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Abstract

In the present paper we have obtained a new example of non-Ricci-flat
almost pseudo-Z-symmetric manifolds in the class of equidistant spaces,
which admit non-trivial geodesic mappings.
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1 Introduction

In [4] was introduced an almost pseudo-Z-symmetric space, which is an n-dimen-
sion (pseudo-) Riemannian space Vn where the special tensor

Zij = Rij + ϕ gij ,

satisfied the recurrent condition

Zij,k = (ak + bk)Zij + ajZik + aiZjk (1)

Rij , gij and ϕ being Ricci tensor, metric tensor and scalar function.
These manifolds are generalization of symmetric and reccurent spaces which

were introduced by É. Cartan [2], and A. G. Walker [19], respectively.
These manifolds were generalized in many directions, see, for example [13,

pp. 292–295, 335, 338], [18]. Geodesic and holomorphically projective mappings
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of mentioned manifolds were studied in many papers too, see [6, 8, 11, 12, 13,
15, 17]. Among others, J. Mikeš [9] proved that non-Einstein Ricci-symmetric
(pseudo-) Riemannian spaces (Rij,k = 0) do not admit non-trivial geodesic
mappings. In paper [10] were constructed projective symmetric space which
is not symmetric. For example, generalized recurrent spaces were studied in
[5, 7, 14, 16].
In the paper [4] was studied almost pseudo-Z-symmetric space. As we can

see, the Example 8, on p. 39–40, is false for explicit calculation. In this paper,
we construct new example of these manifolds.

2 Equidistant manifolds

Having found the example of almost pseudo-Z-symmetric manifolds faulty [4],
the present authors have constructed an example in the class of special equidis-
tant space.
In an equidistant space with non isotropic concircular vector field there exists

canonical coordinate system, where the metric tensor has the following form [17,
pp. 92–95], [13, p. 150]:

ds2 = e dx1
2
+ f(x1) ds̃2, (2)

where e = ±1, f is a differentiable function and

ds̃2 = g̃ab(x
2, . . . , xn) dxadxb

is a metric of (n−1)-dimensional (pseudo-) Riemannian manifold Ṽn−1.
Here and after indices a, b, . . . = 2, 3, . . . , n.
In 1954 N. S. Sinyukov (see [17], [13, pp. 140-155]), thanks to their geomet-

rical properties, gave them the name equidistant space. Around the year 1920
the H. W. Brinkmann [1] started studying these space and in the 1940 K. Yano
[20] studied concircular vector fields. Many newly obtained results are possible
to see in [3].
We denote that if f ′ �= 0, then this manifold admits non-trivial geodesic

mappings, see [17, 11, 13]. In the coordinate system (2) the components of
metric and inverse metric tensors have the following form:

g11 = e; g1a = 0; gab = f(x1) g̃ab

g11 = e; g1a = 0; gab = f(x1)−1g̃ab,
(3)

where f ( �= 0) is a function of variable x1 and g̃ab and g̃ab are components of
metric and inverse metric tensors of (n−1)-dimension on (pseudo-) Riemannian
space Ṽn−1, their component are functions of variables x2, x3, . . . , xn.
Now, non-zero components of Christofell symbols:

Γhij = Γijkg
kh and Γijk =

1

2
(∂igjk + ∂jgik − ∂kgij)
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where ∂i ≡ ∂/∂xi, have the following form:

Γ1ab ≡ Γa1b =
1

2
f ′ g̃ab; Γab1 = −1

2
f ′g̃ab; Γabc = f Γ̃abc

and non-zero components of Christofell symbols of second kind:

Γ1
ab = −e

2
f ′g̃ab; Γc1b ≡ Γcb1 =

1

2

f ′

f
δcb ; Γcab = Γ̃cab (4)

Following computation of non-zero components of the Riemannian tensor

Rhijk = ∂jΓ
h
ik − ∂kΓ

h
ij + ΓαikΓ

h
αj − ΓαijΓ

h
αk (5)

R1
a1b ≡ −R1

ab1 = − e
2 (f

′′ − f ′2

2f ) g̃ab,

Rd1b1 = − 1
2f (f

′′ − f ′2

2f )δ
c
b g̃db,

Rdabc = R̃dabc − e
4
f ′2

f (g̃ac δ
d
b − g̃ab δ

d
c ).

Contracting Riemannian tensor by metric tensor, we lower indices and obtain
Riemannian tensor of type

(
0
4

)
Rhijk = ghαR

α
ijk. (6)

After computation, we get the following non-zero components:

R1a1b = −Ra11b = Ra1b1 = Ra11b = − 1
2 (f

′′ − f ′2

2f )g̃ab

Rabcd = fR̃abcd − e
4f

′2(g̃acg̃bd − g̃adg̃ac).

The Ricci tensor Rij = Rαiαj has these non-zero components:

R11 = Rα1α1 = − 1
2f (n− 1)(f ′′ − f ′2

2f )

Rab = R̃ab − e
2 (f

′′ − f ′2

2f )g̃ab.

3 Special equidistant almost pseudo-Z-symmetric spaces

The above mentioned almost pseudo-Z-symmetric spaces are defined in formula
(1). Next, we shall study these spaces supposing that this space Vn is equidis-
tant, and moreover Ṽn−1 is Ricci flat space and component Z11 of tensor Z is
equal to zero.
Firstly, we compute non-zero components of tensor Zij = Rij + ϕgij :

Z11 = R11 + ϕ(x1)g11 = − 1
2f (n− 1)(f ′′ − f ′2

2f ) + eϕ;

Zab = −( e2 (f
′′ − f ′2

2f )− ϕf)g̃ab.
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From our proposition (Z11 = 0) it follows that the function ϕ has the fol-
lowing form:

ϕ =
e

2
(n− 1)

(
f ′′ − f ′2

2f

)
, (7)

and thus

Z = −en
2

(
f ′′ − f ′2

2f

)
. (8)

Secondly, we remember that covariant derivations of Zij have the following
definition

Zij,k = ∂kZij − ZαjΓ
α
ik − ZiαΓ

α
jk,

and equation (1):

Zij,k = (ak + bk)Zij + ajZik + aiZjk

will have the form

Z11,1 ≡ ∂1Z11 = (3a1 + b1)Z11;

Z11,c ≡ 0 = (ac + bc)Z11;

Z1b,1 ≡ 0 = abZ11;

Z1b,c ≡ − f ′

2f Zbc +
e
2 f

′Z11g̃bc = a1Zbc;

Zab,1 ≡ ∂1Zab − f ′

f Zab = (a1 + b1)Zab;

Zab,c ≡ 0 = (ac + bc)Zab + aaZbc + abZac.

Because Z11 = 0, the above equations are simplify to the following form:

− f ′

2f
Zbc = a1Zbc; (9)

∂1Zab −
f ′

f
Zab = (a1 + b1)Zab; (10)

(ac + bc)Zab + aaZbc + abZac = 0. (11)

Naturally Zij �= 0, then Z must not be equal to zero. Then for n ≥ 4 and
from (11) it implies aa = ba = 0. From (9) and (10) follows:

a1 = −1

2

f ′

f
, and b1 = −a1 −

f ′

f
∂1 ln |Z|.

On the base of above discussion, we can formulate this theorem:

Theorem 1 The equidistant space with metric (2) where metric ds̃2 defined
Ricci-flat space is almost pseudo-Z-symmetric space for any non-zero function

f(x1) ∈ C3, f ′′ − f ′2

2f �= 0.
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In this space we have tensor Zij = Rij − ϕ gij , where

ϕ =
e(n− 1)

2

(
f ′′ − f ′2

2f

)
,

and

ai = −δ1i
(
f ′

2f

)
and bi = −δ1i

f ′

2f

(
1− 2

(
ln

∣∣∣∣f ′′ − f ′2

2f

∣∣∣∣)′)
.
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