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The regularity of the positive part

of functions in L
2(I; H1(Ω)) ∩ H

1(I; H1(Ω)∗)

with applications to parabolic equations

Daniel Wachsmuth

Abstract. Let u ∈ L2(I; H1(Ω)) with ∂tu ∈ L2(I; H1(Ω)∗) be given. Then we
show by means of a counter-example that the positive part u+ of u has less
regularity, in particular it holds ∂tu+ /∈ L1(I; H1(Ω)∗) in general. Nevertheless,
u+ satisfies an integration-by-parts formula, which can be used to prove non-
negativity of weak solutions of parabolic equations.

Keywords: Bochner integrable function; projection onto non-negative functions;
parabolic equation

Classification: 46E35, 35K10

1. Introduction

In this note, we are concerned with the regularity of the positive part of func-
tions from the function space

W := {u ∈ L2(I;H1(Ω)) : ∂tu ∈ L2(I;H1(Ω)∗)}

of Bochner integrable functions. Here, I = (0, T ), T > 0, is an open interval,
and H1(Ω) denotes the usual Sobolev space on the domain Ω ⊂ R

n; ∂tu denotes
the weak derivative of u with respect to the time variable t ∈ I. The underlying
spaces form a so-called evolution triple (or Gelfand triple) H1(Ω) ⊂ L2(Ω) =
L2(Ω)∗ ⊂ H1(Ω)∗ with continuous and dense embeddings. In the sequel, we will
use the commonly applied abbreviations

V := H1(Ω), H := L2(Ω).

For an introduction to this kind of function spaces and their various properties,
we refer to e.g. [1, Section IV.1], [3, Section 7.2], [4, Chapter 25].

Let u ∈ W be given. Let us denote its positive part by u+,

u+(t, x) = max(u(t, x), 0), t ∈ I, x ∈ Ω.

Due to the embeddingW →֒ L2(I×Ω), the positive part is well-defined. Moreover,
since the mapping u 7→ u+ is bounded from H1(Ω) to H1(Ω), it follows that for

DOI 10.14712/1213-7243.2015.168



328 Wachsmuth D.

u ∈ W also u+ ∈ L2(I;V ) holds. Here, the question arises whether u ∈ W also
implies u+ ∈ W . The aim of the short note is to provide a counter-example of this
claim, see Theorem 2.7. Nevertheless, the following integration-by-parts formula
holds true for all u ∈W

(1)

∫

I

〈ut(s), u
+(s)〉V ∗,V ds =

1

2
‖u+(T )‖2

H − 1

2
‖u+(0)‖2

H ,

which enables us to show positivity of weak solutions of linear parabolic equations,
see Section 3.

2. The regularity of the positive part

In this section, we study the mapping properties of u 7→ u+. First, let us state
the following well-known result:

Proposition 2.1. The mapping u 7→ u+ is Lipschitz continuous as mapping from

H to H . Furthermore it is bounded from V to V , and for u ∈ V it holds

∇u+(x) =

{

∇u(x) if u(x) > 0

0 if u(x) ≤ 0
, x ∈ Ω,

which implies ‖u+‖V ≤ ‖u‖V .

The following result is an obvious consequence.

Corollary 2.2. Let u ∈ W be given. Then u+ ∈ L2(I;V )∩C(Ī ;H), and it holds

‖u+‖L2(I;V ), ‖u+‖C(Ī;H) ≤ ‖u‖W .

With the same arguments that are classically used to prove Proposition 2.1,
one can prove

Corollary 2.3. Let u ∈ W be given with ut ∈ L2(I;H). Then u+ ∈ W with

u+
t ∈ L2(I;H).

Moreover, in this case, we have ∂tu
+ ∈ L2(I ×Ω), and we can write for almost

all (t, x) ∈ I × Ω

(2) ∂tu
+(t, x) =

{

∂tu(t, x) if u(t, x) > 0

0 if u(t, x) ≤ 0.

Now, if ∂tu is in L2(I;V ∗) only, the representation (2) makes no sense, as ∂tu(t, ·)
is only in H1(Ω)∗ for almost all t.

In the following, we will construct a function u ∈W with ∂tu /∈ L2(I;H) such
that ∂tu

+ /∈ L2(I;V ∗). The key idea is the observation that the mapping u 7→ u+

for u ∈ L2(Ω) is not bounded as mapping from H1(Ω)∗ to H1(Ω)∗.
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To see this, set Ω = (0, 1). Let us define ψn(x) = sin(2πnx). Then it is
well-known that ψn converges weakly to zero in L2(Ω), thus strongly to zero in
H1(Ω)∗. However, a short computation shows that

∫ 1

0

ψ+
n (x) dx =

∫ 1

0

ψ+
1 (x) dx =

∫ 1/2

0

sin(2πx)dx =
1

π
6= 0,

which implies that ψ+
n converges weakly to the constant function ψ̂(x) = 1/π in

L2(Ω). Hence, ψ+
n cannot converge to zero in H1(Ω)∗.

In the sequel, we will equip V with the scalar product (u, v)V :=
∫

Ω ∇u · ∇v+
u · v dx and the associated norm. The space H is equipped with the standard
L2(Ω) inner product and norm. We consider the family of functions

(3) ψn(x) := cos(nπx), x ∈ Ω

for n ∈ N. Now, we will derive quantitative estimates of the norm of ψn in V , H ,
and V ∗ for n→ ∞.

Lemma 2.4. Let n ∈ N be given. Then it holds

‖ψn‖V =

(

n2π2 + 1

2

)1/2

≤ nπ, ‖ψn‖H =
1√
2
, ‖ψn‖V ∗ ≤ 1√

2nπ
.

Proof: The first two identities can be verified with elementary calculations. To
prove the third, consider the solution z ∈ V of (z, v)V = (ψn, v)H for all v ∈ V .
Then it follows ‖ψn‖V ∗ = ‖z‖V . The function z is given by z = 1

n2π2+1ψn, and
hence the third estimate follows from the first. �

Let us show that the V ∗-norm of ψ+
n is bounded away from zero.

Lemma 2.5. There is C > 0 such that

‖ψ+
n ‖V ∗ ≥ C ∀n.

Proof: Let e ∈ H be defined by e(x) = 1. Then we have

(ψ+
n , e)H =

∫ 1

0

ψ+
n (x) dx =

∫ 1

0

(cos(nπx))+ dx

= n

∫ 1/2n

0

cos(nπx) dx =
1

π
.

Let now ve ∈ V be defined by ve(x) = min(4x, 1, 4(1 − x)). Then it holds

‖ve − e‖2
H = 2

∫ 1/4

0
(4x)2 dx = 1

6 . Thus, we can estimate

〈ψ+
n , ve〉V ∗,V ≥ (ψ+

n , e)H − ‖ψ+
n ‖H‖v − ee‖H ≥ 1

π
− 1√

12
= 0.0296 · · · ≥ 1

5
.
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Here, we used ‖ψ+
n ‖H ≤ ‖ψn‖H = 1/

√
2. The lower bound implies that ‖ψ+

n ‖V ∗ ≥
1
5‖ve‖−1

V , and the claim is proven. �

Let us now introduce a family of functions on small time intervals, which will
be used to define the counterexample by means of an infinite series.

Lemma 2.6. Let I := (0, 1). Let φ ∈ H1
0 (I) be given. Define

(4) φn(t) := n(n+ 1) · φ(n(n+ 1)t− n).

Then it holds suppφn ⊂ ( 1
n+1 ,

1
n ) and

‖φn‖L1(I) = ‖φ‖L1(I), ‖∂tφn‖L1(I) ≥ n2‖∂tφ‖L1(I),

‖φn‖L2(I) ≤
√

2n‖φ‖L2(I), ‖∂tφn‖L2(I) ≤
√

2n3‖∂tφ‖L2(I).

Proof: This follows by elementary calculations. �

Let us now define the function

(5) u(x, t) =

∞
∑

n=1

n−3φn(t)ψn(x).

Theorem 2.7. Let φ ∈ H1
0 (I) \ {0} be given with φ ≥ 0. Then the function

u defined in (5) with ψn and φn from (3) and (4), respectively, belongs to W .

However, the time derivative of its positive part ∂tu
+ does not belong to L1(I;V ∗).

Proof: Let us define the partial sum uN :=
∑N

n=1 φn(t)ψn(x). We will exploit
the fact that the supports of the functions φn are distinct. From the Lemmas 2.4,
2.5, and 2.6, we have

‖uN‖2
L2(I;V ) =

N
∑

n=1

n−6‖φn‖2
L2(I)‖ψn‖2

V ≤ c
N

∑

n=1

n−6 · n2 · n2 = c
N

∑

n=1

n−2,

‖∂tuN‖2
L2(I;V ∗) =

N
∑

n=1

n−6‖∂tφn‖2
L2(I)‖ψn‖2

V ∗ ≤ c

N
∑

n=1

n−6 · n6 · n−2 = c

N
∑

n=1

n−2,

‖∂tu
+
N‖L1(I;V ∗) =

N
∑

n=1

n−3‖∂tφn‖L1(I)‖ψ+
n ‖V ∗ ≥ c

N
∑

n=1

n−3 · n2 · 1 = c

N
∑

n=1

n−1.

This proves that (uN) strongly converges in W to u. Since u = uN on ( 1
n+1 , 1),

the weak derivative ∂tu
+ exists almost everywhere on I, and belongs to the space

L1
loc(I;V

∗). Suppose that ∂tu
+ ∈ L1(I;V ∗) holds. Then by the continuity of the

integral it follows

‖∂tu
+‖L1(I;V ∗) = lim

N→∞

∫ 1

1/(N+1)

‖∂tu
+(t)‖V ∗ dt = lim

N→∞

‖∂tuN‖L1(I;V ∗) → ∞,

which is a contradiction, hence ∂tu
+ /∈ L1(I;V ∗). �
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3. Positivity of weak solutions to parabolic equations

Let Ω ⊂ R
n be a domain. Again, we make use of the evolution triple V =

H1(Ω), H = L2(Ω), V ∗ = (H1(Ω)∗). Due to the counter-example in the previous
section, we cannot apply the well-known integration-by-parts results for functions
in W to u+. In order to prove formula (1), we recall the following density result

Proposition 3.1 ([3, Lemma 7.2]). The space C∞([0, T ], V ) is dense in W .

First, let us prove the integration-by-parts formula for smooth u.

Lemma 3.2. Let u ∈ W with ∂tu ∈ L2(I;L2(Ω)) be given. Then it holds

(6)

∫ T

0

〈∂tu(t), u
+(t)〉V ∗,V dt =

1

2

∫ T

0

∂t‖u+(t)‖2
H

=
1

2

(

‖u+(t)‖2
H − ‖u+(0)‖2

H

)

.

Proof: Since ∂tu ∈ L2(I;L2(Ω)), it holds ∂tu
+ ∈ L2(I;L2(Ω)). With the repre-

sentation (2) it follows

∫

I

∫

Ω

∂tu(x, t)u
+(x, t) dxdt=

∫

I

∫

Ω

∂tu
+(x, t)u+(x, t) dxdt =

1

2

∫ T

0

∂t‖u+(t)‖2
H dt,

which proves the claim. �

Lemma 3.3. Let u ∈ W be given. Then it holds

∫ T

0

〈∂tu(t), u
+(t)〉V ∗,V dt =

1

2

∫ T

0

∂t‖u+(t)‖2
H =

1

2

(

‖u+(t)‖2
H − ‖u+(0)‖2

H

)

.

Proof: Let u ∈ W be given. By density, there is (uk) in C∞([0, T ], V ) with
uk → u in W . By continuity of the projection, it follows u+

k → u+ in C([0, T ], H).

Moreover, the sequence u+
k is bounded in L2(V ). Hence, there is a weakly con-

verging subsequence with weak limit ũ in L2(V ). Due to u+
k → u+ in C([0, T ], H),

it follows ũ = u+, and the whole sequence converges weakly, u+
k ⇀ u+ in L2(V ).

Since uk is smooth enough, uk satisfies (6). Moreover, the left-hand side and
the right-hand side in (6) converge for k → ∞, proving the claim. �

Let us remark that this result can be proven using difference quotients, see e.g.
[2, Lemma 2.5].

The integration-by-parts formula (1) can be applied to prove non-negativity of
weak solutions of parabolic equations with non-negative data. Let f ∈ L1(I;L2)+
L2(I;V ′) and u0 ∈ H be given. Then u ∈ W is a weak solution of the parabolic
equation with homogeneous Neumann boundary conditions

(7) ∂tu− ∆u = f on I × Ω, ∂nu = 0 on I × ∂Ω, u(0) = u0(x),
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if the following equation is satisfied for all v ∈ V and almost all t ∈ I

〈∂u(t), v〉V ∗,V +

∫

Ω

∇u(x, t)∇v(x) dx = 〈f(t), v〉V ∗,V .

Theorem 3.4. Let f ∈ L1(I;L2(Ω)) + L2(I;V ∗) be given, with f ≥ 0, which is

〈f, v〉 ≥ 0 for all v ∈ L2(V ) ∩ C(I;H) with v ≥ 0. Let u0 ∈ H be given with

u0 ≥ 0. Let u be a weak solution of the parabolic equation (7). Then it holds

u ≥ 0.

Proof: Let us denote u− = −(−u)+ ∈ L2(V )∩C(I;H). Testing the weak formu-
lation with u−, integrating from 0 to t, and using Proposition 2.1 and Lemma 3.3
yields

0 ≥
∫ t

0

〈f(s), u−(s)〉V ∗,V ds

=

∫ t

0

〈∂tu(s), u
−(s)〉V ∗,V ds+

∫ t

0

∫

Ω

∇u(x, s)∇u−(x, s) dxds

=
1

2

(

‖u−(t)‖2
H − ‖u−(0)‖2

H

)

+ ‖∇u−‖2
L2(0,t;L2(Ω))

≥ 1

2
‖u−(t)‖2

H .

Hence, it follows u−(t) = 0 for almost all t ∈ I, which implies u− = 0 almost
everywhere on I × Ω. �
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