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Abstract. The Bruhat order is defined in terms of an interchange operation on the set
of permutation matrices of order n which corresponds to the transposition of a pair of
elements in a permutation. We introduce an extension of this partial order, which we call
the stochastic Bruhat order, for the larger class Qy of doubly stochastic matrices (convex
hull of n x n permutation matrices). An alternative description of this partial order is given.
We define a class of special faces of {2, induced by permutation matrices, which we call
Bruhat faces. Several examples of Bruhat faces are given and several results are presented.
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1. INTRODUCTION

Let S,, denote the symmetric group of order n consisting of all permutations
of {1,2,...,n}. With each permutation ¢ € S, there is a corresponding n x n
permutation matrix P = [p;;], where p;; = 1 if and only if j = o(¢). Let P, denote
the set of all n x n permutation matrices. The Bruhat order on S,, in terms of P,
is the partial order <p defined as P <p @ provided that P can be obtained from Q
by a sequence of backward interchanges, that is, replacing 2 x 2 submatrices equal to
Lo with Iy as shown below:

1 1
Ly = 0 — Iy = 0 .
1 0 0 1

Eliseu Fritscher is partially supported by CNPq (Brazil)—Grant 150521/2015-4.
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It follows that the identity matrix I,, is the unique minimal element (no backward
interchanges possible) and the anti-identity matrix L, is the unique maximal element
(() backward interchanges possible) of the Bruhat order on P,.

For an m x n matrix A = [a;;] we define the m X n matrix

Y(A) =[04;(A)], where 0;;(A) = Z ag;, 1<i<m, and1<j<n

BENCNANAN

The Bruhat order on P, may be characterized as follows. For mxn matrices A = [a;;]
and B = [b;;] we write A > B (or B < A) to denote entrywise inequality.
The following result is known; see Theorem 2.1.5 in [1] or Lemma 7 of [7].

Theorem 1.1 ([1],[7]). Let P,Q € Pp. Then P <p @ if and only if 3(P) > 3(Q).

An improved version of this characterization was shown in [2]. The Bruhat order
for the class of (0,1)-matrices with given row and column sums was investigated
in [5], [6].

Recall that a square matrix is doubly stochastic provided it is nonnegative and each
row and column sum is 1. We let €2,, denote the set of doubly stochastic matrices of
order n. Then (), is a convex polytope of dimension (n—1)?, often called the Birkhoff
polytope, whose set of vertices is P,,. Let Ay, As € Q,. If 3(41) > X(A2), we write
Ay =<p As. This is a partial order on §2,, which we call the stochastic Bruhat order.
Due to Theorem 1.1, the stochastic Bruhat order on €2,, when restricted to P,,
reduces to the Bruhat order on P,,.

The goal of this paper is to investigate properties of the stochastic Bruhat order
and related subpolytopes of €2,,.

A vector © = (21,2, ...,2y,) is non-decreasing if x1 < x2 < ... < xy,. The support
of an m x n matrix A = [a;;] is the set supp A = {(4,): ai; # 0}. An n x n matrix
A has total support if each of its nonzero elements lies in a nonzero diagonal of A
(a permutation set of places occupied by nonzeros of A). The convex hull of a set S
is denoted by conv.S. We recall some notions and results from [4]. Let P = [p;;] be
a permutation matrix of order n corresponding to a permutation o = (i1, 42, ...,4y,)
of {1,2,...,n}. The Bruhat shadow S(P) of P is the (0, 1)-matrix of order n whose
support equals the union of the supports of all permutation matrices Q) satisfying
Q =p P, ie., S(P) is the Boolean sum of these matrices. Define the left-sequence!
of Pasl(P) =1l,la,...,1l,, where [j is the largest integer in the set {i1,42,..., 9} of
integers (k = 1,2,...,n). Similarly, we define the right-sequence r(P) = r1,r2,...,7y

! The terminology left- and right- is due to the first k positions and last k positions,
respectively, in the sequence o.
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of P, where ry, is the smallest integer in the set {ig,ix+1,...,9n}. Then rp < k < Ik
and rp <ip <lp for k=1,2,...,n.

Theorem 1.2 ([4]). Let P be a permutation matrix of order n. Then its Bruhat
shadow S(P) = [sy;] is given by

1 if re < j <,
Skj = 1<k<n, and1<j<n.

0 otherwise,

The matrix S(P) has total support.

The definition of the left- and right-sequences implies that the matrix S(P) has
a staircase pattern with I, < S(P) and P < S(P). Here by a staircase pattern we
mean that the 1’s in each row and column are consecutive where the first (last) 1 in
a row is in the same or earlier (later) column than the first (last) 1 in the following
row. For example, if 0 = (5,7,1,3,2,6,4), we have [(P) = 5,7,7,7,7,7,7 and
r(P)=1,1,1,2,2,4,4, so

rt 1.1 1 1 0 07

111 1 111

1 1 1 1 1 11
SP)=10 11 1 1 1 1/,

0 11 1 1 11

0 001 1 11

LO O 01 1 1 1]

where the 1’s of the permutation matrix corresponding to o are in boldface.

2. DOUBLY STOCHASTIC MATRICES
Given a permutation matrix Q € P,, let
(2B Q) ={P €Pn: P=pQ}
Then (Xp @) is a principal ideal of the Bruhat order on P,. Let
0, (=2p Q) = conv (=p Q)
be the convex hull of (X5 @), which is a subpolytope of ,,. Moreover, we define
Qn (2 5(Q)) = {4 € Qn: X(4) > X(Q)}
and this set coincides with {A € Q,,: A <p Q}.
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Any (0, 1)-matrix C of order n having total support induces a face of the Birkhoff
polytope Q,, as

Q¢ ={AecQ,: A<C}.

In addition, any face of Q,, arises from such a unique C in this way (see [3]). In
particular, when @ is a permutation matrix, S(Q) has total support, so Qf(Q) is
a face of Q,.

Proposition 2.1. Let Q) = [g;;] be a permutation matrix of order n corresponding
to the permutation (i1,1i2,...,i,). Then

(1) 0, (25 Q) CQ, (>3(Q) C 5@

and all these sets are polytopes.

Proof. We have that Q,, (> 3(Q)) is a polytope, as it is a bounded polyhe-
dron defined by the n? linear inequalities from $(A) > 3(Q) and the linear equa-
tions/inequalities defining the Birkhoff polytope. Since Q,, (> ¥(Q)) contains each
P € P, satisfying P <p @, the first inclusion in (1) follows from convexity.

Next, we show that Q, (> X(Q)) C Q5@ Let A = [ai;] € Qp (= X(Q)) and

1 < k < n. Since the ones in rows 1,2,...,k of @ are in columns i1, 1s,..., ik,
o, (A) = k, where I, = max{iq,i2,...,1k}. But op,(A) = k, so we conclude that
arj = 0 for j > I. Similarly, consider column % of A and let [ be the largest index of
the row that contains a one within columns 1,2, ..., k. The staircase pattern of S(Q)
now implies that all the ones in columns 1,2,...,k of Q are in rows 1,2,...,[, so
oik(A) = 011(Q) = k. Therefore a;; = 0 for ¢ > [. This shows that A < S(Q), so
Ae 0@ O

Note that if A € Q,,, then the entries in the last row and the last column of X(A)
are 1,2,...,n.

Example 1. In this example we show that the first containment in Proposition 2.1
may be strict. Let

684



Then

=== O O O

N NN == O
W NN == O
= W W NN
U R W N
S TR W N =

Let A = [a;;] € Q6. If £(A4) > X(Q), then by Proposition 2.1 A has zeros as shown
below:

o
jen] el Hen] Renl

Since A is assumed to be doubly stochastic, the only inequality in £(A) > 3(Q) that
does not follow from the form of A is

O’QQ(A) > 0'22(@), that is a11 + a12 + as1 + age > 1.

Let

Since 022(A) = 3/2 > 1, it follows that A satisfes ¥(A4) > X(Q) and hence that
A <p Q. However, A is not in the convex hull of (X5 Q) because any permutation
matrix with a one in position (1, 3) whose support is a subset of the support of A is

of the form
1

and is not in (Xp Q).
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The previous example leads to the following question concerning a weaker prop-
erty. Since ,(=2p) may not equal Q, (= X(Q)), a weaker property is that A €
0,(> 2(Q)) implies that there exists a permutation matrix P with P <p @ and
supp P C supp A. But even this may not be true as the following example shows.

Example 2. Consider the following permutation matrix () where the zeros shown
are those of the Bruhat shadow:

—
=lo|lo|o

Let
I 1/2 1/2
1/2 1/2
1/2]1/2

1/2[1/2
1/2 1/2
1/2[1/2
1/2 1/2
1/2 172

Clearly A € Q‘SS(Q), and one can verify that A € Qg (= 3(Q)). Consider the

permutation matrices

[ 0 1 i [ 1 0

P1 P2

0 1 1 0

Here P, P, € Qg(Q) but P1 25 Q and P, 25 Q as
0=095(P1) <025(Q) =1 and 0=062(P) < 062(Q) = 1.

Now, A = %Pl + %Pg, and the only permutation matrices P satisfying supp P C
supp A are P; and P,. The last fact is easy to check directly. In fact, P; and P
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have disjoint support and their union corresponds to a single cycle in the bipartite
graph representation of the permutation matrices.

In the previous example, P, P, € QS(Q) but P, P, A @, and hence by Theo-
rem 1.2, P;, P, are not in Q, (> 3(Q)), which shows that the second containment
in Proposition 2.1 can be proper, even with respect to permutation matrices.

Example 3. Let

Q=

o = O

0
0
1

O O =

There are four permutation matrices in (=Xp @), namely the 3 x 3 permutation
matrices with a zero in position (3,1). Hence it follows that

b+d c a
Qg(jBQ):Qg(Q): a+c d b ca,bye,d>20,a+b+c+d=1
0 a+b c+d

Let A = [a;5] € Q3 satisfy
0 0 1
YA =@ =1{1 1 2
1 2 3

Then a7 + az1 > 1, and hence a11 + a2; = 1 and az; = 0. Thus, A is a convex
combination of 3 x 3 permutation matrices with entry (3,1) equal to 0, that is, A is
in 23(=p Q). Thus, in this case

Q3(=5 Q) = (> 2(Q) =Y.
[l

Let A1, As € Q,. Our goal is to obtain a better understanding of the stochastic
Bruhat order (recall A1 <p Aj provided that (A1) > X(Az)).

Let A = [a;5] € Q. A backward e-interchange of A is a replacement of a 2 x 2
submatrix of A with another 2 x 2 matrix as indicated below:

|:aij ail:| [aij—i—s ail—5:|

— .
akj Akl Gkj —€ Qg+ €
A forward e-interchange is defined by

|:aij ail:| [aij—s ail+5:|
— .
arj  awl

ak; +€ ap—¢€
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Here ¢ is assumed to satisfy 0 < € < ay,ax; in the backward case, and 0 <
e < a;j,ap in the forward case. If A’ results from a doubly stochastic matrix by
a backward e-interchange in rows ig,¢; and columns jg, j1, then X (A’) is given by

, O'ij(A)-i-E if 19 < i <4 and jo < j < J1,
0ij(A") =

0i;i(A) otherwise.

Thus, if A’ results from A € Q,, (> 3(Q)) by a sequence of backward e-interchanges,
then also A’ € Q,, (> 3(Q)). Applying a forward e-interchange, 0;;(A)+e¢ is replaced
by 0;(A)—e in the expression above. Note that forward and backward e-interchanges
are inverse operations of each other.

Theorem 2.2. Let Ay, As € Q,,. Then the following statements are equivalent:
(i) A1 =B Aq,

(ii) A; can be obtained from As by a finite sequence of backward e-interchanges;
equivalently, As can be obtained from A; by a finite sequence of forward e-
interchanges.

Proof. As shown above, (ii) implies (i), so we only need to prove that (i)
implies (ii). Assume Ay <p Ag, where A; = [a;5], A2 = [a;j]. If A1 = A,, then there
is nothing to be proved.

If Ay # As, then there is at least one entry (7, j) such that a;; # aj;. We define
the sets of positions

Ay ={(i,4): aij <aj;},
I'={(i,j): 0i;(A1) > 03j(A2)}.

Let i9p be the first row in which A; and A, differ, and let j; be the largest j with
Uinj 7 a3, ;- Clearly, j1 > 1 because otherwise row 4o of A; or A> would not have sum
one. In the arguments that follow we use that o;,,(A1) = 0iyn(A2) = ig. We have
(i0,41) ¢ I because a;; = aéj for ¢ <idg and j > j1, SO 04y, (A1) = 04y, (A2). Since

Tigjr—1(A1) = 0iyj,—1(A2), we conclude that a;,;, < a; ; and hence (ig,j1) € A4.
Note that (ig,j1 — 1) € I because (ig,j1) € A4.

Let jo < j1 be the smallest index such that (ig, j) € I for all jo < j < j1 (jo exists,
j1 — 1 is one candidate). Now let i1 > iy be the largest index such that (i,5) € I for
all jo < j < j1 and g < @ <41 (note that 7 exists, ig + 1 is a candidate and there is
no element in row n belonging to I). In row iy, there is a column jy < = < j; such
that (i1, ) ¢ I, otherwise ¢; would be bigger.

For the contradiction, let us suppose that a;; > af;

i; 1s in the rectangle given by

1o <@ <71 and jo < j < J1.
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Jo z J1

19

11

Using the minimality of jo we have 0y j,—1(A1) = 04j,—1(A2), of course if jo > 2
(if jo = 1, then we disregard rectangles with column j, — 1). Also recall that
Oirjo—1(A1) = 0i,jo—1(A2) in general, and 0;yz(A1) > 0iy2(A2) since (ig,z) € I.
Then, by the above assumption, we have

Tiya(A1) = 0iy o1 (A1) + 0iga (A1) = Gigjo1 (A1) + Y ai
i0<i<i1
Jo<jsw

> irjo—1(A2) + Tiga(A2) = Gigjo—1(A2) + > aj
0 <i<i1
Jo<j<z

= Jilw(AQ)v

a contradiction since (i1,x) ¢ I. Thus, there is a (ix,j.) € A4 contained in the
rectangle defined by ip < i < 71 and jo < jx < J1.
Now we can apply a backward e-interchange to As by adding the matrix

e —¢
- €
to the submatrix Aslig, i«|j«, j1] determined by rows ig and 4., and columns j, and
41 with
e = min{aj ;, — iy ; a;, ;, —i,j.;0(A1)ij—0(Az)i for i < i < iw and j. < j < j1}.
This operation creates a matrix A* such that ¥(A;) > X(A*) > X(Az) with at least
one entry of X(A*) strictly bigger than the corresponding entry of (A3). Therefore
A1 2p A" =g As.
Case 1: If ¢ = min{o(A1)i; —0(Az2)i;}, then we have strictly increased the number
of entries where ¥(A;) and X(A3) agree, that is, some entries of I are removed.
Case 2: If ¢ = a

i0J1
In the next step, we will take a new element of A, in column j, < ji, or there

— @iy;, (upper right corner), then (ig, j1) is no longer in A,.

will be no more elements in row ip in Ay. In any case, the position (ig,j; — 1) will
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no longer belong to the set I, and again we strictly increased the number of entries
where X(A;) and 3 (As) agree.

Case 3: If € = a} ; — a;,j,, then (i, j.) is no longer in A,. But there could be
another position (i., j«) € A4 in the rectangle ip < ¢ < 41 and jo < j < j1. We
repeat applying backwards e-interchanges until (ig, j1) is eliminated from A, which
eliminates (ig,j1 — 1) from I.

Since each backward e-interchange brings A, closer to A; by decreasing |I|, even-
tually we will have I = () and then A; is reached, as desired.

As can be obtained from A; by forward e-interchanges in the reverse order. [

The previous proof gives an algorithm for bringing A, to A; when A; <p As
holds. We illustrate this algorithm by an example.

Example 4. Consider the matrices A; and A, below such as A; < As and I
and A, are shown schematically:

31 2 3 1 2 1 3 0 4
132401 142220
Ai=—12 3 4 1 0|, Ay=—12 251 0];
10 10
2 1 0 3 4 11 0 4 4
0 3 03 4 1 4 0 3 2
[ 1|1 |A|T|A]
1|14
IA, = 121
I|1|1\IA

The first modification to bring As to A; consists of a backward e-interchange using
position (ig, j1) = (1,5) € A. There are two positions in the rectangle 1 < ¢ < 5 and
4 < j < 5 belonging to A;. We choose (2,4) € A} and apply (1,2 : 4,5 : 2/10),
the backward e-interchange in rows 1 and 2, and columns 4 and 5, for ¢ = 2 =

10
L min{3,2,3}. This leads us to the matrix

10
(2132 2] [ I|T Al
MERENE A I A
B:— A
=g l22510]; I
11044 I|\1|11|A2
14032] | |
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with the property A1 <p Bi1 <p As.
Ay (Case 3 of the proof) in the sense that I remains the same. So we choose the

This operation does not get us closer to

next position in the rectangle that belongs to Ay, so (ig,j1) = (4,4). We apply
(1,44, 5/1/10) and obtain

By=—

[l N AT SN V)

= =) NN -

o O ot N W

w W = O W

Nt O N

I|A
I A
IA
1|1 A

AlA

This operation (Cases 1 and 2 in the proof) decreases |I| by one. Next we have
(i0,71) = (1,3) € Ay, and jo = 1 and i; = 2. We apply (1, 2|1, 3|1/10) and obtain

By=—

= o= NN W W

123
230
251
103
40 3

N Ot O N

I A
I|IA I
I\ A

Next we have (ig,j1) = (2,5) € A4 and choose the unique position of A in the

rectangle 2 < ¢ < 5 and 3 < 7 < 5 and obtain

=N W W

> = NN

O O ot W N

w W = O w

We apply £(2,3|3,5|1/10) and obtain

By=—

— = N W W

B~ NN

o O B A

w W = O w

N Ot O N

[N, B S U

I A
T|IA T
I|I A

A
T A
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Next we have (ig, j1) = (3,5) € A4 and apply (3, 5/2,5|1/10) obtaining

I\1|I|I|A

o O B oA
W W = O w

W = W N =
w ot O = =

After that we have (ig,j1) = (4,5) € A, and apply (4, 5|1,5|1/10) to finally reach

(3123 1]
NERENE

A = —
1= |23410
2103 4
03034 |

We remark that one can see from Example 4 that Case 3 in the proof of Theo-
rem 2.2 is in fact needed. The first step allows us to choose (i, j«) as (2,4) or (4,4),
but neither of these single choices will decrease set I.

3. BRUHAT FACES

A Bruhat face of €, is a face F of (2, for which there exists a permutation matrix
@ such that the set of vertices of F is (X5 @); equivalently,

{PeP,: P<LS(Q)} = (= Q).

We then write F = F(Q) and say that Q induces or generates the Bruhat face F(Q).
If 7(Q) is a Bruhat face, then the (0, 1)-matrix determining that face is the shadow
S(Q) of Q. Thus, for a Bruhat face F the three sets in Proposition 2.1 coincide.
Following [4] we define the Bruhat convez hull of a (0,1)-matrix A = [a;;] as the
(0, 1)-matrix whose support is the union of all sets {(r,s): ¢/ <r <i andj < s < j'}
such that a;; = a5 =1 with ¢/ <4 and j < j'. Let B be a matrix with staircase
pattern and let S be its support. Let (i,7) € S and let B’ be the Bruhat convex
hull of the matrix with support S\ {(i,5)}. Then (4,7) is in an extreme position in
B if B # B’. One might think that if each 1 in @ is in an extreme position, then Q
induces a Bruhat face. However, this is not the case as the following example shows.
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Example 5. Consider the permutation matrix

] 11 1.0 0 0]
I 111110
1 1 1.1 1 1 0
= ith S =
@ T WhS@=15 4 1 1
1 01 1 1 11
1 000 1 1 1
@ does not induce a Bruhat face. To see this, consider the following permutation
matrix P which lies in Q‘z(Q):
1
1
1
P= 1
1
1

Here P Ap Q as 033(P) = 1 < 2 = 033(Q). Moreover, @ Ap P. Actually, both
P and @ are maximal elements in the Bruhat order among permutation matrices in
the face Q‘E(Q).

We now consider which permutation matrices ) generate Bruhat faces. If Q € P,
induces a Bruhat face, then no other permutation matrix induces the same Bruhat
face. This is because if Q' € P,, induces the same Bruhat face, then S(Q) = S(Q'),
Q' ZpQand Q<5 Q,s0Q=0Q"

Clearly, if Q € P, and Q' € P,, each induces a Bruhat face, then the direct sum
Q ®© Q' induces a Bruhat face.

For a nonnegative n x n matrix A = [a;;] with non-decreasing rows and columns
let

A(A) ={(,7): ai; > max{a;_1,j,ai -1},

1,7
where we let ag; = a;0 =0,1 <i<n. Definefor 1 <i<n,1<j<n
7i; (@) = min{o;;(P): P < 8(Q), P a permutation matrix},

807 (Q) < 045(Q). Let T'(Q) = [7i;(Q)] be the corresponding nxn matrix with these
numbers as its entries. Below we give a simple and efficient method for computing
these numbers. I'(Q) is nonnegative and has non-decreasing rows and columns. This
is also the case for matrix (Q). The term rank of a (0, 1)-matrix A is the maximum
cardinality of a set of ones in A such that no two are in the same row or column.
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Theorem 3.1. Let Q be a permutation matrix of order n. Then the following
statements are equivalent:
(i) @ induces a Bruhat face.
(i) T(Q) = 2(Q).
(i) AT(Q)) = A(Z(Q)).
(iv) For each i,j < n the term rank of the matrix obtained from S(Q) by replacing
its leading i x j submatrix with a zero matrix is n — 0;;(Q).

Proof. If @ induces a Bruhat face, then I'(Q) = X(Q) (for if v;;(Q) < 04;(Q)
for some i,j, then there would exist a P < S(Q) with P Ap Q). Conversely,
if T'(Q) = 3(Q), then every permutation matrix P with P < S§(Q) also satisfies
2(P) = 2(Q). This shows the equivalence of (i) and (ii).

Clearly, (ii) implies (iii). Next, assume (iii) holds. In each of matrices I'(Q) and
¥(Q) the first row consists of a sequence of zeros followed by a sequence of ones.
Moreover, the transition from 0 to 1 occurs in the same column j; this follows from
the assumption A(I(Q)) = A(X(Q)) because this set contains a unique element
(1,4) for some j < n. The second row of I'(Q)) and X(Q) consists of a sequence of 0’s
followed by a sequence of 1’s and finally a sequence of 2’s. Using again assumption
(iii) and the fact that the first row of I'(Q) and X(Q) coincide, we conclude that
the second row of these two matrices coincide. We may proceed by induction and
conclude that T'(Q) = %(Q) holds.

Finally, (ii) and (iv) are equivalent as (iv) means that the minimum number of
ones in the leading ¢ x j submatrix of a permutation matrix P < §(Q) is 04;(Q). O

Recall that a backward interchange in a permutation matrix P is replacing a 2 x 2
submatrix which is equal to Ly by I. Note that the resulting matrix P’ satisfies
S(P") < 8(P). Let 1 < 4,57 < n, and let k be such that max{i + j — n,0} < k <
min{i, j}. Define the n X n permutation matrix

I, O O 0
> O Oipjr ILik 0
) P(z,j,k,n) _ 5
@ o I, 0 0
0] 0] O  ILn_ijik

Theorem 3.2. Let (Q be a permutation matrix and 1 < i < n, 1 < j <n. Let
k =7:;(Q). Then P(7:*m) < S(Q) and

i (PEIE) = 7i5(Q),

and thus PJ*™) minimizes 0;;(P) among all permutation matrices P satisfying

P <SQ)
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Proof. Let P = [p;s| € Py be such that P < §(Q) and 0;;(P) = v;(Q) = k.
Assume that k > 1. If pj; = 1 with [ > 4, choose (r, s) with p,s = 1 and r <4, s < j.
Then make a backward interchange for rows r, [ and columns 1, s. The new matrix,
still called P for simplicity, also has k& ones in the leading ¢ X j submatrix. If r = 1,
we now have pi; = 1. Otherwise, when p,; = 1 for some r > 1, make a backward
interchange involving positions (r, 1) and the position of the unique 1 in row 1. After
this, the new updated matrix P satisfies p1; = 1. We may now delete the first row
and column, and repeat this procedure for the remaining k£ — 1 ones in the leading
1 X j submatrix. After this we have

P11 =pP22=...=pgr = L.

So, even if k = 0, the leading i x j submatrix of P now coincides with that of P(-7:%:7)
and P has the following structure

I 0] 0]
P=|0 Oij_pj-r A
O Aso Ass

Each column of Ay contains a 1 and with backward interchanges we may assure
that each 1 in this submatrix is to the right of each 1 in its previous rows. This is
possible due to the staircase structure and does not affect the number of ones in the
leading 7 x j submatrix of P. Moreover, for each row in Az, which is zero, there
must be a 1 in the same row in As3. This fact makes it possible to perform backward
interchanges until the leading (j — k) x (j — k) submatrix of A3y equals I;_;. After
this we have

Iy, 0] (0]
O Oj—pj—r Ao
(0] Iy (@)
(0] 0] Ayy
Now, each row of Ay contains a 1 and with backward interchanges involving Aoy
and A4y we may assure that each 1 in this submatrix Agy is to the right of each 1
in its previous rows. Moreover, for each column in Aoy which is zero, there must be
a 1 in the same column in A4y. We may then use backward interchanges, so that the
leading (i — k) x (i — k) submatrix of As4 equals I;_j,. Now backward interchanges
on the lower right submatrix get us to P = P(:7:5:7) ag desired. O

Corollary 3.3. Forevery Q € P, and1 <i<n,1<j<n

7i;(Q) = min{k: PO+ < S(Q)}.
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This corollary leads to a simple and efficient algorithm for computing ~;;(Q) for
given ¢,j and @ € P,,: start with & = max{i + j — n,0} and increase k by 1 until
Pk < S(Q); then k = 7;;(Q). Combining this with Theorem 3.1 (ii) or (iii) we
obtain a simple, and polynomial-time, algorithm for deciding if ) induces a Bruhat
face. By (iv) of Theorem 3.1, the usual matching algorithm for bipartite graphs also
gives a polynomial-time algorithm.

Example 6. Consider again Example 5, and let i = j = 3. Then

1 1

1 1
(3,3,0,6) _ (3,3,1,6) _
P . ., P .

As P33.06) £ S(Q), we conclude that v33(Q) = 1. As noted before, 033(Q) = 2, so
Q does not induce a Bruhat face.

Define the backward direct sum Py ®p, P> of two square matrices P, and P, as the

matrix

O P
Pl@bPQZ[P 01]
2

More generally, for k square matrices P;, 1 < ¢ < k, we define

P@y.. &y Po=(P,®p... Dy Pe_1) ®p Pr.

Corollary 3.4. Let r,s,t be nonnegative integers such as r+ s+t = n. Then the
permutation matrix

(3) Q=1 9y Ls Dy I
induces a Bruhat face whose shadow is given by r;, = 1 for 1 < i < r+ s+ 1,
ri=i—r—sforr+s+1<i<mandl;=r+s+iforl <i<r,l; =n for

r<i<n.

Proof. By Theorem 1.2, the shadow of () is as described in the statement of the
corollary and thus is the n x n (0, 1)-matrix which has zeros in its upper triangular
right corner where I, has zeros, zeros in its lower triangular left corner where I; has
zeros, and ones everywhere else. Using this characterization of the shadow of @, the
following calculations are straighforward to verify.

Let 1 < 4,5 < n. We prove that 0;;(Q) = 7;;(Q), and discuss different cases:
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Case 1: 1 <i<r,1<j<n—r. Then 0;;(Q)=0=;;(Q).

Case 2: 1 <i<r,n—r<j<n. Then 0;;(Q) = min{i,j —n+r} and due to
the staircase pattern of S(@), this coincides with 7;;(Q).

Case 8: 1 <i<n—t,1<j<t Then 0;;(Q) =0=;(Q).

Case 4: n—t<i<n,1<j<t Then 0;;(Q) =min{i —n++¢, 5} and due to the
staircase pattern of S(Q), this coincides with 7;;(Q).

Case 5: r <i<n,t<j<n. Then 0;;(Q) = max{i+ j —n,0}. On the other
hand, any P € P, contains at most n — i ones in rows ¢ + 1,7 + 2,...,n and at
most n — j ones in columns j + 1,7 + 2,...,n. Therefore such P contains at least
n—(n—i)—(n—j) =i+ j—ninits leading i x j submatrix. So v;;(Q) > i+ j —n.
Since 7;;(Q) > 0, this shows that 0;;(Q) = max{i + j — n,0} < 7;;(Q), but then
equality must hold here (as the opposite inequality holds by definition of 7;;(Q)).

This proves that X(Q) = I'(Q), and the theorem follows. O

Using Corollary 3.4 and the fact that the property of inducing a Bruhat face is
preserved under taking direct sums, one may construct several permutation matrices
that induce Bruhat faces, as illustrated in the next example.

Example 7. (i) I, and L, induce Bruhat faces; see Corollary 3.4 with r = n,
s=t=0and s =n, r =1t =0, respectively. Therefore the direct sum I, ® L, & I,
also induces a Bruhat face.

(ii) Q = I ®p I, where r + t = n, induces a Bruhat face (s = 0 in the corollary).
In particular, with ¢t = 1 one obtains a Hessenberg matrix, for instance

01 0 00O
0 01 0O
000 1O
0 0 0 01
1.0 0 00

(iii) The matrix P(J**7) in (2) induces a Bruhat face because
PR — [ (I_g, @y Li—g) ® iz jik,s

so it is the direct sum of identity matrices and the matrix in (3) with s = 0.

For n < 3 one can check that every permutation matrix induces a Bruhat face
(since it can be obtained from I, and Ls (with r + s = n) by taking direct sum
or backward direct sum). An example of a matrix which is not obtained using the
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constructions above, but still induces a Bruhat face is

o = O O
o O O
= O o O
o O = O

For n = 4 the only permutation matrix that does not induce a Bruhat face is

= O O O
o O = O
o = O O
o O O

But this is for the obvious reason that P is obtained by an “internal” backward
interchange from L4, and this does not change the Bruhat shadow. We say that
a permutation matrix is shadow-mazimal if it allows no forward interchange within
its Bruhat shadow (replacing a submatrix I by Ls). Clearly, a necessary condition
for a matrix to induce a Bruhat face is that it is shadow-maximal. Therefore a per-
mutation of the form I. @, P @, Is induces a Bruhat face if and only if P is the
L permutation. But this condition (being shadow-maximal) is not sufficient. The

matrix
00 0 1 0
01 0 0 O
P=1]0 0 0 0 1
1 0 0 0 O
001 00

is shadow-maximal, but it does not induce a Bruhat face. Indeed, the matrix Q =
L4 ® I is whitin the Bruhat shadow of P, but we have P Ap Q and Q Ap P. Also,
in general, backward direct sums of permutations do not induce Bruhat faces, see
the 4 x 4 matrix I; ®y Is ©p 11 shown above.

A class of permutation matrices that induce Bruhat faces is discussed next. Let
m = (i1,42,...,1,) be a permutation of {1,2,...,n}. Then iy, ir11 is a descent of
m if i > ixy1; we also say that a descent occurs at position k. Here 1 < k <
n — 1. A permutation is a grassmanian provided it has exactly one descent. We
say that a permutation matrix ) is a grassmanian when its corresponding per-
mutation is a grassmanian; if the unique descent of the permutation occurs at
position k, then () has a unique descent at row k. For example, with n = 12,
o=1(3,6,7,9,10,1,2,4,5,8,11,12) is a grassmanian whose unique descent occurs at
k = 5. Another example is the matrix P(»35") defined in (2). The permutation
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matrix corresponding to ¢ also with the zeros defining its shadow is:

i 1{0(0(0(0}|0

—
o
[l ew) Naw) Heaw)

= oo o
o|o|o|o|o
o|o|o|o|o

0j0|1
0/0(0|0|0]|1
0/0(0]0]0|0]1

(o] Jen) Hen) Nen] Beol Nen) N
[ev] Jeu] Hen) el Neol N
(o] Jen] Nen) Hen) Han]
o|lo|o|o|
o|lo|o| -

Thus, the permutation matrices P with P < §(Q) are those whose 1’s are 1’s of Q
or are in the empty positions. In the proof of the next theorem it may be helpful to
refer to this example.

Theorem 3.5. Let @ = [g;;] be an n X n grassmanian permutation matrix. Then
Q@ induces a Bruhat face, so

2. (25 Q) =Q, (=2(Q)) =@,

Proof. Let P be a permutation matrix with P <g . Then by definition,
P < 8(Q). Now suppose that P < S(Q) and P corresponds to the permutation
(i1,%2,...,1n). To complete the proof we show that P <p @ or equivalently, by
Theorem 1.1, that 3(P) > X(Q).

Since @ is a grassmanian permutation matrix, it has a unique descent, say at
row k. Since P is a permutation matrix and P < §(Q), it follows that

0i;(P) 2 0,;(Q) ifeither 1<i<k orl<j<is.

Now assume that ¢ > k and j > 1. We claim that the term rank of the matrix S(Q),;
obtained from S(Q) by replacing its leading ¢ x j submatrix with a zero matrix is at
most n—o;;(Q), that is, n minus the number of 1’s of @ in its leading ¢ x j submatrix.
This follows from the assumption that @ is grassmanian, since we can then cover
all the 1’s ofS(Q)ij with (n — j) columns j 4+ 1,5 +2,...,n (so each containing a 1
of Q) and (j — 04;(Q)) rows u > ¢ which contain a 1 in columns 1,2,...,j. Thus,
S8(Q)4; has term rank n — 0;;(Q) proving the claim. Hence, any permutation matrix
P < 8(Q) contains 0;;(Q) 1’s in its leading ¢ x j submatrix. Then (see also (iv) in
Theorem 3.1) we conclude that ¥(P) > ¥(Q) and hence P <p Q. O
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We note that if a permutation matrix has more than one descent, it may, or may
not, induce a Bruhat face. For instance, the permutation matrix in Example 5 does
not induce a Bruhat face and it has two descents. The permutation matrix

0 01
L;=10 1 0
1 00

has two descents and induces a Bruhat face, namely {23 itself.

Finally, we mention that the Bruhat order may be extended to the class N'(R, S)
of nonnegative matrices with row sum vector R and column sum vector S, the class
of transportation matrices, and a study of this partial order is ongoing work. An
interesting topic is to study the convex hull of (X @), where @ is an extreme point,
by linear constraints and determine its extreme points.

Acknowledgement. We are indebted to a referee who read this paper thoroughly
and commented in substantial detail.
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