w3
, . . . ,

∂F5

∂w3

)

= (0, 0, 0, 1, 0),
(∂F1

∂w4
, . . . ,

∂F5

∂w4

)

= (0, 0, 0, 0, 1).

From these equations we obtain

F1 = cos θw1 + c1, F2 = − sin θw1 + c2, F3 = w2 + c3,

F4 = w3 + c4, F5 = w4 + c5,
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where c1, . . . , c5 are real constants. This hypersurface is isometric with the case (5)

of the theorem.

Let us consider (c) of Lemma 3.1 with ξ = cos θX4 + sin θX5. Then the following

vector fields span the tangent space to M at each point:

(3.12) Y1 = X1, Y2 = X2, Y3 = X3, Y4 = − sin θX4 + cos θX5,

and by using (2.3) and (3.12) we obtain

∇Yi
Y4 = −Yi(θ)ξ, ∇Y1

Y2 = −∇Y2
Y1 =

λ

2
Y3,(3.13)

∇Y1
Y3 = ∇Y3

Y1 =
−λ

2
Y2, ∇Y3

Y2 = ∇Y2
Y3 =

λ

2
Y1,

where i = 1, . . . , 4 and the remaining connection components are zero. Thus by

the Gauss formula (3.1), the second fundamental form is determined by h(Yi, Y4) =

−Yi(θ), where i = 1, . . . , 4 and the remaining cases are zero. Since h is symmetric,

we have Y1(θ) = 0, . . ., Y4(θ) = 0, which implies that θ is a real constant and the

hypersurface is parallel. Thus if we put ∂w1 = Y1, . . ., ∂w4 = Y4 and use (3.12) we

obtain

F1 = w1 + c1, F2 = w2 + c2, F3 = w3 + c3,(3.14)

F4 = − sin θw4 + c4, F5 = cos θw4 + c5,

where c1, . . . , c5 are real constants. This hypersurface is isometric with the case (6)

of the theorem.

The converse of theorem can be obtained by a straightforward computation. �

Since every totally geodesic hypersurface is parallel, we obtain the following result.

Theorem 3.3. Let F : M4 → (N, g) be a totally geodesic hypersurface of a two-

step homogeneous nilmanifold of dimension five. Then there exist local coordinates

(w1, w2, w3, w4) on M4 such that the immersion with respect to these coordinates,

up to isometry, is given by one of the following expressions:

F (w1, . . . , w4) = (w1, w2, w3, 0, w4),(3.15)

F (w1, . . . , w4) = (w1, w2, w3, w4, 0),

F (w1, . . . , w4) = (w1, w2, w3,− sin θw4, cos θw4),

where θ is a real constant. Conversely, these hypersurfaces are totally geodesic.
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P r o o f. Assume that M is a totally geodesic hypersurface. Then it is sufficient

to choose the hypersurfaces given in Theorem 3.2, for which we have h(Yi, Yj) = 0,

where i, j ∈ {1, . . . , 4}. Thus we obtain the hypersurfaces (3.9), (3.10) and (3.14),

which are isometric with the hypersurfaces given in the system (3.15). The converse

can be verified by a straightforward computation. �

Theorems 3.2 and 3.3 give us the following result:

Theorem 3.4. (I) Two-step homogeneous nilmanifolds of dimension five which

have one-dimensional centre can never admit parallel hypersurfaces.

(II) The only two-step homogeneous nilmanifolds of dimension five which admit

totally geodesic hypersurfaces have three-dimensional centre.

P r o o f. Suppose that M is parallel in N . Then by Theorem 3.2 it can be ex-

pressed by one of the hypersurfaces given in system (3.4), which are obtained from

the unit normal vector fields belonging to the types (A2) and (A3) of N , i.e., N has

two- or three-dimensional centre.

To prove (II) we assume that M is totally geodesic in N . Then by Theorem 3.3

it can be expressed by one of the hypersurfaces given in the system (3.15). By

Theorem 3.2, these hypersurfaces are obtained from ξ = ±X4, ξ = ±X5 and ξ =

cos θX4 + sin θX5 which belong to the type (A3) of N , i.e., N has three-dimensional

centre. �
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