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Abstract. A surface area estimator for three-dimensional convex sets, based on the in-
variator principle of local stereology, has recently motivated its generalization by means of
new rotational Crofton-type formulae using Morse theory. We follow a different route to
obtain related formulae which are more manageable and valid for submanifolds in constant
curvature spaces. As an application, we obtain a simplified version of the mentioned surface
area estimator for non-convex sets of smooth boundary.
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1. Introduction

In recent years, new rotational integral formulae have been developed ([1], [7],

[8]). This was motivated by the invariator principle of stereology ([5], see also [14],

p. 285). In these formulae, integration over all r-planes is replaced with invariant

integration of a measurement function over all r-planes through a fixed point. In

particular, in [5], a convenient method was proposed to estimate the surface area

of a convex set from an isotropic plane section (called a pivotal section) through

a fixed point in terms of the support function of the pivotal section. Recently, in

[15], the pertinent formula ([5], equation (3.2)) has been generalized to non convex

Work was supported by the UJI project P11B2012-24 and the PROMETEOII/2014/062
project.
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sets, and new rotational Crofton formulae have thereby been developed using Morse

theory. Further, in [16], the mentioned new generalization has been adapted to

estimate the surface area in three-dimensional microscopy. In the present paper, we

follow a different route to obtain related generalizations which are more manageable

and valid for submanifolds in space forms of constant curvature. In particular,

we arrive at a surface area representation which constitutes a simplification of the

analogous formula given in [15], [16]. The subsequent estimation procedure is thereby

simplified—the basic task consists in identifying the local maxima and minima of the

height function of the pivotal section.

2. A relation between densities of totally geodesic submanifolds

in space forms

Let Mn
λ denote a simply connected Riemannian manifold of sectional curvature λ

(namely, the sphere for λ > 0, the hyperbolic space for λ < 0 and the Euclidean

space Rn for λ = 0). Further, let Ln
r denote an r-plane (r 6 n), namely a totally

geodesic submanifold of dimension r in Mn
λ , and let dL

n
r denote the corresponding

density, invariant under the group of Euclidean and non-Euclidean motions.

Let M q be a compact differentiable manifold of dimension q embedded in Mn
λ .

Santaló’s formula shows that the volume of M q can be expressed in terms of the

integral of the volume of the intersection of M q with all the planes Ln
r , assuming

that r + q > n ([13], equation (14.69)). While the latter formula was obtained for

the Euclidean case, in [13], p. 309 (Section 4 of Chapter 17), Santaló shows that the

same formula extends to Mn
λ without any change.

An r-plane through a fixed point O in Mn
λ , and its invariant density, are denoted

by Ln
r[0] and dLn

r[0], respectively ([13], [12]). One of the first problems considered in

integral geometry was to determine the densities dLn
r and dLn

r[0]. For lines in R
2

the invariant density dL2
1 was proposed by Crofton (see [4]), whereas the invariant

densities for lines and planes in M3
λ were obtained by Cartan [3] in 1896. In 1935,

Blaschke [2] introduced the density dLn
r for R

n. Following Blaschke’s methodology,

Petkantschin [11] and Santaló [13] obtained the corresponding densities for λ > 0

and λ < 0, respectively.

In this section, we generalize the expressions obtained in [7] for the density of

r-planes in Mn
λ in terms of the density dLn

p[0] of p-planes through a fixed point O,

of the density dLp
r of r-planes in Ln

p[0], and of the distance ̺ from O to Lp
r . For the

Euclidean case, the result can be deduced from equation (49) in [11]. From the new

expression, new rotational versions of Santaló’s formula, and equivalences among

them, are obtained in Section 3.
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Henceforth, the following notation will be used:

(2.1) sλ(̺) =





λ−1/2 sin(̺
√
λ), λ > 0,

̺, λ = 0,

|λ|−1/2 sinh(̺
√
|λ|), λ < 0,

cλ(̺) =





cos(̺
√
λ), λ > 0,

1, λ = 0,

cosh(̺
√
|λ|), λ < 0.

The density dLn
r of r-planes in Mn

λ can be expressed in terms of the distance ̺

from a fixed point O to Ln
r , of the density dLn

r+1[0] of an (r + 1)-plane through O

containing Ln
r , and of the density dL

r+1
r for r-planes contained in Ln

r+1[0], as follows

([7], Corollary 3.1):

(2.2) dLn
r = sn−r−1

λ (̺) dLr+1
r dLn

r+1[0].

Theorem 2.1. For r ∈ {0, 1, . . . , n−2} and p ∈ {r+1, r+2, . . . , n}, the following
relation between densities is satisfied:

(2.3) dLn
p[r+1] dL

n
r = sn−p

λ (̺) dLp
r dL

n
p[0],

where dLn
p[r+1] denotes the density for p-planes in M

n
λ that contain the fixed (r+1)-

plane Ln
r+1[0].

P r o o f. As justified in [13], p. 309, before equation (17.55), from the expressions

of the densities of planes in Mn
λ it follows that some density decompositions (such

as [13], equation (12.53)) have the same form regardless of the sign of λ. Therefore,

multiplying both sides of equation (2.2) by dLn
p[r+1], and bearing equation (12.53)

of [13] in mind, we obtain

(2.4) dLn
p[r+1] dL

n
r = sn−p

λ (̺)sp−r−1
λ (̺) dLr+1

r dLp
r+1[0] dL

n
p[0].

Applying again (2.2), we get the result. �

Note that (2.2) is a special case of (2.3) for p = r + 1.

Corollary 2.2. The density dLn
r satisfies the following identity:

(2.5) dLn
r = sn−p

λ (̺) dLp
r dL

n
p[p−r−1],

where dLn
p[p−r−1] denotes the density for p-planes in Mn

λ that contain a fixed plane

of dimension p− r − 1 through O.

P r o o f. As justified in [13], p. 309, the densities given in (12.26) and (12.27) of

[13] also hold in Mn
λ . Therefore,

(2.6) dLn
p[0] = dLn

p[r+1] dL
n
p[p−r−1],

and the result follows from (2.3). �
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3. Rotational versions of Santaló’s formula

Let M q be a compact differentiable manifold of dimension q embedded in Mn
λ .

Assume that r + q > n and consider the set of r-planes in Mn
λ . Santaló’s formula

(equation (14.69) of [13], which is valid in Mn
λ ), states that

(3.1)

∫

Mq∩Ln
r 6=∅

σr+q−n(M
q ∩ Ln

r ) dL
n
r =

On . . . On−rOr+q−n

Or . . . O0Oq
σq(M

q),

where σk denotes k-dimensional volume, and Ok = 2π
(k+1)/2/Γ((k + 1)/2) is the

surface area of the k-dimensional unit sphere.

In this paper, we focus on the special case r + q = n. Then equation (14.70) of

[13], which is valid in Mn
λ , gives

(3.2)

∫

Mn−r∩Ln
r 6=∅

N(Mn−r ∩ Ln
r ) dL

n
r =

On . . . On−r+1

Or . . . O1
σn−r(M

n−r),

where N denotes number, so that N(Mn−r ∩ Ln
r ) denotes the number of points of

the intersection Mn−r ∩ Ln
r .

Next we apply Theorem 2.1 to obtain new rotational formulae from (3.2).

Proposition 3.1. Let r ∈ {0, 1, . . . , n− 2} and p > r + 1. Also, let Mn−r ⊂ Mn
λ

be a compact submanifold of class Cp−r+1. Then

(3.3) σn−r(M
n−r)

=
1

cn,r,p

∫

Mn−r∩Ln
p[0]

6=∅

[∫

Mn−r
p ∩Lp

r 6=∅
sn−p
λ (̺)N(Mn−r

p ∩ Lp
r) dL

p
r

]
dLn

p[0],

where Mn−r
p = Mn−r ∩ Ln

p[0], and

(3.4) cn,r,p =
On . . . On−r+1On−r−2 . . . On−p

Or . . . O1Op−r−2 . . . O1O0
.

Thus, first we fix Ln
p[0] and integrate with respect to dLp

r over all planes in Lp
r

which intersect Mn−r
p , and then we integrate with respect to dLn

p[0] over all planes

Ln
p[0] which intersect M

n−r. Further, Mn−r is assumed to be of class Ck with

k = max{1, dim(Mn−r
p ) + p− n+1} = p− r+ 1. By virtue of Appendix A from [8],

this choice ensures that Mn−r
p ∩ Ln

p[0], where Ln
p[0] is a generic p-plane, is also of

class Ck (and dimension p − r). The need to specify the order k of smoothness is

explained in [10]. In Theorem 4.1, one has p = r + 1, whereby Mn−r is assumed to

be of class C2.
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P r o o f. As explained above, the submanifold Mn−r
p is of class Cp−r+1 and di-

mension p− r, whereby Mn−r
p ∩Lp

r is the set of intersection points. Now, bearing in

mind equation (12.36) of [13], namely,

(3.5)

∫

Total

dLn
p[r+1] =

On−r−2 . . . On−p

Op−r−2 . . . O1O0
,

and making use of equation (2.3) in equation (3.2), the result follows. �

The next corollary shows that for the special case p = r + 1, equation (3.3) yields

equation (15) from [7] with q = n− r.

Corollary 3.2. Within each p-plane Ln
p[0], consider (r + 1)-planes Lp

r+1[0]. Then

σn−r(M
n−r) admits a rotational expression which may be obtained directly by sub-

stituting p = r + 1 on the right-hand side of equation (3.3), namely,

(3.6) σn−r(M
n−r) =

1

cn,r

∫

Mn−r∩Ln
r+1[0]

6=∅
α(Mn−r ∩ Ln

r+1[0]) dL
n
r+1[0],

where

(3.7) α(Mn−r ∩ Ln
r+1[0]) =

∫

C∩Lr+1
r 6=∅

sn−r−1
λ (̺)N(C ∩ Lr+1

r ) dLr+1
r ,

with

(3.8) cn,r =
On . . . On−r+1

Or . . . O1
,

where C represents the curve Mn−r
r+1 = Mn−r ∩ Ln

r+1[0] (of class C
2) in Ln

r+1[0].

P r o o f. For n = p, equation (2.2) yields

(3.9) dLp
r = sp−r−1

λ (̺) dLr+1
r dLp

r+1[0].

Therefore, equation (3.3) can be written as

(3.10) σn−r(M
n−r) =

1

cn,r,p

∫

Mn−r∩Ln
p[0]

6=∅
α(Mn−r ∩ Ln

p[0]) dL
n
p[0],

with

(3.11) α(Mn−r ∩ Ln
p[0])

=

∫

Mn−r
p ∩Lp

r+1[0]
6=∅

[∫

Mp−r

r+1 ∩Lr+1
r 6=∅

sn−r−1
λ (̺)N(C ∩ Lr+1

r ) dLr+1
r

]
dLp

r+1[0],
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where, by virtue of Theorem A.1 from [8],Mp−r
r+1 = Mn−r

p ∩Lp
r+1[0] is a curve of class

C2 in Lp
r+1[0]. Now, making use in equation (3.10) of the well-known identity [13]

(3.12) dLp
r+1[0] dL

n
p[0] = dLn

p[r+1] dL
n
r+1[0],

and bearing equation (3.5) in mind, the rotational formula (3.6) is obtained. �

4. Morse type representation and geometrical interpretations

In this section, a geometric interpretation of equation (3.7) is given in terms of

the critical points of height functions. Of particular interest will be the special case

r = 1, whereby Mn−1 is a hypersurface, and the rotational formula is obtained by

intersecting Mn−1 with a 2-plane Ln
2[0].

The density dLr+1
r may be decomposed as (see [13])

(4.1) dLr+1
r = crλ(̺) d̺ dur,

where dur denotes the surface area element of the r-dimensional unit sphere and

crλ(̺) = (cλ(̺))
r , where cλ(̺) is defined in equation (2.1). Then, for the cases λ = 0

(Euclidean) and λ < 0 (hyperbolic), we may write

(4.2) α(Mn−r ∩ Ln
r+1[0]) =

∫

Sr

dur

∫ ∞

0

sn−r−1
λ (̺)crλ(̺)N(C ∩ Lr+1

r ) d̺,

whereas, for the case λ > 0 (spherical),

(4.3) α(Mn−r ∩ Ln
r+1[0]) =

∫

Sr

dur

∫
π/(2

√
λ)

0

sn−r−1
λ (̺)crλ(̺)N(C ∩ Lr+1

r ) d̺,

where Lr+1
r is the r-plane expressed in terms of its distance ̺ from the fixed point O,

perpendicular to the geodesic defined from the direction ur from O, and N(C ∩
Lr+1
r ) = 0 whenever C ∩ Lr+1

r = ∅.
Next we give a geometrical interpretation of α(Mn−r ∩ Ln

r+1[0]), based on the

critical points of height functions.

Let ur denote a unit vector in S
r ⊂ TOL

n
r+1[0]. The geodesic γur

: R → Ln
r+1[0]

with γur
(0) = O and γ′(0) = ur is given by γur

(t) = cλ(t)O + sλ(t)ur. Given ur,

let hur
: Ln

r+1[0] → R be the height function whose level hypersurfaces are just the

r-planes Lr+1
r perpendicular to the geodesic γur

(t). Note that in the Euclidean case

(λ = 0), this height function coincides with the standard height function considered

in [15]. We suppose that the level hypersurface Lr+1
r is oriented in such a way that
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the unit vector ν(p), perpendicular to the level set Lr+1
r ⊂ Ln

r+1[0] at p, is given by

ν(p) = grad(hur
)(p)/‖grad(hur

)(p)‖, where grad(hur
) denotes the gradient of hur

.

We consider the height function hur
|C : C → R, which is generally a Morse func-

tion, and apply the Morse theory to hur
|C (cf. [10]).

Let p ∈ C be a critical point of hur
|C along C. Then there is a level hypersurface

Lr+1
r of hur

which satisfies TpC ⊂ TpL
r+1
r .

We assume that hur
|C is an excellent Morse function for almost all ur ∈ S

r, which

means that all of the critical points in the direction ur from O are non-degenerate,

and no two of them lie on the same level hypersurface (i.e. they have different critical

values).

Note that the critical points of hur
|C and h(−ur)|C coincide, whereas the corre-

sponding critical values are the same but with opposite signs. Because the integrals

in (4.2) and (4.3) are defined for ̺ > 0, only nonnegative critical values are involved

in the relevant integrals.

Let pi ∈ C, i = 1, . . . ,m, be the critical points of the excellent Morse function

hur
|C , and

0 6 ̺1 < ̺2 < . . . < ̺m (with ̺m 6 1
2π/

√
λ for λ > 0)

the corresponding nonnegative critical values, where hur
|C(pi) = ̺i. To each critical

point pi we assign an index εi = +1 if pi is a local maximum of hur
|C , and an index

εi = −1 if pi is a local minimum of hur
|C . For r < n ∈ {1, 2, . . .} define

(4.4) In−r−1,r(̺) =

∫
sn−r−1
λ (̺)crλ(̺) d̺.

Then for λ = 0,

(4.5) In−r−1,r(̺) =
̺n−r

n− r
.

For λ 6= 0 and for any given pair (n, r), the integral In−r−1,r(̺) may be evaluated

explicitly with the aid of a mathematical software package such as Mathematicar

or MapleTM. In all cases, we set In−r−1,r(0) = 0.

Theorem 4.1. Let Mn−r ⊂ Mn
λ be a submanifold of class C

2. Then the in-

tersection Mn−r ∩ Ln
r+1[0] is in general a curve C of class C2 in Ln

r+1[0]. Further,

assume that hur
|C is an excellent Morse function for almost all ur ∈ S

r. Then for

r ∈ {0, 1, . . . , n− 2} and λ 6 0,

(4.6) α(Mn−r ∩ Ln
r+1[0]) = 2

∫

Sr

( m∑

k=1

εkIn−r−1,r(̺k)

)
dur,
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where m represents the number of critical points of the height function hur
|C corre-

sponding to the direction ur; and for λ > 0,

(4.7) α(Mn−r ∩ Ln
r+1[0])

= 2

∫

Sr

( m∑

k=1

εkIn−r−1,r(̺k) + In−r−1,r

(
π

2
√
λ

)
N(C ∩ Lr+1

r )

)
dur,

where Lr+1
r denotes the r-plane perpendicular to the geodesic with direction ur from

O at a distance ̺ = 1
2π/

√
λ.

P r o o f. The fact that C is a curve of class C2 in Ln
r+1[0] for a generic (r + 1)-

subspace Ln
r+1[0] follows from Theorem A.1 of [8]. Consider first the case λ 6 0.

Then (4.2) may be written as

(4.8) α(Mn−r ∩ Ln
r+1[0]) =

∫

Sr

dur

m−1∑

k=0

∫ ̺k+1

̺k

sn−r−1
λ (̺)crλ(̺)N(C ∩ Lr+1

r ) d̺,

with the convention ̺0 = 0. Thus,

(4.9) α(Mn−r ∩ Ln
r+1[0]) =

∫

Sr

dur

m−1∑

k=0

2(In−r−1,r(̺k+1)− In−r−1,r(̺k))

m∑

j=k+1

εj

= 2

∫

Sr

( m∑

k=1

εkIn−r−1,r(̺k)− In−r−1,r(0)
m∑

k=1

εk

)
dur.

As we have set In−r−1,r(0) = 0, the second term of the preceding integrand vanishes,

and the proposed result is obtained.

For the case λ > 0, the proof is similar. Thus,

(4.10) α(Mn−r ∩ Ln
r+1[0])

=

∫

Sr

dur

m−1∑

k=0

(In−r−1,r(̺k+1)− In−r−1,r(̺k))

(
2

m∑

j=k+1

εj +N(C ∩ Lr+1
r )

)

+ (In−r−1,r(π/
√
λ)− In−r−1,r(̺m))N(C ∩ Lr+1

r ).

Therefore,

(4.11) α(Mn−r ∩ Ln
r+1[0])

=

∫

Sr

(
2

m∑

k=1

εkIn−r−1,r(̺k) + In−r−1,r

(
π

2
√
λ

)
N(C ∩ Lr+1

r )

− In−r−1,r(0)

(
2

m∑

k=1

εk +N(C ∩ Lr+1
r )

))
dur,

and because In−r−1,r(0) = 0, the result follows. �
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R em a r k 4.2. Equations (4.6) and (4.7) are pertinent to the representation of

surface area (see the left-hand side of equation (3.6)). Hence, the integrands on the

right-hand sides of equations (4.6) and (4.7) depend on the scanning direction ur in

general. Note that the Euler characteristic is of no concern in this paper—we use

Morse type concepts, but our route is different.

In order to see the relation between a critical point p and the curvature, we

consider a normal coordinate system of Ln
r+1[0] at p. Let {U ;x1, . . . , xr+1} be a local

chart described by the normal coordinate system centered at p; that is, there exist

U ⊂ R
r+1, V ⊂ Ln

r+1[0], and a map ϕ : U → V which define the local chart.

Let α : I ⊂ R → Ln
r+1[0] be a parameterization of C with α(0) = p, and set

α := β ◦ ϕ, with β(0) = q ∈ R
r+1 and ϕ(q) = p.

Theorem 4.3. Given a point p ∈ C and a normal chart {U ;xi} at p, we have:
(1) p is a critical point of hur

|C if and only if α′(0) ⊥ ν(p), where ν(p) is the unit

vector perpendicular to the level set Lr+1
r ⊂ Ln

r+1[0] at p.

(2) A critical point p of hur
|C is nondegenerate if and only if g(ν(p), D2α(0)) 6= 0,

where D is the operator of covariant differentiation with respect to α′(t). More-

over, p is a local maximum (minimum) if g(ν(p), D2α(0)) < 0 (> 0).

P r o o f. The point p is a critical point of hur
|C if and only if d

dt

∣∣
t=0

(hur
◦ϕ◦β) = 0.

Using local coordinates yields

(4.12)
d

dt

∣∣∣∣
t=0

(hur
◦ ϕ ◦ β) =

r+1∑

i=1

∂(hur
◦ ϕ)

∂xi

∣∣∣∣
q

x′
i(0) = g(grad(hur

)(p), α′(0)).

Then p is a critical point of hur
|C if and only if grad(hur

)(p) ⊥ α′(0). Finally, since

grad(hur
)(p)/‖grad(hur

)(p)‖ = ν(p), the first part of the theorem follows.

To prove the second part we need to determine when d2

dt2

∣∣
t=0

(hur
◦ϕ◦β) vanishes.

Using local coordinates yields

(4.13)
d2

dt2

∣∣∣∣
t=0

(hur
◦ ϕ ◦ β) =

r+1∑

i=1

∂2(hur
◦ ϕ)

∂xi∂xj

∣∣∣∣
q

x′
i(0)x

′
j(0) +

r+1∑

i=1

∂(hur
◦ ϕ)

∂xi

∣∣∣∣
q

x′′
i (0).

The first term on the right-hand side of equation (4.13) is

(4.14) hess(hur
)(α′(0), α′(0)) = g(∇α′(0)grad(hur

), α′(0))

= − |ε(p)|IILr
(α′(0)) = 0,
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where hess denotes the hessian and IILr
is the second fundamental form of Lr at p,

which is zero, because Lr is totally geodesic. As we have considered a normal coor-

dinate system of Ln
r+1[0] at p, the Christoffel symbols vanish; thus,

(4.15) D2α(0) =

r+1∑

k=1

x′′
k(0)

∂ϕ

∂xk

∣∣∣∣
q

.

Further, the coefficients of the First Fundamental Form in normal coordinates are

E(p) = G(p) = 1, F (p) = 0, whereby

(4.16)
d2

dt2

∣∣∣∣
t=0

(hur
◦ ϕ ◦ β) =

r+1∑

i=1

∂(hur
◦ ϕ)

∂xi

∣∣∣∣
q

x′′
i (0)

= g(grad(hur
)(p), D2α(0)) = ‖grad(hur

)(p)‖g(ν(p), D2α(0)),

and the second part of the theorem follows. �

R em a r k 4.4. If the curve α is parameterized by arc length, then from [9] we

have that

(4.17) g(ν(p), D2α(0)) = κ1g(ν(p), D
2α(0)/‖D2α(0)‖),

where κ1 > 0 denotes the first curvature of α.

E x am p l e 4.5. Hypersurfaces in space forms.

Let Mn−1 be a hypersurface in Mn
λ . Theorem 4.1 yields

(4.18) σn−1(M
n−1) =

2O1

On

∫

Mn−1∩Ln
2[0]

6=∅
α(Mn−1 ∩ Ln

2[0]) dL
n
2[0],

where

(4.19)

α(Mn−1 ∩ Ln
2[0]) =





∫

S2∩Ln
2[0]

m∑

k=1

εk
sn−1
λ (̺k)

n− 1
du, λ < 0,

∫

S2∩Ln
2[0]

( m∑

k=1

εk
sn−1
λ (̺k)

n− 1
+

N(C ∩ Lr+1
r )

n− 1

)
du, λ > 0.

From Theorem 4.3 it follows that p is a critical point of hur
|C if and only if α′(0) is

perpendicular to the geodesic line L2
1. Moreover, if α is parameterized by arc length,

then

(4.20) g(ν(p), D2α(0)) = κgg(ν(p), N(0)),

498



where N(0) is the unit vector normal to α′(0) so that the orientation of {α′(s), N(s)}
agrees with the chosen orientation of TpL

n
2[0]. Moreover, the sign of the geodesic

curvature κg of the curve at a point p is adopted to be positive or negative according

to whether the geodesic curvature vector lies to the right or the left of the curve

within the geodesic surface Ln
2[0]. For λ = 0 the geodesic curvature coincides with

the signed curvature κ of the plane curve.

5. Application: Extension of the invariator method of stereology

to estimate surface area

From equation (4.18) we obtain a simplified version of the Morse-type surface area

estimator presented in equation (7) from [16]. We simply associate signed indexes to

the critical points of the height function, without resorting to the concept of Euler

characteristic. Let Y be a compact set with smooth boundary ∂Y in R
3. From

equation (4.18) we have that the surface area of ∂Y can be expressed as follows:

(5.1) S(∂Y ) =
1

π

∫

S2+

α(∂Y ∩ L3
2[0]) dL

3
2[0],

where, by virtue of equation (4.19),

(5.2) α(∂Y ∩ L3
2[0]) =

∫
π

0

du
m∑

k=1

εk̺
2
k.

For each axial direction u ∈ [0, π) in the pivotal plane L3
2[0], the pivotal section is

scanned entirely from top to bottom by a sweeping straight line parallel to the axis

Ou, in search of critical points. Above the axis Ou, the value of the index εk is +1,

or −1, according to whether the kth critical point is a local maximum, or a local

minimum. Below the axis Ou, it is convenient to imagine the pivotal section rotated

by an angle of 180◦, and then use the same criterion. As a consequence, the factor

1/(n− 1) (equal to 1/2 in this case) on the right-hand side of equation (4.19) does

not appear in (5.2). Because the integral of dL3
2[0] over the unit hemisphere S

2
+ is

equal to 2π, the combination of the preceding two equations suggests the unbiased

estimator of S(∂Y ) from a single pivotal section, and from a single sweeping direction

(5.3) Ŝ(∂Y ) = 2π

m∑

k=1

εk̺
2
k,

which constitutes the aforementioned modification of equation (7) from [16]. The

surface area estimator given by equation (3.2) from [5] corresponds to the case in
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which Y is a convex set, whereby m = 2. The latter estimator incorporated two

mutually perpendicular sweeping directions. In this case, the summation on the

right-hand side of equation (5.3) would be replaced with the mean of two summations.

In [6], it was shown that two mutually perpendicular sweeping directions yield an

accurate surface area estimation for ellipsoidal particles.

E x am p l e 5.1. Fig. 1(a) represents a pivotal section through a smooth parti-

cle Y , namely a section produced by an isotropically oriented plane L3
2[0] through

a fixed pivotal point O previously identifiable in the particle (e.g. a nucleolus of a neu-

ron). The axis Ou has been conveniently oriented as horizontal, but it is supposed

to be isotropically oriented about O.

O u

h1

h2

h3

h4

+

−

+

+(a)

O u

h1

h4

h2

h3

+

+

+

+(b)

Figure 1. Illustration of the surface area estimator given by equation (5.3). See text, Ex-
ample 5.1.

In Fig. 1(b), the section is the same, but for the sake of illustration, the pivotal

point has a different location relative to the particle. A sweeping line moving par-

allelly to Ou from top to bottom determines four critical points in each case. In

Fig. 1(a), the second critical point is a local minimum, whereby ε2 = −1. The re-

maining three critical points are local maxima, hence ε1 = ε3 = ε4 = +1. Thus, in

this case,

(5.4) Ŝ(∂X) = 2π(h2
1 − h2

2 + h2
3 + h2

4).

The distances to each critical point from the axis Ou have been denoted by {hk}
instead of the {̺k} used in the rest of the paper, in order to match the notation with
that adopted in [5], which evokes ‘height’ measure. In Fig. 1 (b), however, the four

critical points are all local maxima, whereby, in this case,

(5.5) Ŝ(∂X) = 2π(h2
1 + h2

2 + h2
3 + h2

4).
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As suggested above, to identify the local maxima and minima below the axis Ou, it

is convenient to imagine the section as if turned upside down.
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