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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 3 , P AGES 3 4 8 – 3 5 8

A VERSATILE SCHEME FOR PREDICTING RENEWAL
TIMES

Gusztáv Morvai and Benjamin Weiss

There are two kinds of universal schemes for estimating residual waiting times, those where
the error tends to zero almost surely and those where the error tends to zero in some integral
norm. Usually these schemes are different because different methods are used to prove their
consistency. In this note we will give a single scheme where the average error is eventually small
for all time instants, while the error itself tends to zero along a sequence of stopping times of
density one.

Keywords: nonparametric estimation, stationary processes

Classification: 62G05, 60G25,60G10

1. INTRODUCTION

In problems of universal estimation it is usually easier to prove that a certain scheme
converges in probability as opposed to a pointwise result. On the other hand for par-
ticular estimation schemes it is not always so easy to go from a pointwise result to
convergence in expectation since one needs to control the size of the rare errors that
may occur. In this note we are interested in the problem of estimating the conditional
expectation of the residual waiting time (given the first n outputs) to the next occur-
rence of the renewal state in a binary renewal process. Since the possible values of this
residual waiting time are not bounded we don’t expect to be able to give a reasonable
estimate at all time instants and to obtain a positive results. One of the things that we
will do here is to show by an explicit construction that indeed this is the case.

In order to obtain positive results the notion of intermittent estimation was introduced
(cf. [8]). Here one defines a sequence of stopping times and only ventures an estimate
at those times. In the favorable cases these times have density one so that effectively we
are not giving up too much. We have already given such a scheme in [8]. Our purpose
in this note is to show how to modify that scheme so that we also get convergence to
zero of the expected value of the error that we will be making. For this we will venture
a guess at all time instants, and what we propose in fact is a single scheme which will
converge in expectation for all time instants and converge almost surely along a sequence
of stopping times of density one.
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We turn now to a more formal description of the problem. It is easiest to formally
define a renewal process in terms of an underlying Markov chain. Consider a Markov
chain on the state space {0, 1, 2, . . . } with transition probabilities pi,i−1 = 1 for all
i ≥ 1 and p0,i = pi a probability distribution π on {0, 1, 2 . . . }, cf. [5] Ex. 12.13. This
chain is positive recurrent exactly when

∑∞
i=0 ip0,i = µ <∞ and the unique stationary

probability assigns mass 1
1+µ to the state 0, cf. [4] Ch. XIII and [13] Sec. I.2.c.

Collapsing all states i ≥ 1 to 1 gives rise to the classical binary renewal process. Even
though our primary interest is in one sided processes, stationarity implies that there
exists a two sided process with the same statistics and we will use the two sided version
whenever it is convenient to do so.

For conciseness sake, we will denote Xj
i = (Xi, . . . , Xj) and also use this notation for

i = −∞ and j = ∞. Our interest is in the waiting time to renewal (the state 0) given
some previous observations, in particular given Xn

0 . Recall that if the data segment
Xn

0 doesn’t contain a zero the expected time to the first occurrence of a zero may be
infinite; this depends on the finiteness of the second moment of π. If a zero occurs then
the expected time depends on the location of the zero and so we introduce the notation:

τ(Xn
−∞) = the t ≥ 0 such that Xn−t = 0, and Xi = 1 for n− t < i ≤ n.

Note that this is well defined with probability one. If a zero occurs in Xn
0 then τ(Xn

−∞)
depends only on Xn

0 and so we will also write for τ(Xn
−∞), τ(Xn

0 ) with the understanding
that this is defined only if a zero occurs in Xn

0 .
Define σi as the length of runs of 1’s starting at position i. Formally put

σi = max{0 ≤ l : Xj = 1 for i < j ≤ i+ l}.

Now for the classical binary renewal process {Xn} define θn as

θn = E(σn|Xn
0 ).

(Note that

θn =
∑∞
k=0 kpk+τ(X0,...,Xn)∑∞
k=τ(X0,...,Xn) pk

as soon as there is at least one zero in Xn
0 . As we have already mentioned if no zero

occurs then it might happen that θn = ∞.) Our goal is to estimate θn without prior
knowledge of the distribution function of the process. We will measure how well we do
either by a direct comparison or by taking the expectation of the difference between θn
and our estimate for it.

An intermittent scheme can be converted into a scheme defined for all n by simply
setting the estimate to be zero at those time instants which are not a stopping time.
In the next section we will give a general result showing under what hypotheses this
will yield a two way universal scheme, while in §3 we will give a specific scheme which
works. The last section has the construction that shows why we must use intermittent
estimation to get almost sure results.

For further reading on these topics we refer the interested reader to [9, 12] and [11].
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2. CONVERTING INTERMITTENT SCHEMES

Define ψ as the position of the first zero, that is,

ψ = min{t ≥ 0 : Xt = 0}.

Let

µL =
∞∑
i=L

(i− L)pi/
∞∑
i=L

pi.

For a sequence of stopping times λn define χn as

χn = min{k ≥ 0 : λk = n}

and ∞ if there is no such finite k.

Let

h∗n(Xn
0 ) =

{
hχn(Xλχn

0 ) if χn <∞
0 otherwise.

Theorem 2.1. Assume
∑∞
k=0 k

2pk < ∞. Let λn be a sequence of stopping times and
hn(Xλn

0 ) an estimation scheme such that

almost surely, τ(Xλn
−∞) ≤ λn, (1)

for any fixed L, lim
n→∞

E
(
I{τ(Xn−∞)≤L}I{∀k≥0:λk 6=n}µτ(Xn−∞)

)
= 0, (2)

almost surely, lim
n→∞

|hn(Xλn
0 )− µτ(Xλn−∞)| = 0, (3)

lim
n→∞

E
(
I{∃k≥0:λk=n}

∣∣∣hχn(Xλχn
0 )− µτ(Xn−∞)

∣∣∣) = 0. (4)

Then

• almost surely, limn→∞ I{χn<∞}|h∗n(Xn
0 )− µτ(Xn−∞)| = 0

• limn→∞E (|h∗n(Xn
0 )− θn|) = 0.

P r o o f . For any L we can estimate:

lim
n→∞

E (|h∗n(Xn
0 )− θn|)

≤ lim
n→∞

E
(
I{∃k≥0:λk=n}

∣∣∣hχn(Xλχn
0 )− µτ(Xn−∞)

∣∣∣)
+ lim

n→∞
E
(
I{τ(Xn−∞)≤L}I{∀k≥0:λk 6=n}µτ(Xn−∞)

)
+ lim

n→∞
E
(
I{L<τ(Xn−∞)≤n}µτ(Xn−∞)

)
+ lim

n→∞
E
(
I{τ(Xn−∞)>n}θn

)
.
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The first two terms are zero by (4) and (2). We deal with the third term. Now

P (τ(Xk
−∞) = l) =

1
1 +

∑∞
h=0 hph

∞∑
h=l

ph

(note that by Kac’s theorem

P (Xk−l = 0) =
1

1 +
∑∞
h=0 hph

cf. [4] Ch. XIII and [13] Sec. I.2.c). It is easy to see that

∞∑
l=0

µlP (τ(X0
−∞) = l) =

∞∑
l=0

∑∞
h=0 hph+l∑∞
h=l ph

∑∞
h=l ph

1 +
∑∞
h=0 hph

≤
∑∞
h=0 h

2ph
1 +

∑∞
h=0 hph

< ∞.

For any ε > 0 we can choose L so that

lim
n→∞

E
(
I{L<τ(Xn−∞)≤n}µτ(Xn−∞)

)
= lim

n→∞
E
(
I{L<τ(X0

−∞)≤n}µτ(X0
−∞)

)
= E

(
I{L<τ(X0

−∞)}µτ(X0
−∞)

)
=

∞∑
l=L+1

µlP (τ(X0
−∞) = l) < ε

and then the third term will be bounded by ε.

Now we deal with the last term. Since
∑∞
k=0 k

2pk <∞,

E
(
I{τ(Xn−∞)>n}θn

)
= E(I{τ(Xn−∞)>n}E(σn|Xn

0 ))

=
∞∑
i=1

∞∑
j=0

jpi+n+jP (X−i = 0)

≤
∑∞
k=n k

2pk
1 +

∑∞
h=0 hph

→ 0.

Combining all these we get that for arbitrary ε > 0,

lim
n→∞

E (|h∗n(Xn
0 )− θn|) < ε.

Since ε > 0 was arbitrary this completes the proof of Theorem 2.1. �
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3. THE TWO WAY UNIVERSAL SCHEME

Let 0 < γ < 1 be arbitrary. First define the stopping times λn as λ0 = ψ and for n ≥ 1,

λn = min{ t > λn−1 : ∃ψ < i ≤ blog tc such that τ(Xi
0) = τ(Xt

0) and∣∣∣{blog tc < j < 2blog tc : τ(Xj
0) = τ(Xt

0)
}∣∣∣ ≥ 2blog tc(1−γ) }.

(Note that all logarithms are to the base 2.) Put

κn = min{K :
∣∣∣{blog λnc < j ≤ K : τ(Xj

0) = τ(Xλn
0 )
}∣∣∣ = d2blog λnc(1−γ)e}.

Note that κn < 2blog λnc. For n > 0 define our estimator hn(X0, . . . , Xλn) at time λn as

hn(X0, . . . , Xλn) =
1

d2blog λnc(1−γ)e

κn∑
i=blog λnc+1

I{τ(Xi0)=τ(X
λn
0 )}σi.

(Notice that κn ensures that we take into consideration exactly d2blog λnc(1−γ)e occur-
rences.) The above formula is simply the average of the residual waiting times that
we have already observed in the data segment Xκn

blog λnc+1 when we were at the same
value of τ as we see at time λn. Note that as long as 2m ≤ λn < 2m+1 the estimator
hn(X0, . . . , Xλn) is not refreshed. Keeping the same estimate for many values of n en-
ables us to use weaker moment assumptions since the number of unfavorable events that
we have to consider is reduced. Note that neither hn(X0, . . . , Xλn) nor λn depend on
the following α.

Theorem 3.1. Assume
∑∞
k=0 k

α+1pk <∞ for some α > 1. Let 0 < γ < 1/3. Then for
the stopping times λn and the estimator h∗n(X0, . . . , Xn), almost surely,

lim
n→∞

λn
n

= 1, (5)

lim
n→∞

I{∃k≥0:λk=n}|h
∗
n(Xn

0 )− µτ(Xn−∞)| = 0 (6)

and
lim
n→∞

E (|h∗n(Xn
0 )− θn|) = 0. (7)

P r o o f . The first statement (5) follows from Theorem 2 in [8]. We have to check the
conditions of Theorem 2.1. Condition (1) follows from the definition of λn. Condition (3)
follows from Theorem 2 in [8]. Now we deal with condition (4). Let k < m be fixed.
Define j(k,m)

0 = m and for i ≥ 0 let j(k,m)
i+1 denote the (i + 1)th occurrence of τ(Xk

−∞)
(reading forward, starting at position m), that is,

j
(k,m)
i+1 = min

{
t > j

(k,m)
i : τ(Xt

−∞) = τ(Xk
−∞)

}
.
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Now for i ≥ 1 define
Z

(k,m)
i = σ

j
(k,m)
i

.

Clearly Z(k,m)
i are conditionally independent and identically distributed given τ(Xk

−∞) =
L. Without loss of generality we may assume that 1 < α ≤ 2. Apply Theorem 2 of von
Bahr and Esseen in [1] to get the inequality between the second and the third terms

E

(∣∣∣∣∣
∑d(2m)1−γe
i=1 Z

(k,m)
i

d(2m)1−γe
−
∑∞
h=0 hph+L∑∞
h=L ph

∣∣∣∣∣
α

|τ(Xk
−∞) = L

)

= E

∣∣∣∣∣∣
d(2m)1−γe∑

i=1

Z(k,m)
i −

P∞
h=0 hph+LP∞
h=L ph

d(2m)1−γe

∣∣∣∣∣∣
α

|τ(Xk
−∞) = L


≤ 2
d(2m)1−γe∑

i=1

E

∣∣∣∣∣∣
Z

(k,m)
i −

P∞
h=0 hph+LP∞
h=L ph

d(2m)1−γe

∣∣∣∣∣∣
α

|τ(Xk
−∞) = L


= 2

1
d(2m)1−γeα

d(2m)1−γe∑
i=1

E

(∣∣∣∣Z(k,m)
i −

∑∞
h=0 hph+L∑∞
h=L ph

∣∣∣∣α |τ(Xk
−∞) = L

)
= 2d(2m)1−γe1−αE

(∣∣∣∣Z(k,m)
i −

∑∞
h=0 hph+L∑∞
h=L ph

∣∣∣∣α |τ(Xk
−∞) = L

)
.

Since for nonnegative a and b, |a− b|α ≤ aα + bα we get

2d(2m)1−γe1−αE
(∣∣∣∣Z(k,m)

i −
∑∞
h=0 hph+L∑∞
h=L ph

∣∣∣∣α |τ(Xk
−∞) = L

)
≤ 2d2m(1−γ)e1−α

(
E
(∣∣∣Z(k,m)

i

∣∣∣α |τ(Xk
−∞) = L

)
+
∣∣∣∣∑∞h=0 hph+L∑∞

h=L ph

∣∣∣∣α) .
Notice that E(|Z(k,m)

1 |α|τ(Xk
−∞) = L) =

P∞
h=0 h

αph+LP∞
h=L ph

and apply Jensen’s inequality to
get

2d2m(1−γ)e1−α
(
E
(∣∣∣Z(k,m)

i

∣∣∣α |τ(Xk
−∞) = L

)
+
∣∣∣∣∑∞h=0 hph+L∑∞

h=L ph

∣∣∣∣α)
≤ 2d(2m)1−γe1−α

(
E
(∣∣∣Z(k,m)

i

∣∣∣α |τ(Xk
−∞) = L

)
+
∑∞
h=0 h

αph+L∑∞
h=L ph

)
≤ 4(2m)(1−γ)(1−α)

∑∞
h=0 h

αph+L∑∞
h=L ph

.

Thus

E

(∣∣∣∣∣
∑d(2m)1−γe
i=1 Z

(k,m)
i

d(2m)1−γe
−
∑∞
h=0 hph+L∑∞
h=L ph

∣∣∣∣∣
α

|τ(Xk
−∞) = L

)
≤

4(2m)(1−γ)(1−α)

∑∞
h=0 h

αph+L∑∞
h=L ph

.
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Multiply both sides of the last inequality by

P (τ(Xk
−∞) = L) =

1
1 +

∑∞
h=0 hph

∞∑
h=L

ph

(note that by Kac’s theorem

P (Xk−L = 0) =
1

1 +
∑∞
h=0 hph

cf. [4] Ch. XIII and [13] Sec. I.2.c) and sum over L. It is easy to see that
∞∑
L=0

∑∞
h=0 h

αph+L∑∞
h=L ph

∑∞
h=L ph

1 +
∑∞
h=0 hph

≤
∑∞
h=0 h

α+1ph
1 +

∑∞
h=0 hph

and we get the following estimate

E

(∣∣∣∣∣
∑d(2m)1−γe
i=1 Z

(k,m)
i

d(2m)1−γe
−
∑∞
h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

∣∣∣∣∣
α)
≤ 4

(2m)(1−γ)(α−1)

∑∞
h=0 h

α+1ph
1 +

∑∞
h=0 hph

and in turn

E

(
max

0≤k≤m−1

∣∣∣∣∣
∑d(2m)1−γe
i=1 Z

(k,m)
i

d(2m)1−γe
−
∑∞
h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

∣∣∣∣∣
α)

≤ 4m

(2m)(1−γ)(α−1)

∑∞
h=0 h

α+1ph
1 +

∑∞
h=0 hph

.

Now

E

(
max

0≤k≤m−1

∣∣∣∣∣
∑d(2m)1−γe
i=1 Z

(k,m)
i

d(2m)1−γe
−
∑∞
h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

∣∣∣∣∣
)

= E

 max
0≤k≤m−1

(∣∣∣∣∣
∑d(2m)1−γe
i=1 Z

(k,m)
i

d(2m)1−γe
−
∑∞
h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

∣∣∣∣∣
α) 1

α


≤

(
E

(
max

0≤k≤m−1

∣∣∣∣∣
∑d(2m)1−γe
i=1 Z

(k,m)
i

d(2m)1−γe
−
∑∞
h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

∣∣∣∣∣
α)) 1

α

≤

(
4m

(2m)(1−γ)(α−1)

∑∞
h=0 h

α+1ph
1 +

∑∞
h=0 hph

) 1
α

and the right hand side tends to zero. Now let m = blog nc and observe that

E
(
I{∃k≥0:λk=n}

∣∣∣hχn(Xλχn
0 )− µτ(Xn−∞)

∣∣∣)
≤ E

(
max

0≤k≤m−1

∣∣∣∣∣
∑d(2m)1−γe
i=1 Z

(k,m)
i

d(2m)1−γe
−
∑∞
h=0 hph+τ(Xk−∞)∑∞
h=τ(Xk−∞) ph

∣∣∣∣∣
)
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which tends to zero. Now we prove that (2) is satisfied. Indeed,

lim
n→∞

E
(
I{τ(Xn−∞)≤L}I{∀k≥0:λk 6=n}µτ(Xn−∞)

)
≤ lim
n→∞

L∑
l=1

µl(P (∀ψ < i ≤ blog nc : τ(Xi
0) 6= τ(Xn

0 ))

+P (
∣∣∣{blog nc < j < 2blognc : τ(Xj

0) = τ(Xn
0 )
}∣∣∣ < 2blognc(1−γ))).

By ergodicity,
lim
n→∞

P (∀ψ < i ≤ blog nc : τ(Xi
0) 6= τ(Xn

0 )) = 0

and

lim
n→∞

P (
∣∣∣{blog nc < j < 2blognc : τ(Xj

0) = τ(Xn
0 )
}∣∣∣ < 2blognc(1−γ)) = 0.

The proof of Theorem 3.1 is complete. �

4. JUSTIFYING INTERMITTENT SCHEMES

In this section we will give an explicit construction that justifies the intuitive fact that
when the quantity that is being estimate is potentially infinite one shouldn’t expect to
have a pointwise consistent scheme valid for all large n. The construction is given in a
positive form, we will start from any scheme with certain properties and show how to
construct a binary renewal process for which the scheme will fail infinitely often to give
a good estimate for the conditional expectation of the residual waiting time.
Consider the class of those stationary and ergodic binary renewal processes which are
arbitrary finite order Markov chains. Then it is clear that one can estimate the condi-
tional expectation of the residual waiting time for all time instances. Indeed, estimate
the order of the Markov chain by a consistent order estimation scheme ORDEST (Xn

0 )
(you may use e. g. [2, 3, 6, 7]) or [10] and then calculate the conditional expectation
of the residual waiting time by using frequency count. Since there are finitely many
possible strings with length equal to the order the ergodic theorem yields consistency of
the estimator.

Theorem 4.1. For any estimation scheme gn(Xn
0 ) such that for all those stationary and

ergodic binary renewal processes {Yn} which are Markov with some finite but unknown
order,

lim
n→∞

∣∣gn(Y n0 )− E(σn(Y∞n+1)|Y n0 )
∣∣ = 0

almost surely, there exists a stationary and ergodic binary renewal process {Xn} with
E(σm0 (X∞1 )) <∞ for all m > 0 such that with positive probability,

lim sup
n→∞

∣∣gn(Xn
0 )− E(σn(X∞n+1)|Xn

0 )
∣∣ > 0.75.
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P r o o f . Let 0 = E0 < E1 < . . . be an increasing sequence of nonnegative integers
which will be specified later. Put

S = {Ei : 0 ≤ i <∞}

and
Sk = {Ei : 0 ≤ i < k}.

Let

f(x) =
{

0 if x = 0
1 otherwise.

Define the transition probabilities of the Markov chain {M (k)
n } as

p
(k)
i,j =


1 if i ∈ Sk and j = i+ 1
0.5 if i 6∈ Sk and j = 0
0.5 if i 6∈ Sk and j = i+ 1
0 otherwise

and the transition probabilities of the Markov chain {Mn} as

pi,j =


1 if i ∈ S and j = i+ 1
0.5 if i 6∈ S and j = 0
0.5 if i 6∈ S and j = i+ 1
0 otherwise.

Let X(k)
n = f(M (k)

n ) and Xn = f(Mn). ( Each process X(k)
n will be Markov with some

finite order since |Sk| <∞ but process Xn will not be Markov of any order. ) Now we
start with S0 as the empty set. Let L0 = N−1 = 1. Given the Markov chain {M (k)

n }
we proceed to define {M (k+1)

n }. We will make our modification in such a manner that
the probabilities of strings of length up to some Lk conditioned on starting at 0 will be
changed only slightly so that the behavior of the estimators gn on strings up to that
length will be maintained. Define the event

Ck,N = {
∣∣∣gn(X(k)

0 , . . . , X(k)
n )− E

(
σn(X(k)

n+1, . . . , )|X
(k)
0 , . . . , X(k)

n

)∣∣∣ < 0.25

for all n ≥ N}.

Let Nk ≥ 2Nk−1 be so large that

P (Ck,Nk |X
(k)
0 = 0) > 1− 1/2k.

Now let Ek = Nk + Lk. Observe that since

E
(
σn(X(k)

n+1, . . . )|X
(k)
n−Ek = 0, X(k)

n−Ek+1 = 1, . . . , X(k)
n = 1

)
= 2

whereas

E
(
σn(X(k+1)

n+1 , . . . )|X(k+1)
n−Ek = 0, X(k+1)

n−Ek+1 = 1, . . . , X(k+1)
n = 1

)
= 3
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so that the first time that we will see a string of ones of length Ek with probability
greater than 1 − 1/2k the scheme gn will be in error by at least 0.75. Define Lk+1 to
be large enough so that with probability greater than 1 − 1/2k starting at 0 we will
encounter a string with such a length by the time we have observed the first Lk+1 Xi’s.

More formally if we introduce the set Dk+1 defined by:

X
(k+1)
n−Ek = 0, X(k+1)

n−Ek+1 = 1, . . . , X(k+1)
n = 1

for some Lk < n < Lk+1 then its probability conditioned on X
(k+1)
0 = 0 is greater than

1− 1/2k.
Continuing by induction we define the final process Xn and with probability one the

scheme will be in error by a definite amount infinitely many times given X0 = 0. . What
remains to be proved that E(σmn (X∞n+1)) <∞ for all m > 0.

This is so since

E(σm+1
0 (X∞1 )|X0 = 0) ≤

∞∑
j=0

jm+1(0.5)j−ρj ≤
∞∑
j=0

jm+1(0.5)j−log(j) <∞

where ρj = #{Ni < j}. This completes the proof of Theorem 4.1. �

(Received February 26, 2015)
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