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Abstract. The Bruhat order is defined in terms of an interchange operation on the set
of permutation matrices of order n which corresponds to the transposition of a pair of
elements in a permutation. We introduce an extension of this partial order, which we call
the stochastic Bruhat order, for the larger class Ωn of doubly stochastic matrices (convex
hull of n×n permutation matrices). An alternative description of this partial order is given.
We define a class of special faces of Ωn induced by permutation matrices, which we call
Bruhat faces. Several examples of Bruhat faces are given and several results are presented.
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1. Introduction

Let Sn denote the symmetric group of order n consisting of all permutations

of {1, 2, . . . , n}. With each permutation σ ∈ Sn, there is a corresponding n × n

permutation matrix P = [pij ], where pij = 1 if and only if j = σ(i). Let Pn denote

the set of all n × n permutation matrices. The Bruhat order on Sn in terms of Pn

is the partial order �B defined as P �B Q provided that P can be obtained from Q

by a sequence of backward interchanges, that is, replacing 2× 2 submatrices equal to

L2 with I2 as shown below:

L2 =

[

0 1

1 0

]

−→ I2 =

[

1 0

0 1

]

.

Eliseu Fritscher is partially supported by CNPq (Brazil)—Grant 150521/2015-4.
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It follows that the identity matrix In is the unique minimal element (no backward

interchanges possible) and the anti-identity matrix Ln is the unique maximal element

(
(

n

2

)

backward interchanges possible) of the Bruhat order on Pn.

For an m× n matrix A = [aij ] we define the m× n matrix

Σ(A) = [σij(A)], where σij(A) =
∑

16k6i, 16l6j

akl, 1 6 i 6 m, and 1 6 j 6 n.

The Bruhat order on Pn may be characterized as follows. Form×nmatricesA = [aij ]

and B = [bij ] we write A > B (or B 6 A) to denote entrywise inequality.

The following result is known; see Theorem 2.1.5 in [1] or Lemma 7 of [7].

Theorem 1.1 ([1], [7]). Let P,Q ∈ Pn. Then P �B Q if and only if Σ(P ) > Σ(Q).

An improved version of this characterization was shown in [2]. The Bruhat order

for the class of (0, 1)-matrices with given row and column sums was investigated

in [5], [6].

Recall that a square matrix is doubly stochastic provided it is nonnegative and each

row and column sum is 1. We let Ωn denote the set of doubly stochastic matrices of

order n. Then Ωn is a convex polytope of dimension (n−1)2, often called the Birkhoff

polytope, whose set of vertices is Pn. Let A1, A2 ∈ Ωn. If Σ(A1) > Σ(A2), we write

A1 �B A2. This is a partial order on Ωn, which we call the stochastic Bruhat order.

Due to Theorem 1.1, the stochastic Bruhat order on Ωn, when restricted to Pn,

reduces to the Bruhat order on Pn.

The goal of this paper is to investigate properties of the stochastic Bruhat order

and related subpolytopes of Ωn.

A vector x = (x1, x2, . . . , xn) is non-decreasing if x1 6 x2 6 . . . 6 xn. The support

of an m× n matrix A = [aij ] is the set suppA = {(i, j) : aij 6= 0}. An n× n matrix

A has total support if each of its nonzero elements lies in a nonzero diagonal of A

(a permutation set of places occupied by nonzeros of A). The convex hull of a set S

is denoted by convS. We recall some notions and results from [4]. Let P = [pij ] be

a permutation matrix of order n corresponding to a permutation σ = (i1, i2, . . . , in)

of {1, 2, . . . , n}. The Bruhat shadow S(P ) of P is the (0, 1)-matrix of order n whose

support equals the union of the supports of all permutation matrices Q satisfying

Q �B P , i.e., S(P ) is the Boolean sum of these matrices. Define the left-sequence1

of P as l(P ) = l1, l2, . . . , ln, where lk is the largest integer in the set {i1, i2, . . . , ik} of

integers (k = 1, 2, . . . , n). Similarly, we define the right-sequence r(P ) = r1, r2, . . . , rn

1 The terminology left- and right- is due to the first k positions and last k positions,
respectively, in the sequence σ.
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of P , where rk is the smallest integer in the set {ik, ik+1, . . . , in}. Then rk 6 k 6 lk

and rk 6 ik 6 lk for k = 1, 2, . . . , n.

Theorem 1.2 ([4]). Let P be a permutation matrix of order n. Then its Bruhat

shadow S(P ) = [skj ] is given by

skj =

{

1 if rk 6 j 6 lk,

0 otherwise,
1 6 k 6 n, and 1 6 j 6 n.

The matrix S(P ) has total support.

The definition of the left- and right-sequences implies that the matrix S(P ) has

a staircase pattern with In 6 S(P ) and P 6 S(P ). Here by a staircase pattern we

mean that the 1’s in each row and column are consecutive where the first (last) 1 in

a row is in the same or earlier (later) column than the first (last) 1 in the following

row. For example, if σ = (5, 7, 1, 3, 2, 6, 4), we have l(P ) = 5, 7, 7, 7, 7, 7, 7 and

r(P ) = 1, 1, 1, 2, 2, 4, 4, so

S(P ) =























1 1 1 1 1 0 0

1 1 1 1 1 1 1

1 1 1 1 1 1 1

0 1 1 1 1 1 1

0 1 1 1 1 1 1

0 0 0 1 1 1 1

0 0 0 1 1 1 1























,

where the 1’s of the permutation matrix corresponding to σ are in boldface.

2. Doubly stochastic matrices

Given a permutation matrix Q ∈ Pn, let

(�B Q) = {P ∈ Pn : P �B Q}.

Then (�B Q) is a principal ideal of the Bruhat order on Pn. Let

Ωn(�B Q) = conv (�B Q)

be the convex hull of (�B Q), which is a subpolytope of Ωn. Moreover, we define

Ωn (> Σ(Q)) = {A ∈ Ωn : Σ(A) > Σ(Q)}

and this set coincides with {A ∈ Ωn : A �B Q}.
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Any (0, 1)-matrix C of order n having total support induces a face of the Birkhoff

polytope Ωn as

ΩC
n := {A ∈ Ωn : A 6 C}.

In addition, any face of Ωn arises from such a unique C in this way (see [3]). In

particular, when Q is a permutation matrix, S(Q) has total support, so Ω
S(Q)
n is

a face of Ωn.

Proposition 2.1. Let Q = [qij ] be a permutation matrix of order n corresponding

to the permutation (i1, i2, . . . , in). Then

(1) Ωn(�B Q) ⊆ Ωn (> Σ(Q)) ⊆ ΩS(Q)
n

and all these sets are polytopes.

P r o o f. We have that Ωn (> Σ(Q)) is a polytope, as it is a bounded polyhe-

dron defined by the n2 linear inequalities from Σ(A) > Σ(Q) and the linear equa-

tions/inequalities defining the Birkhoff polytope. Since Ωn (> Σ(Q)) contains each

P ∈ Pn satisfying P �B Q, the first inclusion in (1) follows from convexity.

Next, we show that Ωn (> Σ(Q)) ⊆ Ω
S(Q)
n . Let A = [aij ] ∈ Ωn (> Σ(Q)) and

1 6 k 6 n. Since the ones in rows 1, 2, . . . , k of Q are in columns i1, i2, . . . , ik,

σklk (A) > k, where lk = max{i1, i2, . . . , ik}. But σkn(A) = k, so we conclude that

akj = 0 for j > lk. Similarly, consider column k of A and let l be the largest index of

the row that contains a one within columns 1, 2, . . . , k. The staircase pattern of S(Q)

now implies that all the ones in columns 1, 2, . . . , k of Q are in rows 1, 2, . . . , l, so

σlk(A) > σlk(Q) = k. Therefore aik = 0 for i > l. This shows that A 6 S(Q), so

A ∈ Ω
S(Q)
n . �

Note that if A ∈ Ωn, then the entries in the last row and the last column of Σ(A)

are 1, 2, . . . , n.

Example 1. In this example we show that the first containment in Proposition 2.1

may be strict. Let

Q =

















1
1

1
1

1
1

















.
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Then

Σ(Q) =



















0 0 0 1 1 1

0 1 1 2 2 2

0 1 1 2 3 3

1 2 2 3 4 4

1 2 2 3 4 5

1 2 3 4 5 6



















.

Let A = [aij ] ∈ Ω6. If Σ(A) > Σ(Q), then by Proposition 2.1 A has zeros as shown

below:

A =

















0 0
0 0

0
0

0 0
0 0

















.

Since A is assumed to be doubly stochastic, the only inequality in Σ(A) > Σ(Q) that

does not follow from the form of A is

σ22(A) > σ22(Q), that is a11 + a12 + a21 + a22 > 1.

Let

A =
1

4

















3 1
3 1
1 3

1 3
3 1
1 3

















.

Since σ22(A) = 3/2 > 1, it follows that A satisfes Σ(A) > Σ(Q) and hence that

A �B Q. However, A is not in the convex hull of (�B Q) because any permutation

matrix with a one in position (1, 3) whose support is a subset of the support of A is

of the form

P =

















1
1

1
1

∗ ∗
∗ ∗

















and is not in (�B Q).
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The previous example leads to the following question concerning a weaker prop-

erty. Since Ωn(�B) may not equal Ωn (> Σ(Q)), a weaker property is that A ∈

Ωn(> Σ(Q)) implies that there exists a permutation matrix P with P �B Q and

suppP ⊆ suppA. But even this may not be true as the following example shows.

Example 2. Consider the following permutation matrix Q where the zeros shown

are those of the Bruhat shadow:

Q =

























1 0
1 0

1 0
1

1
1

1
1

























.

Let

A =

























1/2 1/2
1/2 1/2
1/2 1/2

1/2 1/2
1/2 1/2

1/2 1/2
1/2 1/2

1/2 1/2

























.

Clearly A ∈ Ω
S(Q)
8 , and one can verify that A ∈ Ω8 (> Σ(Q)). Consider the

permutation matrices

P1 =

























0 1
0 1
1 0

0 1
1 0

1 0
0 1

0 1

























, P2 =

























1 0
1 0
0 1

1 0
0 1

0 1
1 0

1 0

























.

Here P1, P2 ∈ Ω
S(Q)
8 but P1 6�B Q and P2 6�B Q as

0 = σ25(P1) < σ25(Q) = 1 and 0 = σ62(P2) < σ62(Q) = 1.

Now, A = 1
2P1 + 1

2P2, and the only permutation matrices P satisfying suppP ⊆

suppA are P1 and P2. The last fact is easy to check directly. In fact, P1 and P2
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have disjoint support and their union corresponds to a single cycle in the bipartite

graph representation of the permutation matrices.

In the previous example, P1, P2 ∈ Ω
S(Q)
8 but P1, P2 6�B Q, and hence by Theo-

rem 1.2, P1, P2 are not in Ωn (> Σ(Q)), which shows that the second containment

in Proposition 2.1 can be proper, even with respect to permutation matrices.

Example 3. Let

Q =





0 0 1

1 0 0

0 1 0



 .

There are four permutation matrices in (�B Q), namely the 3 × 3 permutation

matrices with a zero in position (3, 1). Hence it follows that

Ω3(�B Q) = Ω
S(Q)
3 =











b + d c a

a+ c d b

0 a+ b c+ d



 : a, b, c, d > 0, a+ b+ c+ d = 1







.

Let A = [aij ] ∈ Ω3 satisfy

Σ(A) > Σ(Q) =





0 0 1

1 1 2

1 2 3



 .

Then a11 + a21 > 1, and hence a11 + a21 = 1 and a31 = 0. Thus, A is a convex

combination of 3× 3 permutation matrices with entry (3, 1) equal to 0, that is, A is

in Ω3(�B Q). Thus, in this case

Ω3(�B Q) = Ω3 (> Σ(Q)) = ΩS(Q).

�

Let A1, A2 ∈ Ωn. Our goal is to obtain a better understanding of the stochastic

Bruhat order (recall A1 �B A2 provided that Σ(A1) > Σ(A2)).

Let A = [aij ] ∈ Ωn. A backward ε-interchange of A is a replacement of a 2 × 2

submatrix of A with another 2× 2 matrix as indicated below:

[

aij ail

akj akl

]

−→

[

aij + ε ail − ε

akj − ε akl + ε

]

.

A forward ε-interchange is defined by

[

aij ail
akj akl

]

−→

[

aij − ε ail + ε

akj + ε akl − ε

]

.
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Here ε is assumed to satisfy 0 < ε 6 ail, akj in the backward case, and 0 <

ε 6 aij , akl in the forward case. If A
′ results from a doubly stochastic matrix by

a backward ε-interchange in rows i0, i1 and columns j0, j1, then Σ(A′) is given by

σij(A
′) =

{

σij(A) + ε if i0 6 i < i1 and j0 6 j < j1,

σij(A) otherwise.

Thus, if A′ results from A ∈ Ωn (> Σ(Q)) by a sequence of backward ε-interchanges,

then also A′ ∈ Ωn (> Σ(Q)). Applying a forward ε-interchange, σij(A)+ε is replaced

by σij(A)−ε in the expression above. Note that forward and backward ε-interchanges

are inverse operations of each other.

Theorem 2.2. Let A1, A2 ∈ Ωn. Then the following statements are equivalent:

(i) A1 �B A2,

(ii) A1 can be obtained from A2 by a finite sequence of backward ε-interchanges;

equivalently, A2 can be obtained from A1 by a finite sequence of forward ε-

interchanges.

P r o o f. As shown above, (ii) implies (i), so we only need to prove that (i)

implies (ii). Assume A1 �B A2, where A1 = [aij ], A2 = [a′ij ]. If A1 = A2, then there

is nothing to be proved.

If A1 6= A2, then there is at least one entry (i, j) such that aij 6= a′ij . We define

the sets of positions

∆+ = {(i, j) : aij < a′ij},

I = {(i, j) : σij(A1) > σij(A2)}.

Let i0 be the first row in which A1 and A2 differ, and let j1 be the largest j with

ai0j 6= a′i0j . Clearly, j1 > 1 because otherwise row i0 of A1 or A2 would not have sum

one. In the arguments that follow we use that σi0n(A1) = σi0n(A2) = i0. We have

(i0, j1) /∈ I because aij = a′ij for i 6 i0 and j > j1, so σi0j1(A1) = σi0j1(A2). Since

σi0j1−1(A1) > σi0j1−1(A2), we conclude that ai0j1 < a′i0j1 and hence (i0, j1) ∈ ∆+.

Note that (i0, j1 − 1) ∈ I because (i0, j1) ∈ ∆+.

Let j0 < j1 be the smallest index such that (i0, j) ∈ I for all j0 6 j < j1 (j0 exists,

j1 − 1 is one candidate). Now let i1 > i0 be the largest index such that (i, j) ∈ I for

all j0 6 j < j1 and i0 6 i < i1 (note that i1 exists, i0 + 1 is a candidate and there is

no element in row n belonging to I). In row i1, there is a column j0 6 x < j1 such

that (i1, x) /∈ I, otherwise i1 would be bigger.

For the contradiction, let us suppose that aij > a′ij is in the rectangle given by

i0 < i 6 i1 and j0 6 j < j1.
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j0 x j1

i0 տ I I I I ∆+

I I I I I

I I I I I

i1 I ⊙ I

Using the minimality of j0 we have σi0j0−1(A1) = σi0j0−1(A2), of course if j0 > 2

(if j0 = 1, then we disregard rectangles with column j0 − 1). Also recall that

σi1j0−1(A1) > σi1j0−1(A2) in general, and σi0x(A1) > σi0x(A2) since (i0, x) ∈ I.

Then, by the above assumption, we have

σi1x(A1) = σi1j0−1(A1) + σi0x(A1)− σi0j0−1(A1) +
∑

i0<i6i1
j06j6x

aij

> σi1j0−1(A2) + σi0x(A2)− σi0j0−1(A2) +
∑

i0<i6i1
j06j6x

a′ij

= σi1x(A2),

a contradiction since (i1, x) /∈ I. Thus, there is a (i∗, j∗) ∈ ∆+ contained in the

rectangle defined by i0 < i∗ 6 i1 and j0 6 j∗ < j1.

Now we can apply a backward ε-interchange to A2 by adding the matrix

[

ε −ε

−ε ε

]

to the submatrix A2[i0, i∗|j∗, j1] determined by rows i0 and i∗, and columns j∗ and

j1 with

ε = min{a′i0j1−ai0j1 ; a
′

i∗j∗
−ai∗j∗ ;σ(A1)ij−σ(A2)ij for i0 6 i < i∗ and j∗ 6 j < j1}.

This operation creates a matrix A∗ such that Σ(A1) > Σ(A∗) > Σ(A2) with at least

one entry of Σ(A∗) strictly bigger than the corresponding entry of Σ(A2). Therefore

A1 �B A∗ �B A2.

Case 1 : If ε = min{σ(A1)ij−σ(A2)ij}, then we have strictly increased the number

of entries where Σ(A1) and Σ(A2) agree, that is, some entries of I are removed.

Case 2 : If ε = a′i0j1 − ai0j1 (upper right corner), then (i0, j1) is no longer in ∆+.

In the next step, we will take a new element of ∆+ in column j2 < j1, or there

will be no more elements in row i0 in ∆+. In any case, the position (i0, j1 − 1) will
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no longer belong to the set I, and again we strictly increased the number of entries

where Σ(A1) and Σ(A2) agree.

Case 3 : If ε = a′i∗j∗ − ai∗j∗ , then (i∗, j∗) is no longer in ∆+. But there could be

another position (i∗∗, j∗∗) ∈ ∆+ in the rectangle i0 < i 6 i1 and j0 6 j < j1. We

repeat applying backwards ε-interchanges until (i0, j1) is eliminated from ∆+, which

eliminates (i0, j1 − 1) from I.

Since each backward ε-interchange brings A2 closer to A1 by decreasing |I|, even-

tually we will have I = ∅ and then A1 is reached, as desired.

A2 can be obtained from A1 by forward ε-interchanges in the reverse order. �

The previous proof gives an algorithm for bringing A2 to A1 when A1 �B A2

holds. We illustrate this algorithm by an example.

Example 4. Consider the matrices A1 and A2 below such as A1 �B A2 and I

and ∆+ are shown schematically:

A1 =
1

10















3 1 2 3 1

3 2 4 0 1

2 3 4 1 0

2 1 0 3 4

0 3 0 3 4















, A2 =
1

10















2 1 3 0 4

4 2 2 2 0

2 2 5 1 0

1 1 0 4 4

1 4 0 3 2















;

I∆+ =



















I I ∆ I ∆

∆ I I∆

I I∆ I

I I I I∆

∆ ∆



















.

The first modification to bring A2 to A1 consists of a backward ε-interchange using

position (i0, j1) = (1, 5) ∈ ∆+. There are two positions in the rectangle 1 < i 6 5 and

4 6 j < 5 belonging to ∆+. We choose (2, 4) ∈ ∆+ and apply ε(1, 2 : 4, 5 : 2/10),

the backward ε-interchange in rows 1 and 2, and columns 4 and 5, for ε = 2
10 =

1
10 min{3, 2, 3}. This leads us to the matrix

B1 =
1

10



















2 1 3 2 2

4 2 2 0 2

2 2 5 1 0

1 1 0 4 4

1 4 0 3 2



















;



















I I ∆ I ∆

∆ I I ∆

I I∆ I

I I I I∆

∆ ∆
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with the property A1 �B B1 �B A2. This operation does not get us closer to

A1 (Case 3 of the proof) in the sense that I remains the same. So we choose the

next position in the rectangle that belongs to ∆+, so (i0, j1) = (4, 4). We apply

ε(1, 4|4, 5|1/10) and obtain

B2 =
1

10



















2 1 3 3 1

4 2 2 0 2

2 2 5 1 0

1 1 0 3 5

1 4 0 3 2



















;



















I I ∆

∆ I I ∆

I I∆ I

I I I I ∆

∆ ∆



















.

This operation (Cases 1 and 2 in the proof) decreases |I| by one. Next we have

(i0, j1) = (1, 3) ∈ ∆+, and j0 = 1 and i1 = 2. We apply ε(1, 2|1, 3|1/10) and obtain

B3 =
1

10



















3 1 2 3 1

3 2 3 0 2

2 2 5 1 0

1 1 0 3 5

1 4 0 3 2



















;



















I I ∆

I I∆ I

I I I I ∆

∆ ∆



















.

Next we have (i0, j1) = (2, 5) ∈ ∆+ and choose the unique position of ∆+ in the

rectangle 2 < i 6 5 and 3 6 j < 5 and obtain

B3 =
1

10



















3 1 2 3 1

3 2 3 0 2

2 2 5 1 0

1 1 0 3 5

1 4 0 3 2



















;



















I I ∆

I I∆ I

I I I I ∆

∆ ∆



















.

We apply ε(2, 3|3, 5|1/10) and obtain

B4 =
1

10



















3 1 2 3 1

3 2 4 0 1

2 2 4 1 1

1 1 0 3 5

1 4 0 3 2



















;



















I I I ∆

I I I I ∆

∆ ∆



















.
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Next we have (i0, j1) = (3, 5) ∈ ∆+ and apply ε(3, 5|2, 5|1/10) obtaining

B5 =
1

10



















3 1 2 3 1

3 2 4 0 1

2 3 4 1 0

1 1 0 3 5

1 3 0 3 3



















;



















I I I I ∆

∆



















.

After that we have (i0, j1) = (4, 5) ∈ ∆+ and apply ε(4, 5|1, 5|1/10) to finally reach

A1 =
1

10



















3 1 2 3 1

3 2 4 0 1

2 3 4 1 0

2 1 0 3 4

0 3 0 3 4



















.

We remark that one can see from Example 4 that Case 3 in the proof of Theo-

rem 2.2 is in fact needed. The first step allows us to choose (i∗, j∗) as (2, 4) or (4, 4),

but neither of these single choices will decrease set I.

3. Bruhat faces

A Bruhat face of Ωn is a face F of Ωn for which there exists a permutation matrix

Q such that the set of vertices of F is (�B Q); equivalently,

{P ∈ Pn : P 6 S(Q)} = (�B Q).

We then write F = F(Q) and say that Q induces or generates the Bruhat face F(Q).

If F(Q) is a Bruhat face, then the (0, 1)-matrix determining that face is the shadow

S(Q) of Q. Thus, for a Bruhat face F the three sets in Proposition 2.1 coincide.

Following [4] we define the Bruhat convex hull of a (0, 1)-matrix A = [aij ] as the

(0, 1)-matrix whose support is the union of all sets {(r, s) : i′ 6 r 6 i and j 6 s 6 j′}

such that aij = ai′j′ = 1 with i′ < i and j < j′. Let B be a matrix with staircase

pattern and let S be its support. Let (i, j) ∈ S and let B′ be the Bruhat convex

hull of the matrix with support S \ {(i, j)}. Then (i, j) is in an extreme position in

B if B 6= B′. One might think that if each 1 in Q is in an extreme position, then Q

induces a Bruhat face. However, this is not the case as the following example shows.
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Example 5. Consider the permutation matrix

Q =

















1
1

1
1

1
1

















with S(Q) =



















1 1 1 0 0 0

1 1 1 1 1 0

1 1 1 1 1 0

0 1 1 1 1 1

0 1 1 1 1 1

0 0 0 1 1 1



















.

Q does not induce a Bruhat face. To see this, consider the following permutation

matrix P which lies in Ω
S(Q)
n :

P =

















1
1

1
1

1
1

















.

Here P 6�B Q as σ33(P ) = 1 < 2 = σ33(Q). Moreover, Q 6�B P . Actually, both

P and Q are maximal elements in the Bruhat order among permutation matrices in

the face Ω
S(Q)
n .

We now consider which permutation matrices Q generate Bruhat faces. If Q ∈ Pn

induces a Bruhat face, then no other permutation matrix induces the same Bruhat

face. This is because if Q′ ∈ Pn induces the same Bruhat face, then S(Q) = S(Q′),

Q′ �B Q and Q �B Q′, so Q = Q′.

Clearly, if Q ∈ Pn and Q′ ∈ Pm each induces a Bruhat face, then the direct sum

Q⊕Q′ induces a Bruhat face.

For a nonnegative n × n matrix A = [aij ] with non-decreasing rows and columns

let

∆(A) = {(i, j) : aij > max{ai−1,j, ai,j−1},

where we let a0i = ai0 = 0, 1 6 i 6 n. Define for 1 6 i 6 n, 1 6 j 6 n

γij(Q) = min{σij(P ) : P 6 S(Q), P a permutation matrix},

so γij(Q) 6 σij(Q). Let Γ(Q) = [γij(Q)] be the corresponding n×nmatrix with these

numbers as its entries. Below we give a simple and efficient method for computing

these numbers. Γ(Q) is nonnegative and has non-decreasing rows and columns. This

is also the case for matrix Σ(Q). The term rank of a (0, 1)-matrix A is the maximum

cardinality of a set of ones in A such that no two are in the same row or column.
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Theorem 3.1. Let Q be a permutation matrix of order n. Then the following

statements are equivalent:

(i) Q induces a Bruhat face.

(ii) Γ(Q) = Σ(Q).

(iii) ∆(Γ(Q)) = ∆(Σ(Q)).

(iv) For each i, j 6 n the term rank of the matrix obtained from S(Q) by replacing

its leading i× j submatrix with a zero matrix is n− σij(Q).

P r o o f. If Q induces a Bruhat face, then Γ(Q) = Σ(Q) (for if γij(Q) < σij(Q)

for some i, j, then there would exist a P 6 S(Q) with P 6�B Q). Conversely,

if Γ(Q) = Σ(Q), then every permutation matrix P with P 6 S(Q) also satisfies

Σ(P ) > Σ(Q). This shows the equivalence of (i) and (ii).

Clearly, (ii) implies (iii). Next, assume (iii) holds. In each of matrices Γ(Q) and

Σ(Q) the first row consists of a sequence of zeros followed by a sequence of ones.

Moreover, the transition from 0 to 1 occurs in the same column j; this follows from

the assumption ∆(Γ(Q)) = ∆(Σ(Q)) because this set contains a unique element

(1, j) for some j 6 n. The second row of Γ(Q) and Σ(Q) consists of a sequence of 0’s

followed by a sequence of 1’s and finally a sequence of 2’s. Using again assumption

(iii) and the fact that the first row of Γ(Q) and Σ(Q) coincide, we conclude that

the second row of these two matrices coincide. We may proceed by induction and

conclude that Γ(Q) = Σ(Q) holds.

Finally, (ii) and (iv) are equivalent as (iv) means that the minimum number of

ones in the leading i× j submatrix of a permutation matrix P 6 S(Q) is σij(Q). �

Recall that a backward interchange in a permutation matrix P is replacing a 2×2

submatrix which is equal to L2 by I2. Note that the resulting matrix P ′ satisfies

S(P ′) 6 S(P ). Let 1 6 i, j 6 n, and let k be such that max{i + j − n, 0} 6 k 6

min{i, j}. Define the n× n permutation matrix

(2) P (i,j,k,n) =









Ik O O O

O Oi−k,j−k Ii−k O

O Ij−k O O

O O O In−i−j+k









.

Theorem 3.2. Let Q be a permutation matrix and 1 6 i 6 n, 1 6 j 6 n. Let

k = γij(Q). Then P (i,j,k,n) 6 S(Q) and

σij(P
(i,j,k,n)) = γij(Q),

and thus P (i,j,k,n) minimizes σij(P ) among all permutation matrices P satisfying

P 6 S(Q).
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P r o o f. Let P = [prs] ∈ Pn be such that P 6 S(Q) and σij(P ) = γij(Q) = k.

Assume that k > 1. If pl1 = 1 with l > i, choose (r, s) with prs = 1 and r 6 i, s 6 j.

Then make a backward interchange for rows r, l and columns 1, s. The new matrix,

still called P for simplicity, also has k ones in the leading i× j submatrix. If r = 1,

we now have p11 = 1. Otherwise, when pr1 = 1 for some r > 1, make a backward

interchange involving positions (r, 1) and the position of the unique 1 in row 1. After

this, the new updated matrix P satisfies p11 = 1. We may now delete the first row

and column, and repeat this procedure for the remaining k − 1 ones in the leading

i× j submatrix. After this we have

p11 = p22 = . . . = pkk = 1.

So, even if k = 0, the leading i×j submatrix of P now coincides with that of P (i,j,k,n),

and P has the following structure

P =





Ik O O

O Oi−k,j−k A23

O A32 A33



 .

Each column of A32 contains a 1 and with backward interchanges we may assure

that each 1 in this submatrix is to the right of each 1 in its previous rows. This is

possible due to the staircase structure and does not affect the number of ones in the

leading i × j submatrix of P . Moreover, for each row in A32 which is zero, there

must be a 1 in the same row in A33. This fact makes it possible to perform backward

interchanges until the leading (j − k)× (j − k) submatrix of A32 equals Ij−k. After

this we have

P =









Ik O O

O Oi−k,j−k A24

O Ij−k O

O O A44









.

Now, each row of A24 contains a 1 and with backward interchanges involving A24

and A44 we may assure that each 1 in this submatrix A24 is to the right of each 1

in its previous rows. Moreover, for each column in A24 which is zero, there must be

a 1 in the same column in A44. We may then use backward interchanges, so that the

leading (i − k) × (i − k) submatrix of A24 equals Ii−k. Now backward interchanges

on the lower right submatrix get us to P = P (i,j,k,n) as desired. �

Corollary 3.3. For every Q ∈ Pn and 1 6 i 6 n, 1 6 j 6 n

γij(Q) = min{k : P (i,j,k,n) 6 S(Q)}.
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This corollary leads to a simple and efficient algorithm for computing γij(Q) for

given i, j and Q ∈ Pn: start with k = max{i + j − n, 0} and increase k by 1 until

P (i,j,k,n) 6 S(Q); then k = γij(Q). Combining this with Theorem 3.1 (ii) or (iii) we

obtain a simple, and polynomial-time, algorithm for deciding if Q induces a Bruhat

face. By (iv) of Theorem 3.1, the usual matching algorithm for bipartite graphs also

gives a polynomial-time algorithm.

Example 6. Consider again Example 5, and let i = j = 3. Then

P (3,3,0,6) =

















1
1

1
1

1
1

















, P (3,3,1,6) =

















1
1

1
1

1
1

















.

As P (3,3,0,6) 66 S(Q), we conclude that γ33(Q) = 1. As noted before, σ33(Q) = 2, so

Q does not induce a Bruhat face.

Define the backward direct sum P1 ⊕b P2 of two square matrices P1 and P2 as the

matrix

P1 ⊕b P2 =

[

O P1

P2 O

]

.

More generally, for k square matrices Pi, 1 6 i 6 k, we define

P1 ⊕b . . .⊕b Pk = (P1 ⊕b . . .⊕b Pk−1)⊕b Pk.

Corollary 3.4. Let r, s, t be nonnegative integers such as r+ s+ t = n. Then the

permutation matrix

(3) Q = Ir ⊕b Ls ⊕b It

induces a Bruhat face whose shadow is given by ri = 1 for 1 6 i 6 r + s + 1,

ri = i − r − s for r + s + 1 < i 6 n and li = r + s + i for 1 6 i < r, li = n for

r 6 i 6 n.

P r o o f. By Theorem 1.2, the shadow of Q is as described in the statement of the

corollary and thus is the n× n (0, 1)-matrix which has zeros in its upper triangular

right corner where Ir has zeros, zeros in its lower triangular left corner where It has

zeros, and ones everywhere else. Using this characterization of the shadow of Q, the

following calculations are straighforward to verify.

Let 1 6 i, j 6 n. We prove that σij(Q) = γij(Q), and discuss different cases:
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Case 1 : 1 6 i 6 r, 1 6 j 6 n− r. Then σij(Q) = 0 = γij(Q).

Case 2 : 1 6 i 6 r, n − r < j 6 n. Then σij(Q) = min{i, j − n + r} and due to

the staircase pattern of S(Q), this coincides with γij(Q).

Case 3 : 1 6 i 6 n− t, 1 6 j 6 t. Then σij(Q) = 0 = γij(Q).

Case 4 : n− t < i 6 n, 1 6 j 6 t. Then σij(Q) = min{i− n+ t, j} and due to the

staircase pattern of S(Q), this coincides with γij(Q).

Case 5 : r < i 6 n, t < j 6 n. Then σij(Q) = max{i + j − n, 0}. On the other

hand, any P ∈ Pn contains at most n − i ones in rows i + 1, i + 2, . . . , n and at

most n − j ones in columns j + 1, j + 2, . . . , n. Therefore such P contains at least

n− (n− i)− (n− j) = i+ j−n in its leading i× j submatrix. So γij(Q) > i+ j−n.

Since γij(Q) > 0, this shows that σij(Q) = max{i + j − n, 0} 6 γij(Q), but then

equality must hold here (as the opposite inequality holds by definition of γij(Q)).

This proves that Σ(Q) = Γ(Q), and the theorem follows. �

Using Corollary 3.4 and the fact that the property of inducing a Bruhat face is

preserved under taking direct sums, one may construct several permutation matrices

that induce Bruhat faces, as illustrated in the next example.

Example 7. (i) In and Ln induce Bruhat faces; see Corollary 3.4 with r = n,

s = t = 0 and s = n, r = t = 0, respectively. Therefore the direct sum Is ⊕ Lr ⊕ It
also induces a Bruhat face.

(ii) Q = Ir ⊕b It, where r + t = n, induces a Bruhat face (s = 0 in the corollary).

In particular, with t = 1 one obtains a Hessenberg matrix, for instance















0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

1 0 0 0 0















.

(iii) The matrix P (i,j,k,n) in (2) induces a Bruhat face because

P (i,j,k,n) = Ik ⊕ (Ii−k ⊕b Ij−k)⊕ In−i−j+k,

so it is the direct sum of identity matrices and the matrix in (3) with s = 0.

For n 6 3 one can check that every permutation matrix induces a Bruhat face

(since it can be obtained from Ir and Ls (with r + s = n) by taking direct sum

or backward direct sum). An example of a matrix which is not obtained using the
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constructions above, but still induces a Bruhat face is









0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0









.

For n = 4 the only permutation matrix that does not induce a Bruhat face is

P =









0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0









.

But this is for the obvious reason that P is obtained by an “internal” backward

interchange from L4, and this does not change the Bruhat shadow. We say that

a permutation matrix is shadow-maximal if it allows no forward interchange within

its Bruhat shadow (replacing a submatrix I2 by L2). Clearly, a necessary condition

for a matrix to induce a Bruhat face is that it is shadow-maximal. Therefore a per-

mutation of the form Ir ⊕b P ⊕b Is induces a Bruhat face if and only if P is the

L permutation. But this condition (being shadow-maximal) is not sufficient. The

matrix

P =















0 0 0 1 0

0 1 0 0 0

0 0 0 0 1

1 0 0 0 0

0 0 1 0 0















is shadow-maximal, but it does not induce a Bruhat face. Indeed, the matrix Q =

L4 ⊕ I1 is whitin the Bruhat shadow of P , but we have P 6�B Q and Q 6�B P . Also,

in general, backward direct sums of permutations do not induce Bruhat faces, see

the 4× 4 matrix I1 ⊕b I2 ⊕b I1 shown above.

A class of permutation matrices that induce Bruhat faces is discussed next. Let

π = (i1, i2, . . . , in) be a permutation of {1, 2, . . . , n}. Then ik, ik+1 is a descent of

π if ik > ik+1; we also say that a descent occurs at position k. Here 1 6 k 6

n − 1. A permutation is a grassmanian provided it has exactly one descent. We

say that a permutation matrix Q is a grassmanian when its corresponding per-

mutation is a grassmanian; if the unique descent of the permutation occurs at

position k, then Q has a unique descent at row k. For example, with n = 12,

σ = (3, 6, 7, 9, 10, 1, 2, 4, 5, 8, 11, 12) is a grassmanian whose unique descent occurs at

k = 5. Another example is the matrix P (i,j,k,n) defined in (2). The permutation
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matrix corresponding to σ also with the zeros defining its shadow is:

Q =









































1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0

1 0 0 0 0 0
1 0 0 0

1 0 0
1
0 1
0 0 0 1
0 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1









































.

Thus, the permutation matrices P with P 6 S(Q) are those whose 1’s are 1’s of Q

or are in the empty positions. In the proof of the next theorem it may be helpful to

refer to this example.

Theorem 3.5. Let Q = [qij ] be an n×n grassmanian permutation matrix. Then

Q induces a Bruhat face, so

Ωn(�B Q) = Ωn (> Σ(Q)) = ΩS(Q)
n .

P r o o f. Let P be a permutation matrix with P �B Q. Then by definition,

P 6 S(Q). Now suppose that P 6 S(Q) and P corresponds to the permutation

(i1, i2, . . . , in). To complete the proof we show that P �B Q or equivalently, by

Theorem 1.1, that Σ(P ) > Σ(Q).

Since Q is a grassmanian permutation matrix, it has a unique descent, say at

row k. Since P is a permutation matrix and P 6 S(Q), it follows that

σij(P ) > σij(Q) if either 1 6 i 6 k or 1 6 j < i1.

Now assume that i > k and j > i1. We claim that the term rank of the matrix S(Q)ij
obtained from S(Q) by replacing its leading i× j submatrix with a zero matrix is at

most n−σij(Q), that is, n minus the number of 1’s of Q in its leading i×j submatrix.

This follows from the assumption that Q is grassmanian, since we can then cover

all the 1’s of S(Q)ij with (n− j) columns j + 1, j + 2, . . . , n (so each containing a 1

of Q) and (j − σij(Q)) rows u > i which contain a 1 in columns 1, 2, . . . , j. Thus,

S(Q)ij has term rank n− σij(Q) proving the claim. Hence, any permutation matrix

P 6 S(Q) contains σij(Q) 1’s in its leading i × j submatrix. Then (see also (iv) in

Theorem 3.1) we conclude that Σ(P ) > Σ(Q) and hence P �B Q. �
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We note that if a permutation matrix has more than one descent, it may, or may

not, induce a Bruhat face. For instance, the permutation matrix in Example 5 does

not induce a Bruhat face and it has two descents. The permutation matrix

L3 =





0 0 1

0 1 0

1 0 0





has two descents and induces a Bruhat face, namely Ω3 itself.

Finally, we mention that the Bruhat order may be extended to the class N (R,S)

of nonnegative matrices with row sum vector R and column sum vector S, the class

of transportation matrices, and a study of this partial order is ongoing work. An

interesting topic is to study the convex hull of (� Q), where Q is an extreme point,

by linear constraints and determine its extreme points.
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