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Abstract. A symmetric positive semi-definite matrix A is called completely positive if
there exists a matrix B with nonnegative entries such that A = BB⊤. If B is such a matrix
with a minimal number p of columns, then p is called the cp-rank of A. In this paper we
develop a finite and exact algorithm to factorize any matrix A of cp-rank 3. Failure of
this algorithm implies that A does not have cp-rank 3. Our motivation stems from the
question if there exist three nonnegative polynomials of degree at most four that vanish at
the boundary of an interval and are orthonormal with respect to a certain inner product.
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1. Introduction and motivation

We study the problem of isometric embedding of a finite point set in R
3 into the

nonnegative octant R3
>0. This problem appears in a number of applications, among

which the factorization of completely positive matrices [2]. These are matrices A that

can be written as A = BB⊤ for some matrix B with nonnegative entries. In Section 2

we comment on the origin of our interest in this problem, which is connected to the

existence of orthonormal bases of nonnegative functions, for instance, polynomials.

First we review some known facts [2].

The authors acknowledge the support by Grant no. GA14-02067S of the Grant Agency
of the Czech Republic and RVO 67985840.
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1.1. Isometric embedding of vectors into the nonnegative orthant. We

will write Rn×n
spd for the set of real symmetric positive semidefinite n × n matrices,

and

Dn×n = {A ∈ R
n×n
spd : A > 0}

for the subset of doubly nonnegative matrices. Trivially, any completely positive

matrix A is doubly nonnegative, and it is well-known [2] that the converse only holds

for n 6 4. Naturally, any rank-k matrix A ∈ R
n×n
spd can be decomposed as A = CC⊤,

where C is n × k but generally not nonnegative. This can easily be seen by using,

for instance, the spectral theorem. If, additionally, there exists a k × k orthogonal

matrix Q that isometrically maps the columns of C⊤ in the nonnegative orthant Rk
>0

of Rk, then the matrix B⊤ = QC⊤ is nonnegative and

(1) A = CC⊤ = (CQ⊤)(QC⊤) = BB⊤

is a completely positive factorization of A. Note that even if such a Q does not exist,

A may still be completely positive. To see this, let C⊤
m be the (k +m) × n matrix

that results when we add m rows of zeros to C⊤. Then A = CmC
⊤
m and there may

exist an orthogonal matrix Q, now of size (k + m) × (k + m), such that QC⊤
m is

nonnegative. If m is the smallest number of additional zero rows that is needed for

such Q to exist, then k +m is the so-called cp-rank of A. As was shown in [1], the

maximum possible cp-rank ϕ(k) of any rank-k completely positive matrix is bounded

by k(k + 1)/2− 1, but the question which values can actually be attained is still an

open problem. See also [6].

Remark 1.1. Observe that ϕ(2) = 2. Indeed, it is easy to see that a subset

U ⊂ R
2 can be rotated into R2

>0 if and only if the angle between each pair u, v ∈ U
is acute or right. For finite sets U this shows that if A ∈ Dn×n has rank 2, then A

is completely positive with cp-rank 2.

1.2. Isometric embedding of vectors into the nonnegative octant of R3.

The fact [1] that ϕ(3) = 5 shows that if U ⊂ R
3 cannot be simultaneously rotated

into R3
>0, after embedding U isometrically in R

4 or R5 it may be possible to rotate

the embedded set into R4
>0 or R

5
>0. An example of this counter-intuitive fact is given

by the vectors

(2) u1 =



2

0

0


 , u2 =



0

2

0


 , u3 =




1

1√
2


 , u4 =




1

1

−
√
2


 .
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Together with the origin, these are the vertices of a pyramid, that equals half a regular

octahedron. See the left picture in Figure 1. Obviously, their mutual angles are

nonobtuse.

o
e1

e2

e3

u1

u2

u3

u4

o

e2

e3

Pu3

Pu4

Pu2

e2

e3
o

RPu3

RPu4

RPu2

Figure 1. The vectors u1, u2, u3, u4 (left); projections on the (e2, e3) plane (middle) and
the failed attempt to embed these into the nonnegative quadrant by a rotation R
(right).

First observe that

(3)
1

2




√
2 0 −1 1√
2 0 1 −1

0
√
2 1 1

0
√
2 −1 −1







2 0 1 1

0 2 1 1

0 0
√
2 −

√
2

0 0 0 0


 =




√
2 0 0

√
2√

2 0
√
2 0

0
√
2

√
2 0

0
√
2 0

√
2


 .

Thus, after embedding the vectors in (2) isometrically in R4, they can be isometrically

mapped into R4
>0. There, of course, they still lie in a three-dimensional subspace.

One particular way of proving that there exists no isometry Q that maps u1,

u2, u3, u4 into R
3
>0, is to reduce the a priori infinitely many isometries Q to be

disqualified to only finitely many. The remaining ones can then be inspected one by

one. In our above example, u1 and u2 are orthogonal, and thus so will be their images

Qu1 and Qu2. These images can only be nonnegative if one of them is a positive

multiple of one of the standard basis vectors e1, e2, e3 of R
3, say Qu1 = ‖u1‖e1, as

is already the case. This reduces the problem to a two-dimensional rotation problem

in the (e2, e3)-plane, which can be solved if and only if the orthogonal projections

Pu2, Pu3, Pu4 on that plane can be rotated into its nonnegative quadrant. But as

explained in Remark 1.1, this can be verified in a finite number of exact arithmetic

operations. This is an example of a so-called finiteness condition.

Proposition 1.2 (Finiteness condition I). A point set in R
3 that contains two

orthogonal vectors u and v can be rotated into the nonnegative octant if and only if

it can be rotated into the nonnegative octant with at least one of the vectors u and

v along a coordinate axis.
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In our specific example, u1 is a positive multiple of e1. The orthogonal projec-

tions of the remaining three vectors onto the e2, e3-plane, depicted in the middle of

Figure 1, are

(4) Pu2 =

[
2

0

]
, Pu3 =

[
1√
2

]
, Pu4 =

[
1

−
√
2

]
.

The angle between Pu3 and Pu4 is obtuse. By symmetry, also the projections on

the orthogonal complement of e2, of which u2 is a positive multiple, make an obtuse

angle. Thus, u1, . . . , u4 cannot be isometrically embedded into R
3
>0. See the right

picture in Figure 1.

1.3. Finiteness conditions and dimensional reduction. For given n > 2, the

problem of isometric embedding of a finite set into the nonnegative orthant of Rn

can be studied in its full generality as follows. Let U = {u1, . . . , up} ⊂ R
n be a finite

point set. Obviously, U can be isometrically embedded into Rn
>0 if and only if there

exists an orthonormal basis F = {f1, . . . , fn} of Rn such that all coordinates of each

vector in U with respect to the basis F are nonnegative, or in other words, if and
only if

(5) f⊤
i uj > 0 ∀ i ∈ {1, . . . , n} and ∀ j ∈ {1, . . . , p}.

Writing F for the matrix with columns f1, . . . , fn, and U for the matrix with columns

u1, . . . , up, the condition in (5) is, of course, equivalent to F
⊤U > 0 with F⊤F = I.

Remark 1.3. A necessary condition for the existence of F is that U⊤U > 0,

simply because inner products between vectors in R
n
>0 are nonnegative. In R

2 this

condition is also sufficient, as already stated in Remark 1.1. In R
n with n > 3 it is

not.

Aiming for a recursive approach to solve the problem, observe that the set U
can be isometrically embedded into Rn

>0 if and only if there exists a hyperplane H

with unit normal vector g1 such that both of the following conditions, illustrated in

Figure 2, are satisfied:

(i) U is a subset of the closed half space separated by H in which g1 lies as well,
(ii) there exists an orthonormal basis G = {g2, . . . , gn} of H such that the set of
orthogonal projections of the elements of U onto H have nonnegative coordina-
tes with respect to G.

Therefore, in theory, to solve an isometric embedding problem in Rn, it is sufficient

to solve for each g ∈ S
n−1 an isometric embedding problem in R

n−1. Now, a good

finiteness condition is a practical condition that reduces the infinite number of vectors

958



g ∈ S
n−1 to be inspected to a finite number. In Section 3, we will formulate such

a condition for n = 3.

g1

H

Figure 2. Dimensional reduction of the isometric embedding problem.

Since the isometric embedding problem in R2 can be explicitly solved by evaluating

at most 4p inner products in R
2, this will lead to a finite exact algorithm to solve

the problem in R
3.

In accordance with Remark 1.3, a necessary condition for the existence of G in (ii)
is that the mutual inner products between the projections of the elements of U onto
H are nonnegative. Thus, the vector g1 in (i) should be such that

(6) U⊤U > U⊤g1g
⊤
1 U > 0.

Indeed, the right inequality in (6) shows that either g1 or −g1 satisfies (i), whereas
the first implies that all inner products between vectors (I−g1g⊤1 )ui and (I−g1g⊤1 )uj
are nonnegative.

In R
3, the condition in (6) is also sufficient for the existence of G in (ii).

Theorem 1.4. Let U = {u1, . . . , up} ⊂ R
3. Then U is isometrically embeddable

in R
3
>0 if and only if there exists a g1 ∈ S

2 such that (6) holds.

P r o o f. The question whether the projections of the vectors u1, . . . , up onto the

two-dimensional orthogonal complement H of g1 can be isometrically embedded into

a quadrant is equivalent with none of them making an obtuse angle, as stated in

Remark 1.3. �

In Section 3 we show that only finitely many g1 need to be inspected in (6).
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2. Motivation

Our interest in isometric embedding of a set of vectors in R3 into the nonnegative

octant originates from the following problem. Consider the three-dimensional space

P4
0 (I) of polynomials of degree at most four that vanish at the boundary points

x = −1 and x = 1 of I = [−1, 1]. The symmetric bilinear form

(7) 〈p, q〉 =
∫ 1

−1

p′(x)q′(x) dx

defines an inner product on P4
0 (I), the so-called H

1
0 (I)-inner product. We wish to

investigate if there exists an 〈·, ·〉-orthonormal basis for P4
0 (I) consisting of nonneg-

ative polynomials. The existence of such a basis would imply a discrete maximum

principle for certain finite element approximations of elliptic two-point boundary

value problems [9].

2.1. Nonnegative H1
0 (I)-orthogonal polynomials. Integration of the L2(I)-

orthogonal Legendre polynomials results in 〈·, ·〉-orthonormal Lobatto polynomials
ϕ2, ϕ3, ϕ4 ∈ P4

0 (I). These Lobatto polynomials are obviously not nonnegative. See

Figure 3 for a picture of their graphs and their explicit forms. Observe that they

share a common factor q(x) = (x+ 1)(x− 1).

ϕ2

ϕ4

ϕ3

1−1

q(x) = (x+ 1)(x− 1)

ϕ2(x) =
1

4

√

6 q(x)

ϕ3(x) =
1

4
x
√

10 q(x)

ϕ4(x) =
1

16

(
√

5x+ 1
)(
√

5x− 1
)
√

14 q(x)

Figure 3. The H10 (I)-orthonogonal Lobatto polynomials ϕ2, ϕ3, ϕ4.

Now, consider the curve C ⊂ R
3 defined as the image of

(8) Φ: I → R
3 : x 7→



ϕ2(x)

ϕ3(x)

ϕ4(x)


 .
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Only if there exists an orthogonal transformation Q such that QC ⊂ R
3
>0, the func-

tions ψ2, ψ3, ψ4 defined by

(9) Ψ: I → R
3 : x 7→



ψ2(x)

ψ3(x)

ψ4(x)


 = QΦ(x)

constitute a nonnegative 〈·, ·〉-orthonormal basis for P4
0 (I). Indeed, Ψ

′(x) = QΦ′(x)

and one can easily verify the 〈·, ·〉-orthonormality of ψ2, ψ3, ψ4. The curve C is
displayed in the left picture of Figure 4. In the right picture of Figure 4, the canonical

projection π(C \ {0}) of C \ {0} onto the 2-sphere S2 is depicted, where

(10) π : R
3 \ {0} → S

2 : x 7→ x

‖x‖ .

To enhance the perspective in this picture, S2 is visualized by a number of randomly

selected dots on its surface. Moreover, a number of points on the projected curve

π(C \ {0}) are connected by a line with the origin of R3.

0

0.2

0.4

0.6
−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Figure 4. Left: the graph C ⊂ R
3. Right: projected on the 2-sphere S2.

Clearly, for a given orthogonal transformation Q we have that QC ⊂ R
3
>0 if and

only if Qπ(C \{0}) ⊂ R
3
>0∩S

2. The mutual angles between points on C are given by

(11) α : (−1, 1)× (−1, 1) → R : (x, y) 7→ arccos(π(Φ(x))⊤π(Φ(y)))

and visualized in Figure 5. None of them is obtuse, because it is easily verified that

(12) Φ(x)⊤Φ(y) = ϕ2(x)ϕ2(y) + ϕ3(x)ϕ3(y) + ϕ4(x)ϕ4(y) > 0,

and thus also

(13) π(Φ(x))⊤π(Φ(y)) > 0.
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Hence, we cannot conclude from Remark 1.3 that the transformation Q does not

exist. As no mutual angle is right, Finiteness Condition I in Proposition 1.2 can not

be used either.

angles between pairs of points on C (in degrees)

10

20

30

40

50

60

70

80

0

20

40

60

0

20

40

60

0

20

40

60

80

Figure 5. The angle α(x, y) between Φ(x) and Φ(y) does not reach 90◦.

Since also a direct analysis of the polynomials involved turned out to be quite

tedious, we used an ad-hoc computer program to map the finite subsets

(14) Cl =
{
Φ(xj) : xj = −1 +

j

l
, j = 0, . . . , 2l

}

into R3
>0 for increasing values of l, using a discrete subset of the orthogonal trans-

formations of R3. For l 6 31, thus with at most 63 values of Φ, we succeeded. The

computed orthogonal transformation Q̂ turned out to approximate the matrix Q that

is used in Figure 6 to transform Φ into Ψ in two decimal places.

ψ2

ψ4 ψ3

1−1





ψ2

ψ3

ψ4



 =





1

3

√

6 0
1

3

√

3

1

6

√

6
1

2

√

2
1

3

√

3

1

6

√

6 −
1

2

√

2
1

3

√

3









ϕ2

ϕ3

ϕ4





Ψ = QΦ

Figure 6. The isometrically transformed Lobatto polynomials ψ3, ψ4 are not nonnegative.
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Figure 6 suggests that we successfully transformed the polynomials ϕ2, ϕ3, ϕ4 into

nonnegative H1
0 -orthonormal polynomials ψ2, ψ3, ψ4. However, on closer inspection,

ψ3 and ψ4 take negative values in the order of magnitude of −5 × 10−4. Hence,

it is not clear if we should use an alternative discretization, or if the nonnegative

orthonormal basis really does not exist.

Even though C consists of uncountably many points, we still may use the upcoming
theory for finite sets in order to disprove the existence of the nonnegative orthonormal

basis.

Remark 2.1. Note that ϕj = qrj for all j ∈ {2, 3, 4}, where q(x) = (x+1)(x−1)

and rj is a polynomial of degree j − 2. Since q is nonnegative on [−1, 1], one may

also study the problem of isometric embedding of the graph of

R : I → R
3 : x 7→



r2(x)

r3(x)

r4(x)




into R3
>0. Observe that R is simply a scaling of Φ, hence the projection of its graph on

S
2 equals the graph C of Φ, as depicted in Figure 4. Manipulations with polynomials
in closed form are of course easier for R than for Φ, but they remain tedious.

3. Finiteness conditions and containment problems

In this section, we formulate a generally applicable finiteness condition in the

context of isometrically embedding a point set in R
3 into the nonnegative octant

and prove its validity. For this, we generalize a so-called containment problem in

plane geometry formulated in [3] to the corresponding result in spherical geometry.

This problem was originally posed by Steinhaus in [7], solved by Post in [5], and

generalized by Sullivan in [8].

Theorem 3.1 ([8]). Let P be a polygon contained in a triangle T . Then P

also fits in T with two of its vertices on the same edge of T . Moreover, the latter

configuration can be realized using a continuous rigid transformation in which the

polygon remains in T .

It turns out that this result also holds for any spherical polygon P contained in

a right-angled equilateral spherical triangle T on S
2. Here, but also in [8], both P

and T are supposed to be closed sets, and it is not necessary to assume that P is

(spherically) convex.
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3.1. Spherical polygon contained in a spherical triangle. It seems non-

trivial to modify the proof of Sullivan, which uses explicit calculations that involve

orthogonal transformations that keep two vertices of a polygon on a pair of edges of

the triangle. Fortunately, spherical triangles have certain properties that planar tri-

angles do not have, and an easier alternative proof is available, as we shall see below.

Definition 3.2. For each α ∈ [0, π/2] we will write T(α) for the spherical triangle

on S
2 with vertices t1, t

α
2 , t3 given by

t1 =



1

0

0


 , tα2 =



cosα

sinα

0


 , and t3 =



0

0

1


 .

The edges of T(α) opposite t1, t
α
2 , t3 we denote by l

α
1 , l2, l

α
3 , respectively. If α = π/2

we omit α from the notation. In Figure 7 we depict T and T(α) with α = π/6.

t1 t2

t3

α

T(α)

tα
2

l1l2

lα
3

lα
1

Figure 7. The spherical triangle T(α) with α = π/6 as subset of the spherical triangle T.

Unlike planar triangles, the spherical triangle T has the property that the arc

between a vertex ti and any point on li has length π/2, and intersects li orthogonally.

Moreover, all three angles of T are right. These properties help to prove Theorem 3.5

below.

Lemma 3.3. Let α ∈ [0, π/2]. If a spherical polygon P fits in T(α) with two of

its vertices on the same edge of T(α), then P also fits in T with these two vertices

on the same edge of T.

P r o o f. If the two vertices lie on lα1 , the only edge of T(α) that is generally not

an edge of T, then a rotation about the t3-axis over π/2− α maps lα1 on l1 while P

remains in T. �
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Lemma 3.4. Let α ∈ [0, π/2]. If a spherical polygon P fits in T(α) with a vertex

on a vertex of T(α), then P also fits in T with a vertex on a vertex of T.

P r o o f. The only vertex of T(α) that is generally not a vertex of T is tα2 . As in

the previous lemma, a rotation about the t3-axis over π/2−α maps tα2 onto t2 while

P remains in T. �

Theorem 3.5. Let P be a spherical polygon contained in T. Then P also fits

in T with two of its vertices on the same edge of T.

P r o o f. Suppose that a spherical polygon P fits into T. Then by compactness

and continuity, the minimum

(15) β = min{α ∈ [0, π/2] : P fits into T(α)}

exists. The actual configuration of P within T(β) need not be unique, but trivially,

in each configuration, P has at least one vertex on each edge of T(β). Suppose that

a vertex of P lies on a vertex of T(β). According to Lemma 3.4, P then fits into T

with a vertex on a vertex p of T. Rotation about p will move a second vertex of P

onto one of the two edges of T that meet at p, and the theorem is proved. What

remains is the case that exactly three vertices of P lie on the boundary of T(β), one

on each edge. Denote the vertices of P on lβ1 , l2, l3 by p
β
1 , p2, p3, respectively. We

will now construct a point a ∈ T such that a rotation about the axis through the

origin and a moves P into the interior of T(β), contradicting the minimality of β.

Indeed, let a = γ2 ∩ γ3, where γj is the geodesic between tj and pj for j ∈ {2, 3}.
Note that these geodesics are orthogonal to l2 and l3, respectively. See Figure 8 for

an illustration.

t1 t2

t3

t
β
2

l1

p2

p3

l
β
1

γ3

T(β)

γ2

p
β
1

a

ϕ
γ

Figure 8. Illustration of the main part of the proof of Theorem 3.5.
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Next, consider also the geodesic γ between a and pβ1 and write ϕ = 6 (a, pβ1 , t
β
2 )

for the angle that it makes with lβ1 . If ϕ 6 π/2 then P can be infinitesimally

rotated about the axis through the origin and a over a positive angle (in counter

clockwise direction) such that all three vertices pβ1 , p2, p3 move into T(β) while P

remains in T(β) and no vertices of P are on the boundary of T(β) anymore, obviously

contradicting the minimality of β. Similarly, if ϕ > π/2, then P can be rotated over

a negative angle, resulting in the same contradiction. Thus P has two vertices on

the same edge of T(β), and Lemma 3.3 now finishes the proof. �

As a corollary of Theorem 3.5, we can now formulate a useful finiteness condition

for the problem of isometric embedding of a finite point set in R3 into its nonnegative

octant.

Corollary 3.6 (Finiteness condition II). Let U = {u1, . . . , up} ⊂ R
3 be a set

of p pairwise linearly independent elements, p > 2. Then U can be isometrically
embedded in R

3
>0 if and only if this can be done with two of its elements having the

same coordinate equal to zero.

P r o o f. Obviously, U can be isometrically embedded in R3
>0 if and only if π(U)

can be isometrically embedded in T on S2, and π(U) can be isometrically embedded
into T if and only if the spherically convex hull P of π(U) can be isometrically
embedded into T. Since P is a spherical polygon, Theorem 3.5 proves the statement.

�

3.2. Efficient application of Finiteness condition II. The consequence

of Finiteness condition II in the context of Section 1.3 is that the set U =

{u1, . . . , up} ⊂ R
3 can be isometrically embedded in R

3
>0 if and only if (6) holds

for at least one of the p(p− 1)/2 normal vectors gij of the planes spanned by a pair

ui, uj with i 6= j.

This number can be further reduced by the following observation. The convex

hull P of the p vectors π(u1), . . . , π(up) on S
2 is a convex sphericalm-gon, withm 6 p.

It is possible to list the m vertices π(uk1
), . . . , π(ukm

) of P in clockwise or counter-

clockwise order of traversal of the boundary of P in a complexity of O(p log m). See

Section 1.1 of [4] for details. As a consequence, it is only needed to verify condi-

tion (6) for all m normals gkj ,kj+1
to the planes spanned by the pairs ukj

and ukj+1

for j ∈ {1, . . . ,m}, where km+1 = k1. Now, condition (6) can be verified by evaluat-

ing only 4p of the p(p− 1)/2 mutual inner products between the projected vectors.

An elegant way to do this is an inductive approach.

Proposition 3.7. Suppose that from the set U = {u1, . . . , up−1} ⊂ R
2 the vectors

u1 and u2 make the largest mutual angle ωp−1. Assume that ωp−1 is not obtuse and
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that u1, u2 is positively oriented. Let up ∈ R
2 and compute

(16) α1 = u⊤1 up and α2 = u⊤2 up.

Then the largest angle ωp between all pairs from {u1, . . . , up} is non-obtuse if and
only if α1 > 0 and α2 > 0. Moreover, at most one of the numbers β1, β2 defined by

β1 = w⊤
1 up with w1 =

[
0 −1

1 0

]
u2 and(17)

β2 = w⊤
2 up with w2 =

[
0 1

−1 0

]
u1

can be negative, and

⊲ if β1 < 0 then ωp equals the angle between u1 and up, and u1, up is positively

oriented;

⊲ if β2 < 0 then ωp equals the angle between up and u2, and up, u2 is positively

oriented.

If neither β1 nor β2 is negative, then ωp equals the angle ωp−1 between u1 and u2.

The inductive approach is to keep track of a pair of angle maximizing vectors while

considering increasingly more vectors from U . As soon as this angle becomes obtuse,
the process will be terminated. Otherwise, the final pair of angle maximizing vectors

can be used to compute the rotation Q into the nonnegative quadrant as follows.

Corollary 3.8. Suppose that from the set U = {u1, . . . , up} ⊂ R
2 the vectors u1

and u2 make the largest mutual angle ωp, that u1, u2 are positively oriented, and

that ωp is not obtuse. Let Q be the rotation matrix that maps u1 onto e1. Then Q

maps U into R2
>0.

Combining the above leads to the following complexity result for the implicit

algorithm.

Theorem 3.9. Let U = {u1, . . . , up} ⊂ R
3 and let m 6 p be the number of

vertices of the convex hull of π(U) on S
2. If there exists an orthonormal basis

F = {f1, f2, f3} of R3 such that the coordinates f⊤
i uj of all vectors in U with

respect to F are nonnegative, the complexity of the algorithm that computes this
basis is O(p2 logm). The algorithm fails if F does not exist.

3.3. Discussion of generalizations to higher dimensions. The example in

Section 1.2 shows that there exist finite subsets of R4
>0 that cannot be isometrically

embedded in R
4
>0 with three elements having the same coordinate equal to zero.
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As the four vectors lie in a hyperplane, this would imply that they all have the

same coordinate equal to zero, and thus that they can be isometrically embedded

in R
3
>0. But in Section 1.2 we proved that this is impossible. The conclusion is that

there is no straightforward generalization of Finiteness condition II to dimension four.

A strongly related observation is that even though the intersection of R3
>0 and a two-

dimensional hyperplane always fits into R
2
>0, the intersection of R

4
>0 and a three-

dimensional hyperplane does not necessarily fit into R3
>0. Alternatively, consider the

intersection of the 3-sphere S3 with R
4
>0. This is a spherical tetrahedron K with

only right dihedral angles. Intersecting it with a three-dimensional subspace yields

a spherical triangle T ⊂ K that need not fit in one of the facets of K.

Figure 9. The square fits into the regular tetrahedron, but not into a triangular facet.

In fact, a similar statement is valid in Euclidean geometry. The intersection of

a Euclidean tetrahedron with a plane does not necessarily fit into one of the facets of

that tetrahedron. In Figure 9 we display a regular tetrahedron K in a cube C with

edges of length 1. Its intersection S with a plane that halves four parallel edges of C

is a square with edges of length
√
2/2. This square does not fit into the equilateral

triangle with edges of length
√
2.

Remark 3.10. Observe also that an infinitesimal perturbation of the square S

leads to a tetrahedron inside K that does not fit into K with three vertices on the

same facet of K.

3.4. Solution of the motivational problem. Application of Finiteness con-

dition II to the motivational problem described in Section 3 leads to the following.

Using the computer, we selected a subset of four candidate points on the curve C of
which we suspected that they cannot be isometrically embedded into R

3
>0. These

four points are the values of the function R from Remark 2.1 at the points −1, −1/2,
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1/2, 1, which form the 3× 4 matrix U ,

U =
[
R(−1)

∣∣∣ R
(
−1

2

) ∣∣∣ R
(1
2

) ∣∣∣ R(1)
]

(18)

=




√
6 √

10 √
14






1 1 1 1

−1 − 1
2

1
2

1

1 1
16

1
16

1


 .

Note that the plane y = 0 is a plane of symmetry of this set. See Figure 10 for an

illustration. From this figure it is also clear that only for each of the three pairs

(R(1/2), R(1)) and (R(−1), R(1)) and (R(−1/2), R(1/2)) we need to verify if the

projections of the four vectors on the plane spanned by this pair make an obtuse

angle or not.

0

Φ(1)

Φ(−1) Φ( 1
2
)

Φ(− 1

2
)

Φ(−1)

Φ(− 1

2
) Φ( 1

2
)

Φ(1)

Figure 10. Left: The four vectors R(−1), R(−1/2), R(1/2), and R(1) in R
3, all lying in the

(gray) plane x =
√
6. Right: view within the plane x =

√
6.

An elementary calculation shows that each of three sets of projections has an

obtuse angle among them. Hence, the four vectors cannot be isometrically embedded

into R
3
>0, and neither can the curve C. This confirms that the sought nonnegative

orthonormal basis does not exist.

Theorem 3.11. There does not exist a nonnegative H1
0 -orthonormal basis

for P4
0 (I).
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