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Abstract
We discuss metrizability of locally homogeneous affine connections on

affine 2-manifolds and give some partial answers, using the results from
[1, 5, 13, 12].
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1 Introduction

In [1], locally homogeneous affine connections (with arbitrary torsion) on two-
dimensional manifolds were completely classified. As a basic tool, Lie algebras
of affine Killing vector fields were used. The paper [1] brings answers in the
case of torsion-free connections, generalizing previous results reached in [5] by
group-theoretical methods, and in [9] by a direct method.
In [11, 12] we examined metrizability of linear (= affine) connections [6, 7] in

2-manifolds, in [13] we found necessary and sufficient conditions for metrizabil-
ity of the so-called connections of type A (with constant Christoffels in a fixed
coordinate system), in [14] we have given necessary conditions and also a suffi-
cient condition for metrizability of connection of the so-called type B, [1]. Here
we would like to relate metrizability of locally homogeneous affine connections
to Lie algebras of vector fields. We give at least a partial answer here.

*Supported by the project of specific university research of the Brno University of Tech-
nology, FAST-S-15-2824.
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2 Locally homogeneous affine connections

Let (M,∇) be a smooth connected n-manifold together with an affine connec-
tion ∇. The curvature and Ricci tensor are denoted by R and Ric, respectively.
An affine connection ∇ is homogeneous if there is a group of global affine trans-
formations acting transitively in the manifoldM . A connection is (affine) locally
homogeneous if for each pair of points p, q inM there are neighborhoods U of p,
V of q and an affine transformation f : (U,∇|U ) → (V,∇|V ) such that f(p) = q
[1]. A torsion-free connection is locally symmetric if and only if its curvature is
covariantly constant, ∇R = 0 [2]. Any locally symmetric connection is locally
homogeneous (but not vice versa).

2.1 Dimension two

In what follows we examine manifolds M2 of dimension two. Two-dimensional
locally homogeneous Riemannian manifolds are just those with constant curva-
ture. On the other hand there exist many different locally homogeneous affine
structures on 2-manifolds.
An affine connection∇ in a domain U of R2[u, v] is given uniquely by a family

of components (Christoffel symbols) which are eight functions a, b, c, c̃, d, d̃, e, f
in two variables u, v (local coordinates in U) such that

∇∂u∂u = a∂u + b∂v, ∇∂u∂v = c∂u + d∂v,

∇∂u∂v = c̃∂u + d̃∂v, ∇∂v∂v = e∂u + f∂v
(1)

where ∂u = ∂
∂u , ∂v = ∂

∂v . In the usual notation Γ1
11 = a(u, v), Γ2

11 = b(u, v),
Γ1
12 = c(u, v), Γ2

12 = d(u, v), Γ1
21 = c̃(u, v), Γ2

21 = d̃(u, v), Γ1
22 = e(u, v), Γ2

22 =
f(u, v). For torsion-free (T = 0) connections, c̃ = c and d̃ = d.

Example 1 If for a point p ∈M2 there is a neighorhood U and system of local
coordinates (u, v) in U such that the components, from (1), of a connection ∇
in U are constants a, b, c, c̃, d, d̃, e, f (∇ has constant Christoffels in U) we say
that a connection ∇ is of type A in U .

Lemma 1 Any connection of type A in R2 is homogeneous, consequently lo-
cally homogeneous.

Example 2 Let for a point p ∈M2 there is a neighorhood U and a system of lo-
cal coordinates (u, v) in U and there exist real constants A,B,C, C̃,D, D̃, E, F ,
not all of them are zero, such that the following formulae hold in U :

∇∂u∂u = u−1(A∂u +B∂v), ∇∂u∂v = u−1(C∂u +D∂v),

∇∂v∂u = u−1(C̃∂u + D̃∂v), ∇∂v∂v = u−1(E∂u + F∂v),
(2)

i.e. a = u−1A, b = u−1B etc. In accordance with [5, 1] we say that a connection
∇|U is a connection of type B.
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Lemma 2 Each locally flat connection (i.e. with T = 0 and R = 0) in (an
open domain of) M2 is of both types A and B.

Indeed, if all components of the connections vanish in some coordinate neigh-
borhood Up of an arbitrary point p, Γijk = 0, then the connection is obviously of
type A. If we use the transformation u′ = eu, v′ = v the only non-zero compo-
nent of the same connection is coordinates (u′, v′) is a′ = −1/u′, therefore the
connection is of type B as well (A = −1 while other constants equal zero).
It appears that connections of type A and B play an important role in clas-

sification: in fact, besides Riemannian connections of spheres, (all) connections
of type A and some of the connections of type B, there are no other locally
homogeneous affine connections defined in plain domains.

2.2 Classification theorems

First attempts to classify systematically torsion-free locally homogeneous linear
connections in plain domains appeared relatively recently. Some partial results
can be found in [3, 4]. In [9], B. Opozda (after a lot of tedious calculations)
has found and proved in a direct way a general formula which describes all
torsion-free locally homogeneous linear connections on 2-manifolds in suitable
local coordinates:

Theorem 1 Assume a torsion-free locally homogeneous affine connection ∇ in
a 2-dimensional manifold M2. Then, either the connection is a natural (Levi-
Civita) connection of a space of constant curvature or, in a neighborhood Up
of each point p ∈ M2, there is a system (u, v) of local coordinates in which
either ∇ is of type A, i.e. has constant Christoffels, or ∇ is of type B, i.e. has
components satisfying (2).

Formulation of the Theorem 1 might avoke a (wrong) impression that it
somehow separates metric connections from connections of type A and type B;
the classes of connections mentioned in the theorem are not disjoint; among con-
nections of type B, Levi-Civita connections of Riemannian as well as Lorentzian
metrics of constant curvature can be found. Note that the 2-dimensional sphere
has a special position, it is neither of type A, nor of type B [1].
The result of Theorem 1 was later on reached by O. Kowalski and others

in [5] by means of a more elegant and sophisticated group-theoretical method
based on Killing vector fields and the Olver’s list of Lie algebras of vector fields
in R2 (Table 1 – Transitive, Imprimitive, Table 6 – Primitive, from the book
[8, pp. 472 and 475] by P. J. Olver). Let us point out that the classification
procedure in [5] uses “canonical” local coordinate systems quite different from
thouse used originally in [9].
The mentioned list of algebras was refined by O. Kowalski in [1] and step by

step, the following was proved.

Theorem 2 (Classification Theorem) [1] Assume a locally homogeneous affine
connection with arbitrary torsion on a 2-manifold M2. Then, in a neighborhood
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Up of each point p ∈M2, either the connection is the Levi-Civita connection of
the unit sphere or, there is a system (u, v) of local coordinates and constants
A,B,C, C̃,D, D̃, E, F , not all equal zero, such that either the connection is of
type A and has constant Christoffels a = A, . . . , f = F , or the connection is in
Up of type B, expressed by the formula (2).

The proof makes use of group-theoretical view-point and is based on affine
Killing vector fields of the linear connection and the Kowalski’s refinement of
Olver’s list of Lie algebras of vector fields, which we call Kowalski’s list here.
In the proof of Theorem 2, the starting point is to follow the extended table
of transitive Lie algebras of vector fields [1, pp. 3, 4, 5] which is derived from
the Olver list [8, pp. 472, 475]. For any particular item g, it is examined for
which linear connections (in the same 2-dimensional domain and with respect
to the same local coordinates) the given algebra g is the full algebra of affine
Killing vector fields; such connections are called corresponding to g. When some
connection has more different Killing algebras the maximal one is found. It
appears that there are Lie algebras of vector fields for which no such connection
exists.

Remark that a similar classification in dimension three is an open and seem-
ingly hard problem.

2.3 Lie algebras of vector fields

A vector fieldX on a manifold (M,∇) is an affine Killing vector field if it satisfies
[X,∇Y Z]−∇Y [X,Z]−∇[X,Y ]Z = 0 for all Y, Z ∈ X (M), [2, Chapter VI]. All
Killing vector fields in a domain of (M,∇) form a full affine Killing (Lie) algebra.
In local coordinates, the defining condition for Killing fields is represented by a
system of partial differential equations, and it is sufficient to check the condition
for coordinate vector fields instead of arbitrary fields Y, Z. A Killing vector field
in M2 has coordinate expression X = p(u, v)∂u + q(u, v)∂v where the functions
p, q satisfy a system of eight basic partial differential equations given by (3) in
[1, p. 6]; for symmetric connections, the corresponding system reduces to six
linear PDEs presented by the formula (6) in [5, p. 90]. The following holds:

Proposition 1 [5] A smooth connection ∇ on a smooth manifold M is locally
homogeneous if and only if for each point there exist at least two linearly inde-
pendent affine Killing vector fields defined in a neighborhood.

If a connection has constant Christoffels in some local coordinates (u, v) in
a U (is of type A) then the coordinate fields ∂v, ∂u are obviously affine Killing
vector fields. If a connection is of type B then it has (at least) Killing vector
fields ∂v and u∂u + v∂v. It holds [1]:

Lemma 3 The following equivalences hold for any Lie algebra g of vector fields
(given n a simply connected domain U(u, v) of the plane) from the Kowalski’s
list:
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(i) All connections corresponding to g are of type A if and only if in g, there
exist two linearly independent vector fields X,Y such that [X,Y ] = 0.

(ii) All connections corresponding to g are of type B if and only if in g, there
exist two linearly independent vector fields X,Y such that [X,Y ] = X.

2.4 Metrizability of affine 2-manifolds

In dimension two, the curvature tensor R can be completely recovered from the
Ricci tensor, R(X,Y )Z = Ric (Y, Z)X − Ric (X,Z)Y for X,Y, Z ∈ X (M). In
local coordinates, the components of tensors are related by Rihjk = δijRkh −
δikRjh. If n = 2 the curvature R of (M2,∇) is recurrent if and only if the Ricci
tensor Ric is recurrent, and R = 0 if and only if Ric = 0 (which can be used
e.g. by checking local symmetry).
A linear connection ∇ on M and the metric g of a (pseudo-) Riemannian

manifold (M, g) are compatible if ∇g = 0 holds. Any (pseudo-) Riemannian
manifold admits a unique linear connection fully characterized by vanishing of
the torsion tensor T and the condition ∇g = 0, called the Levi-Civita connection
of (M, g). On the other hand if (M,∇) is given we might be interested in all
compatible metrics. If such a metric exists (or exists locally) the connection is
metrizable (or locally metrizable, respectively).
The Ricci tensor of a (pseudo-) Riemannian manifold (M2, g) is propor-

tional to its metric tensor, Ric = Kg where K is the Gauss curvature; Rihjk =

K(δikghj − δijghk) holds. Hence the Ricci tensor of (M2, g) must be symmetric.
Moreover, for each nowhere flat (M2, g), the Ricci tensor is recurrent and the
corresponding 1-form is exact (= gradient) [12] (if R = 0, Ric is also recurrent
with ω = 0, hence recurrency is one of necessary conditions for metrizability of
a two-manifold). Moreover, for a nowhere flat (M2, g), i.e. with Ric �= 0, the
Ricci tensor is non-degenerate, det(Rij) has rank 2.

Lemma 4 A nowhere flat torsion-free linear connection on M2 is metrizable if
and only if its Ricci tensor is symmetric, regular and recurrent with the corre-
sponding one-form being exact, and the compatible (homothetic) metrics can be
given explicitly: if ∇Ric = ω⊗Ric and df = ω then gk = exp(k− f) ·Ric where
k ∈ R is a constant.

2.5 Metrizable connections of type A and B

Now let us pay attention to metrizable locally homogeneous linear connections
in open domains of 2-manifolds. According to the Classification Theorems, we
are left with connections of type A and B.

Type A. A connection with constant Christoffels defined in U ⊂ R2[u, v] has
the curvature tensor R as well as the Ricci tensor constant, moreover Ric is
always symmetric, with components

R11 = b(f − c) + d(a− d), R12 = R21 = cd− be, R22 = e(a− d) + c(f − c),
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a torsion-free connection with constant Christoffels on M2 is recurrent if and
only if there exist constants χ1, χ2 such that the following system holds:

(χ1 + 2a)R11 + 2bR12 = 0, bR11 + (χ1 + a+ d)R12 + bR22 = 0,

2cR12 + (χ1 + 2d)R22 = 0, (χ2 + 2c)R11 + 2dR12 = 0,

eR11 + (χ2 + c+ f)R12 + dR22 = 0, 2eR12 + (χ2 + 2f)R22 = 0.

(3)

If we account also non-singularity and symmetry of Ric we find [13, 14]:

Lemma 5 Exactly for the following choices of constants we get a metrizable
connection ∇ of type A in M2

(i) a, c, e, f ∈ R are constants satisfying ae− c2 + cf = 0, b = d = 0;

(ii) a, b, e, f ∈ R are constants, d �= 0, c = be/d and the equality d2a − eb2 +
dbf − d3 = 0 is satisfied.

In all cases, Ric = 0. Hence besides locally flat connections, there are no other
metrizable torsion-free type A connections (with constant Christoffels) on 2-
manifolds.

Type B. The situation is quite different. There exist classes of metrizable non-
flat connections of type B, corresponding to both Riemannian and Lorentzian
2-spaces of constant curvature.

Example 3 (Lorentzian metric of constant curvature 1) In R2[u, v] assume
the metric g = u−2(du2 − dv2) of constant positive curvature K = 1. The
corresponding natural (Levi-Civita) connection has the form (2) with non-zero
coefficients A = D = D̃ = E = 1, hence is of type B, and Ric = g holds.

Example 4 (The Poincaré model of hyperbolic plane) Assume the manifold
H = {(u, v) ∈ R2;u > 0} endowed with the (positive definite) Riemannian
metric g = u−2(du2 + dv2). The Levi-Civita connection ∇̂ of (H, g) is of the
form (2) with the only non-zero coefficients A = D = D̃ = −1, E = 1. That is,
∇ is a connection of type B, with the Ricci tensor Ric = −g; g is the metric of
constant negative Gauss curvature K = −1.

Lemma 6 ([13]) Each choice of real constants A = D �= 0, E �= 0, B =
C = F = 0 determines by formula (2), in (a neighborhood U of) M2 =
R2[u, v]\{(0, v); v ∈ R}, a non-flat locally metrizable linear connection of type B

∇∂u∂u = u−1A∂u, ∇∂u∂v = u−1A∂v, ∇∂v∂v = u−1E∂u (4)

with the symmetric recurrent Ricci tensor

R11 = u−2A, R12 = 0, R22 = −u−2E

satisfying
∇Ric = df ⊗ Ric, f(u, v) = −2(A+ 1) ln |u|.

The corresponding family of compatible (homothetic) metrics is

gk = ek−f(u)Au−2du2 − ek−f(u)Eu−2dv2, k ∈ R. (5)

Examples 3, 4 belong just to this class of connections.
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3 Properties of some torsion-free connections associated
with the Kowalski’s list

Now we would like to relate our previous results on metrizability to Lie algebras
of affine Killing fields from the Kowalski’s list [1, p. 3]. Recall that in the cases
of Lie algebras 1.4, 1.5 h, 1.6 h’, 1.7 for k > 2, 1.8 for k ≥ 2, 1.9 for k > 2,
1.10, 1.11, 2.7 (6.7 of Olver’s list) and 2.8 (6.8 of Olver’s list) there exists no
corresponding invariant affine connection.

Lemma 7 ([1],[5, Lemma 3.1, p. 91]) The following algebras from the Kowal-
ski’s list characterize, as affine Killing algebras, (torsion-free) metrizable con-
nections with vanishing Christoffel symbols:
the case 1.7 for α �= 0, 2, 12 , and k = 1, 2;
the case 1.7 for α = 0, or α = 1

2 , and k = 2;
the case 1.8 for k = 1;
the case 1.9 for k = 1, 2;
the case 2.1, 2.4, 2.5 and 2.6.

Now let us recall at least some algebras from the list [1, p. 3] and discuss
properties, particularly metrizability, of the corresponding connections.

Case 1.1 The Lie algebra g = span(∂v,−u∂u+v∂v,−2uv∂u+v
2∂v) � sl(2). In

general, the corresponding connection is not torsion-free, [1, p. 15]; if we assume
T = 0 the connection is

∇∂u∂u = −1

2
u−1∂u, ∇∂u∂v = γu∂u −

1

2
u−1∂v, ∇∂v∂v = εu3∂u + 2γu∂v

where γ, ε ∈ R are arbitrary constants, with Christoffel symbols

a = −d = −1

2
u−1, b = 0, c = γu, e = εu3, f = 2γu.

As g is isomorphic with sl(2), and sl(2) is a simple Lie algebra, g does not admit
any subalgebra span(X,Y ) such that [X,Y ] = 0. Consequently the correspond-
ing connection ∇ is not of type A. On the other hand the connection is of type
B due to Lemma 5: X = ∂v and Y = −u∂u + v∂v satisfy [X,Y ] = X. If we use
the coordinate transformation (u, v) �→ (ũ, ṽ) where ũ = 1

u , ṽ = v we transform
the connection to the form (2) explicitly, with constants

A = −3

2
, B = 0, C = γ ∈ R, D = −1

2
, E = −ε ∈ R, F = 2C = 2γ.

The Ricci tensor is symmetric if and only if F = −C, that is, C = 0. If this
is the case then the only component of Ric which might be non-zero in new
coordinates is R22 = 2εũ−2. Hence Ric = 2εũ−2dṽ2 is singular, we get no
compatible metric in this case.

Case 1.2 The Lie algebra g = span(∂v,−u∂u+v∂v,−(2uv+1)∂u+v
2∂v) � sl(2).

The corresponding (locally) homogeneous torsion-free connection is

∇∂u∂u = 0, ∇∂u∂v = −2u∂u, ∇∂v∂v = 4u3∂u + 2u∂v,
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with Christoffels a = b = d = 0, c = −2u, e = 4u3, f = 2u. According
to Lemma 5, this connection is not of type A, but it is of type B. To see it
explicitly we can use again the coordinate transformation ũ = 1

u , ṽ = v. The
Ricci tensor, with respect to (u, v), is Ric = −4 dudv + 4u2dv2, and ∇ is the
Levi-Civita connection of the Lorentzian metric g = Ric of constant positive
curvature K = 1, or equivalently of the Lorentzian metric g = −Ric of constant
negative curvature K = −1.

Case 1.3 The Lie algebra g = span(∂v, v∂v, u∂u,−uv∂u + v2∂v). The corre-
sponding torsion-free connection is given by

∇∂u∂u = 0, ∇∂u∂v =
1

u
∂v, ∇∂v∂v = 0,

has Christoffels A = B = C = E = F = 0, D = 1/u, T = 0, Ric = 0, so ∇ is
flat, hence it is of both the types A and B, and is metrizable.

Case 1.5 a) Locally homogeneous connections whose corresponding algebra of
Killing vector fields is g = span(∂u, ∂v) has arbitrary constants as its Christoffel
symbols, are of type A and are not of type B, [1, Prop. 5, p. 14]. Such a
connection is metrizable if and only if c = c̃, d = d̃ (then T = 0) and one of the
conditions (i) or (ii) from Lemma 5 is satisfied.

Case 1.5 b) Locally homogeneous connections whose corresponding algebra of
Killing vector fields is g = span(∂u, e

v∂v) are not of type A, but are of type B,
[1, Prop. 6, p. 14]. Christoffels of a torsion-free connection of this class depend
on six parameters and read

a(u) = C1u+ C2, b(u) = C + 1,

c(u) = −C1u
2 + (C3 − C2)u+ C4, d(u) = −C1u+ C3,

e(u) = C1u
3 + (C2 − C3)u

2 + (C5 − 2C4 − 1)u+ C6,

f(u) = C1u
2 − 2C3u+ C5, C1, . . . , C6 ∈ R C1 �= 0.

(6)

If moreover the conditions

C2 + C3 = 0, C4 = −C
2
2

C1
, C5 =

C2
2

C1
, C6 = −C2(C1 − C2

2 )

C2
2

(7)

hold then the connection is locally symmetric (and not locally flat in general).
Components of the Ricci tensor are

R11 = C1, R12 = R21 = −C1u− C2, R22 = C1u
2 + 2C2u+

C2 + 2

C1
− 1,

Ric is symmetric, recurrent (∇Ric = 0) and non-degenerate since det(Rij) =
C1 �= 0.

Ric = C1 du
2 − (C1u+ C2) dudv + (C1u

2 + 2C2u+ C2 + 2/C1 − 1) dv2
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is a Lorentzian metric of constant curvature. The coordinate transformation
u′ = e−v, v′ = ue−v turns the Christoffel symbols to the shape (2.2) explicitly,
with constants (in new coordinates)

A′ = −C5 − 1, B′ = C6, C ′ = C3, D′ = −C4 − 1, E′ = −C1, F ′ = C2.

Case 2.2, or (6.2) from [5, 8], concerns the algebra

g = span(∂v, u∂u + v∂v, 2uv∂u + (v2 − u2)∂v) � sl(2).

The corresponding torsion-free connection∇ with Christoffels a = d = −e = u−1,

∇∂u∂u = −(1/u)∂u, ∇∂u∂v = −(1/u)∂v, ∇∂v∂v = (1/u)∂v

and is obviously of type B from (2), with constants B = C = F = 0, A = D =
−1, E = 1, i.e. of the shape (4), and is not of type A, from similar reasons as
above. The Ricci tensor Ric = −u−2(du2−dv2) provides the Riemannian metric
g = −Ric = u−2(du2+dv2) of constant negative curvature K = −1. Locally, ∇
is the Levi-Civita connection of the (standard) hyperbolic plane (Example 4).

Case 2.3, case 6.3. in Olver’s list is the Lie algebra

g = span(v∂u − u∂v, (1 + v2 − u2)∂v + 2uv∂u, 2uv∂v + (1− v2 + u2)∂u) � so(3).

The generators give a system of 18 partial differential equations for Christoffels
(difficult to solve) [1, (24)–(26)]. If we denote � = ln(1 + v2 + u2) the unique
solution of the system reads a = d = −e = −�u, b = −c = −f = �v. Then
T = 0, and Ric = 4(1 + v2 + u2)−2du2 + 4(1 + v2 + u2)−2dv2 is a Riemannian
metric of constant positive curvature K = 1, and it is locally the Levi-Civita
connection of the unit sphere.

Theorem 3 ([5, Theorem 6.4.]) Let ∇ be a torsion-free affine connection in
(an open domain of) of a 2-manifold M2. The corresponding Ricci tensor Ric
is a pseudo-Riemannian metric, and ∇ is the Levi-Civita connection of g = Ric,
just in the following cases:
(i) The connection of constant positive curvature with Christoffel symbols

a = d = −e = −�u, b = −c = −f = �v, � = ln(1 + v2 + u2), corresponding
to the case 2.3, with g = Ric = 4(1 + v2 + u2)−2du2 + 4(1 + v2 + u2)−2dv2 as
a compatible metric; ∇ is locally the Levi-Civita connection of the unit sphere;
neither of type A nor of type B.
(ii) The connection of constant negative curvature K = −1 with Christoffels

a = d = −e = 1
u , b = c = f = 0, corresponding to the case 2.2, is compatible to

the Riemannian metric g = −Ric = u−2(du2+dv2); ∇ is locally the Levi-Civita
connection of the standard hyperbolic plane. It is of type B, not of type A.
(iii) The connection of constant positive curvature, with Christoffels a =

b = d = 0, c = −2u, e = 4u3, f = 2u, corresponding to case 1.2; g = Ric =
−4dudv + 4u2dv2 is a compatible Lorentzian metric metric; ∇ is of type B but
not of type A.
(iv) ∇ is given by (6) and the condition (7) is satisfied. The Ricci tensor is

a Lorentzian metric of constant positive curvature.

In all cases, the connection ∇ is locally symmetric (∇Ric = 0).
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Palacký University, Olomouc, 2015.
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