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KYBER NET IKA — VOLUM E 5 2 ( 2 0 1 6 ) , NUMBE R 3 , P AGES 4 2 7 – 4 4 0

QUANTIZED DISTRIBUTED OUTPUT REGULATION
OF MULTI-AGENT SYSTEMS

Xiaoli Wang and Yumin Chen

Motivated by digital communication channel, we consider the distributed output regulation
problem for linear multi-agent systems with quantized state measurements. Quantizers take
finitely many values and have an adjustable “zoom” parameter. Quantized distributed output
regulation concerns designing distributed feedback by employing quantized technique for multi-
agent systems such that all agents can track an active leader, and/or distributed disturbance
rejection. With the solvability conditions satisfied, both hybrid static and dynamic feedback
with quantized strategy are developed.

Keywords: multi-agent systems, distributed output regulation, active leader, quantized
control

Classification: 35R35, 49J40, 60G40

1. INTRODUCTION

The study of distributed control laws for groups of agents has emerged as a new and
challenging research field. It attracts many researchers from rather diverse disciplines
including ecology, physics, biology, social sciences and high technology. On the one hand,
researchers have been fascinated by the animal aggregation such as flocking, swarming,
and schooling, which is believed to use local and simple coordination rules resulting in
remarkable and complex intelligent behavior at the group level ([2]); and on the other
hand, engineers on computer and electrical science and technology have been working on
the distributed design for large-scale man-made systems (such as smart grids or sensor
networks), whose performance emerging based on the design at the individual level
([4]). Therefore, the analysis and control of multi-agent systems, including consensus,
formation, and flocking have been widely investigated.

Recently, distributed output regulation problem has been proposed with regarding
some coordination problems as its special case as discussed in ([7, 11, 14, 15, 16, 17]). It is
mainly about distributed feedback design for multi-agent systems to achieve asymptoti-
cally tracking and distributed disturbance rejection. Its background includes multi-agent
consensus with environmental inputs and active leader following model. In this problem,
the exogenous information (maybe generated by the leader or some disturbance sources)
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is not available to all the agents, which makes many results in conventional output reg-
ulation ([9]) failed to be applied to. This may explain why output regulation of linear or
nonlinear multi-agent systems has become a hot topic with many publications in recent
years.

On the other hand, the subject of quantized feedback stabilization problem for linear
systems is a very active and fruitful research area ([1, 10, 12]). It is motivated by
numerous applications where the communication between the plant and the controller
is limited due to capacity or security constraints. A quantizer is thought as a device
that can convert a real-valued signal into a piecewise constant one taking on a finite
set of values and having an adjustable “zoom” parameter. For example, a quantizer is
used to represent a camera, this corresponds to “zooming-in” or “zooming-out”, i. e.,
varying the focal length, while the number of pixels remains fixed ([10]). In ([1]), the
authors investigated the hybrid control for linear system where the quantizer is with
rectilinear quantization regions, while in [18], the authors considered impulsive hybrid
control with quantized?input and output feedback. In ([10]), the authors considered a
more general types of quantizer with quantization regions having arbitrary shapes. More
recently, multi-agent consensus under quantization has been studied ([3, 13]). In [13], the
authors proposed a quantized gossip algorithm, while the authors discussed the multi-
agent consensus with a high-order active leader in [a5]. In [8], the authors introduced
coding/decoding strategies in quantized consensus. However, there are very few results
on the quantized distributed output regulation control strategy for the general linear
multi-agent systems case, to our knowledge.

This paper is concerned with distributed output regulation problem of multi-agent
systems subject to quantization. As we know, there is no similar work published. Here
we focus on the hybrid feedback strategy. Similar to that done in [10], the control
strategy is composed of two stages. The first, “zooming-out” stage: the system is open-
loop. It consists in increasing the range of the quantizer until the state of the system
can be adequately measured. The second, “zooming-in” stage: it applies distributed
feedback and at the same time decreases the quantization error in order to drive the
state to the origin. This results in a hybrid control law, where the zoom parameter is a
discrete variable whose transitions are triggered by a suitable Lyapunov function.

The paper is organized as follows. In Section 2, problem formulation and preliminary
are introduced, while in Section 3, solvability for quantized distributed output regula-
tion of multi-agent systems is obtained. Finally, the concluding remarks are given in
Section 4.

2. PROBLEM FORMULATION AND PRELIMINARY

In this paper, concern the following systems:
ẋi = Axi +Bui +Dw

ẇ = Γw, y0 = Fw

ei = Cxi − y0
i = 1, . . . , N, (1)

where the first equation is the dynamics of N agents, with xi ∈ Rn, ui ∈ Rm as the
states and controls of the agent i, i = 1, . . . , N ; the second equation is the exogenous
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dynamic system (or simply, exosystem) with the internal state w ∈ Rl and the measured
output y0 ∈ Rq; the third equation defines the regulated output ei ∈ Rq, q ≤ n for agent
i, i = 1, . . . , N , which may be unavailable by measurement. Without loss of generality,
we assume C ∈ Rq×n is of full row rank (i. e., rank(C) = q) in the sequel.

First of all, we introduce some basic concepts and notations in graph theory (referring
to [5] for details). A digraph is denoted as G = (O, E), where O = {1, 2, · · · , N} is the
set of nodes and E is the set of edges. (i, j) ∈ E denotes an edge leaving from node
i and entering into node j if node i can get information from node j. In this case
node j is said to be a neighbor of node i. The special case of digraph is undirected
graph if (i, j) ∈ E once (j, i) ∈ E . A path in digraph G is an alternating sequence
i1 (i1, i2) i2 (i2, i3) · · · (ik−1, ik) ik of nodes ij and edges (ij , ij+1) ∈ E for j = 1, 2, · · · , k−
1. If there exists a path from node i to node j, then node j is said to be reachable from
node i. A node which is reachable from every other node of G is called a globally
reachable node of G.

Here we consider a system consisting of N agents and a leader (denoted as node 0).
The corresponding digraph is denoted as Ḡ. Regarding the N agents as the nodes, the
relationships between N agents can be conveniently described by an undirected graph
G0 which is a subgraph of Ḡ. Ni (i = 1, . . . , N) is called the neighbor set of agent i.
The weighted adjacency matrix of G0 is denoted as A0 = (aij)N×N ∈ RN×N , where
aii = 0 and aij ≥ 0 (aij = 1 if there is an edge from agent i to agent j). Its degree
matrix D0 = diag{ā0

1, . . . , ā
0
N} ∈ RN×N is a diagonal matrix, where diagonal elements

ā0
i =

∑N
j=1 aij for i = 1, . . . , N . Then the Laplacian of the weighted graph is defined as

L = D0−A0. Moreover, let us consider the digraph Ḡ contains N agents and the leader
with directed edges from some agents to the leader by the connection weights ai0 > 0 if
agent i can get information from the leader, otherwise ai0 = 0 (note that Ḡ is directed
though G0 is undirected). Set anN×N diagonal matrix A0 = diag{a10, . . . , aN0}. Define
a matrix H = L+A0 to describe the connectivity of the whole graph Ḡ. Obviously, we
have H1 = A01.

The following lemma is about the matrix H = L+A0 ([6]).

Lemma 2.1. H is positive definite if and only if node 0 is globally reachable in Ḡ.

The following assumption is needed for analysis.

Assumption 2.2. Node 0 (that is, the leader) is globally reachable in Ḡ.

Based on Lemma 2.1, we denote all the positive eigenvalues of H as λ̄i, i = 1, . . . , N .
In this paper, we mainly discuss the distributed output regulation problem with

quantized signal. By a quantizer we mean a piecewise constant function q : Rn → Q,
where Q is a finite subset of Rn. Moreover, we assume that there exist positive real
numbers M,∆ such that the following two conditions hold:

1. If
‖z‖ ≤M, (2)

then
‖z − q(z)‖ ≤ ∆. (3)
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2. If
‖z‖ > M, (4)

then
‖q(z)‖ > M −∆. (5)

M,∆ are referred as the range of q and the quantization error, respectively. Assume
that q(0) = 0 to preserve the equilibrium at the origin.

As mentioned in [10], the form of the quantized measurements is usually given as the
form

µq
( z
µ

)
,

where µ > 0.
Large µ leads to large quantization range and quantization error, little µ leads to little

quantization range and quantization error. The range of it is Mµ and the quantization
error is ∆µ.

In the literature about quantized feedback stabilization of linear systems, quantized
feedback controllers are constructed based on quantized measurements of state. How-
ever, in this paper we concern with the scenario of an independent active leader, who
does not need the quantized feedback control updates. Thus, a more sophisticated
quantized feedback strategy needs to be developed to continuously update every agent’s
partial control input. The relative position measurement considering quantized strategy
becomes:

ẑi =
∑
j∈Ni

aij

(
Cµq

(xi
µ

)
− Cµq

(xj
µ

))
+ ai0(Cxi − Fw), i = 1, . . . , N. (6)

Then the distributed output regulator is taken as follows:

ui = Kz ẑi +Kxµq
(xi
µ

)
, i = 1, . . . , N, (7)

in static state feedback;ui = Kz ẑi +Kxµq
(
xi

µ

)
+Kvvi

v̇i = Ez ẑi + Exµq
(
xi

µ

)
+ Evvi

vi ∈ Rs, i = 1, . . . , N (8)

in dynamic state feedback. It is noted that both vi(t) and ui(t) use the broadcasted
measurements Cµq

(
xi

µ

)
−Cµq

(
xj

µ

)
from neighboring followers and the continuous-time

measurement Cxi − Fw from the leader.
Denote

zi(t) = µ
(
q
(xi
µ

)
− xi
µ

)
, z =

(
zT

1 · · · zT
N

)T
.

Note that
µq
(xi
µ

)
− µq

(xj
µ

)
= xi(t)− xj(t) + zi(t)−zj(t),
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and then the closed-loop system can be rewritten as
ξ̇ = Acξ +Bcw +Dcz
ẇ = Γw
e = Ccξ − Fcw

(9)

with

ξ = x = (xT1 · · ·xTN )T ,

Ac = IN ⊗ (A+BKx) +H ⊗ (BKzC), Bc = 1⊗D − (H1)⊗ (BKzF ),

Dc = L⊗ (BKzC) + IN ⊗ (BKx), Cc = IN ⊗ C, Fc = 1⊗ F, 1 = (1, . . . , 1)T

in static state feedback case;

ξ =
(
xT vT

)
, v = (vT1 · · · vTN )T ,

Ac =

(
IN ⊗ (A+BKx) +H ⊗ (BKzC) IN ⊗ (BKv)

IN ⊗ Ex +H ⊗ (EzC) IN ⊗ Ev

)
,

Bc =
(

1⊗D − (H1)⊗ (BKzF )
−(H1)⊗ (EzF )

)
,

Dc =
(
L⊗ (BKzC) + IN ⊗ (BKx) 0

0 L⊗ (EzC) + IN ⊗ Ex

)
,

Cc = (IN ⊗ C 0), Fc = 1⊗ F,

in dynamic state feedback case.
Then we will give the definition of quantized distributed output regulation problem

as follows.

Definition 2.3. The quantized distributed output regulation problem is achieved for
system (1) under hybrid feedback control (7) or (8), respectively, if,

1) when w = 0, z = 0, system (9) is asymptotically stable (that is, Ac is stable);

2) for any initial condition (x1(0), . . . , xN (0)) and (w1(0), . . . , wl(0))
(and even (v1(0), . . . , vN (0)) in the dynamic feedback case)

lim
t→+∞

ei(t) = 0, i = 1, . . . , N.

3. SOLVABILITY FOR QUANTIZED DISTRIBUTED OUTPUT REGULATION

In this section we will give our main result. The following assumption is given for the
following analysis.
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Assumption 3.1. (1) There is a regulation matrix of regulation equation{
XcΓ = AcXc +Bc

CcXc = Fc,
(10)

with Ac, Bc defined in (9), and Cc = IN ⊗ C, Fc = 1 ⊗ F in the static feedback
case, or Cc = (IN ⊗ C 0), Fc = 1⊗ F in the dynamic feedback case;

(2) Ac is stable.

Set ξ̄ = ξ −Xcw, and then we have the first equation of (9) rewritten as

˙̄ξ = Acξ̄ +Dcz. (11)

When z = 0, (11) becomes
˙̄ξ = Acξ̄. (12)

Since Ac is stable, there exists positive definite matrices P, Q such that

AcP + PATc = −Q.

Then the Lyapunov function for systems (12) is V (ξ̄) = ξ̄TP ξ̄ for system (12) with
V̇ |(12) ≤ −ξ̄TQξ̄ negative definite.

The following lemma is very important showing that the behavior of the system (11)
for a fixed µ.

Lemma 3.2. Under Assumption 3.1, fix an arbitrary ε > 0 and assume that M is large
enough compared to ∆ so that we have√

λmin(P )M >
√
λmax(P )Θ∆(1 + ε), (13)

where

Θ =
2‖~‖

λmin(Q)
,

with
~ = P [L⊗ (BKzC) + IN ⊗ (BKx)] (14)

in static feedback case;

~ = P

(
L⊗ (BKzC) + IN ⊗ (BKx) 0

0 L⊗ (EzC) + IN ⊗ Ex

)
, (15)

in dynamic feedback case.
Then the ellipsoids

R1 = {ξ̄ : ξ̄TP ξ̄ ≤ λmin(P )M2µ2}, (16)

and
R2 = {ξ̄ : ξ̄TP ξ̄ ≤ λmax(P )Θ2∆2(1 + ε)2µ2} (17)
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are invariant regions for the system (11). Moreover, all solutions of (11) that start in
R1 enter the smaller R2 in finite time.

P r o o f . Consider the derivative of V (ξ̄) along the system (11):

V̇ |(11) = −ξ̄TQξ̄ + 2ξ̄T~z
≤ −λmin(Q)ξ̄T ξ̄ + 2ξ̄T~z
≤ −λmin(Q)‖ξ̄‖2 + 2‖ξ̄‖‖~‖4µ.

Then using (2), (3), we have the following formula:

Θ∆(1 + ε)µ ≤ ‖ξ̄‖ ≤Mµ⇒ V̇ (ξ̄) ≤ −‖ξ̄‖λmin(Q)Θ∆εµ. (18)

Define
B1 = {ξ̄ : ‖ξ̄‖ ≤Mµ},

and
B2 = {ξ̄ : ‖ξ̄‖ ≤ Θ∆(1 + ε)µ}.

Then using (13), we can have

B2 ⊂ R2 ⊂ R1 ⊂ B1.

From (18), it is easy to see that R1,R2 are both invariant. Moreover, from (18), we
have: if ξ̄(t0) ∈ R1, then ξ̄(t0 + T ) ∈ R2, where

T =
λmin(P )M2 − λmax(P )Θ2∆2(1 + ε)2

λmin(Q)Θ2∆2(1 + ε)ε
. (19)

�

Theorem 3.3. Under Assumption 3.1, assume M is large enough compared to ∆ such
that √

λmin(P )
λmax(P )

M > 2∆ max
{

1,
‖~‖

λmin(Q)

}
, (20)

with ~ defined in (14) in static feedback case and (15) in dynamic feedback case. Then
there exists hybrid static feedback controller (7) and dynamic feedback controller (8)
that can solve the quantized distributed output regulation of multi-agent systems.

P r o o f . The zooming-out stage. Set u = 0. Let µ(0) = 1. Then increase µ in a piecewise
constant fashion, fast enough to dominate the rate of growth of ‖e(IN⊗A)t‖. For example,
one can fix a positive number τ and let µ(t) = 1 for t ∈ [0, τ), µ(t) = τe2‖IN⊗A‖τ for
t ∈ [τ, 2τ), µ(t) = 2τe2‖IN⊗A‖2τ for t ∈ [2τ, 3τ), and so on. Then there exists t ≥ 0,
such that ∥∥∥∥ ξ̄(t)µ(t)

∥∥∥∥ ≤
√
λmin(P )
λmax(P )

M − 2∆.
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Using the conditions (2), (3), we have

∥∥∥∥q( ξ̄(t)µ(t)

)∥∥∥∥ ≤
√
λmin(P )
λmax(P )

M −∆.

Assume that the above inequality is satisfied at t = t0. From (2), (3), (4), (5), we have

∥∥∥∥ ξ̄(t0)
µ(t0)

∥∥∥∥ ≤
√
λmin(P )
λmax(P )

M,

thus ξ̄(t0) ∈ R1 with µ = µ(t0). Note that this event can be detected using only the
available quantized measurements.

The zooming-in stage. Choose ε > 0 such that (13) is satisfied ((20) makes it possible).
Since ξ̄(t0) ∈ R1 with µ = µ(t0), then we employ the distributed feedback law (7) in
static case or (8) in dynamic case. Let µ(t) = µ(t0), t ∈ [t0, t0 + T ), where T is given in
(19). Then we have ξ̄(t0 + T ) ∈ R2 with µ = µ(t0). When t ∈ [t0 + T, t0 + 2T ), let

µ(t) = Ωµ(t0),

where

Ω =

√
λmax(P )Θ∆(1 + ε)√

λmin(P )M
.

From (13), Ω < 1, and then µ(t0 + T ) < µ(t0). R2 with the old value µ(t0) is the same
as the R1 with the new value µ(t0 + T ). This means that we can continue the analysis
for t ≥ t0 + T as above. That is to say ξ̄(t0 + 2T ) ∈ R2 with µ = µ(t0 + T ). For
t ∈ [t0 + 2T, t0 + 3T ), let µ(t) = Ωµ(t0 + T ) . . . The stability of the equilibrium 0 in the
sense of Lyapunov follows directly from the adjustment of µ. Moreover

µ(t)→ 0, t→∞⇒ e(t)→ 0, t→∞.

The proof is completed. �

Remark 3.4. The proof of Theorem 3.3 is mainly inspired by [10]. Our hybrid feedback
policy is composed of two stages. The first, zooming-out stage consists in increasing the
range of the quantizer until the state ξ̄ of the system (11) can be adequately measured;
at this stage, the feedback gains of the systems equal zero, The second, zooming-in stage
involves applying feedback gains and decreasing the quantization error in such a way as
to drive the state ξ̄ to the origin. The obtained feedback policy is a hybrid quantized
one.

Theorem 3.5. Under Assumption 2.2, the following are equivalent:

(i) The quantized distributed output regulation of system (1) with D1 = · · · = DN =
D can be solved;
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(ii) The conventional quantized output regulation of the N systems
˙̃xi = Ax̃i +Bũi +Dw, i = 1, . . . , N

ẽi = Cx̃i − Fw, z̃i = λ̄i

(
Cµq

(
xi

µ

)
− Fw

)
ẇ = Γw

(21)

with λ̄i, i = 1, . . . , N as the eigenvalues of H, is solvable.

P r o o f . Let T be a transformation such that U = THT−1 is a diagonal matrix with
the eigenvalues of H along the diagonal. Clearly, T ⊗ In transforms H ⊗ In into U ⊗ In.
Setting

x̃ = (T ⊗ In)x, ṽ = (T ⊗ Is)v,

we restate the matrices Ac, Bc in terms of x̃, ṽ as follows:

Ãc =
(
Ã11 Ã12

Ã21 Ã22

)
, B̃c =

(
B̃1

B̃2

)
,

where

Ã11 = IN ⊗ (A+BKx) + U ⊗ (BKzC), Ã12 = IN ⊗ (BKv),

Ã21 = IN ⊗ Ex + U ⊗ (EzC), Ã22 = IN ⊗ Ev,
B̃1 = −(UT1)⊗ (BKzF ), B̃2 = −(UT1)⊗ (EzF ).

(22)

For U ⊗ In, the diagonal blocks are each λ̄iIn, where λ̄i is the ith eigenvalue of H, so
the N diagonal subsystems can be written as (21).

Denote
ξ̃i =

(
x̃Ti ṽTi

)T
, i = 1, . . . , N.

Then the closed-loop system can be rewritten as
˙̃
ξi = Aiξ̃i + B̄i +Diz, i = 1, . . . , N
ẇ = Γw
ẽi = Cx̃i − y0 = Cx̃i − Fw,

(23)

with

Ai = A+BKx + λ̄iBKzC, B̄i = −λ̄iBKzF +D, Di = BKx + λ̄iBKzC (24)

in the case of static state feedback, or with

Ai =
(
A+BKx + λ̄iBKzC BKv

Ex + λ̄iEzC Ev

)
, B̄i =

(
−λ̄iBKzF +D
−λ̄iEzF

)
, (25)

Di =
(
λ̄iBKz +BKx 0

0 λ̄iEzC + Ex

)
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in the case of dynamic state feedback. Because the elements of the transformed system
matrix Ãc are block diagonal, Ac is stable if and only if Ai, i = 1, . . . , N are stable.
From above discussion the quantized distributed regulation of system (1) is equivalent
to the conventional quantized output regulation of system (21) using Definition 2.3.

�

Based on Theorem 3.5, in order to solve the quantized distributed regulation of system
(1), we can consider the solvability of the conventional quantized output regulation of
system (21). Then Assumption 3.1 can be replaced by the following simple form.

Assumption 3.6. There is a unique matrix X̄ satisfying{
X̄Γ = ĀX̄ + D̄

C̄X̄ = F,
(26)

where in the case of static feedback

Ā = A+BKx, D̄ = D, C̄ = C (27)

and Ai = A+BKx + λ̄iBKzC, i = 1, . . . , N are stable; in the case of dynamic feedback

Ā =
(
A+BKx BKv

Ex Ev

)
, D̄ =

(
D
0

)
, C̄ = (C 0q×s) (28)

and Ai =
(
A+BKx + λ̄iBKzC BKv

Ex + λ̄iEzC Ev

)
, i = 1, . . . , N are stable.

Considering systems (21), it is a conventional output regulation, and the equivalence
can be obtained in a conventional way by noting that Ac is stable if and only if Ai, i =
1, . . . , N are stable. In fact, the regulation equation of system (21) is{

XiΓ = AiXi + B̄i

C̄Xi = F
C̄ = (C, 0q×s) (29)

with Ai, B̄i defined in (23), which is equivalent to (26).

The following lemma is very important characterizing the behavior of the system (21)
for a fixed µ.

Lemma 3.7. Under Assumption 3.6, fix an arbitrary ε > 0 and assume that M is large
enough compared to ∆ so that we have√

min
{i=1,...,N}

(λmin(Pi))M >
√

max
{i=1,...,N}

(λmax(Pi))Θ∆(1 + ε). (30)

Here

Θ =
2 max{i=1,...,N} ‖~i‖

min{i=1,...,N}(λmin(Qi))
,
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with
~i = Pi(λ̄iBKzC +BKx) (31)

in static feedback case;

~i = Pi

(
λ̄iBKzC +BKx 0

0 λ̄iEzC + Ex

)
, (32)

in dynamic feedback case. Then the ellipsoids R1 = R11 ∩ · · · ∩ R1N with

R1i = {ξ̂i : ξ̂Ti P ξ̂i ≤ λmin(Pi)M2µ2}, (33)

and R2 = R21 ∩ · · · ∩ R2N with

R2i = {ξ̂i : ξ̂Ti Piξ̂i ≤ λmax(Pi)Θ2∆2(1 + ε)2µ2} (34)

are invariant regions for the system (21). Moreover, all solutions of (21) that start in
the R1 enter the smaller R2 in finite time.

Based on Lemma 3 and Assumption 3, following the proof of Theorem 2, we can
easily obtain the following theorem.

Theorem 3.8. Under Assumption 2.2 and Assumption 3.6, assume M is large enough
compared to ∆ such that√

min{i=1,...,N}(λmin(Pi))
max{i=1,...,N}(λmax(Pi))

M > 2∆ max
{

1,
‖~‖

min{i=1,...,N}(λmin(Qi))

}
, (35)

with ~ defined in (31) in static feedback case and (32) in dynamic feedback case. Then
there exists hybrid static feedback controller (7) and dynamic feedback controller (8)
that can solve the distributed output regulation of multi-agent systems.

Before the end of this section, we provide an example to illustrate our theoretical
results.

Example 1. Consider the followers with dynamics{
ẍi = ui ∈ R, i = 1, . . . N
yi = xi

(36)

and the leader with dynamics 
ẍ0 = w0 ∈ R
ẇ0 = 0
y0 = x0

(37)

The control aim is limt→∞ xi(t)− x0(t) = 0. In this example,

A =
(

0 1
0 0

)
, B =

(
0
1

)
, Γ =

0 1 0
0 0 1
0 0 0

 , C = (1 0), D = 0, F = (1 0 0).
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For simulation, we consider a multi-agent system with four agents. Its topology is
described by a graph with adjacency weights as follows: a12 = a21 = 1, a23 = a32 =
1, a43 = a34 = 1 and other weights are set zero. Moreover, a40 = 1 and ai0 = 0 (i < 4).
Then

H =


1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2


whose eigenvalues are 0.1206, 1.0000, 2.3473, 3.5321. We can take
Kz =

(
−10.0092 −10.0092 −4.1459

)
, Kx = −(1.0000 1.7321). In the simulation,

four agents start from random initial conditions and evolve under the control law (7)
with a 10-bit quantizer. Set M = 5, µ(t0) = 1 and the quantization interval ∆ is 1/1023.
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Fig. 1. The evolution of the state measurement error ‖e(t)‖.

Figure 1 shows the evolution of the state measurement error ‖e(t)‖.

4. CONCLUSIONS

The distributed output regulation problem for linear multi-agent systems with quantized
state measurements is considered in this paper. Quantizers take finitely many values and
have an adjustable “zoom” parameter. We focus on the distributed static and dynamic
feedback composed of two stages “zooming-out” and “zooming-in” stage. This results
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in a hybrid control strategy, where the zoom parameter is a discrete variable whose
transitions are triggered by the values of the constructed Lyapunov function.
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