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Abstract. By considering a covariate random variable in the ordinary proportional mean
residual life (PMRL) model, we introduce and study a general model, taking more situations
into account with respect to the ordinary PMRL model. We investigate how stochastic
structures of the proposed model are affected by the stochastic properties of the baseline and
the mixing variables in the model. Several characterizations and preservation properties of
the new model under different stochastic orders and aging classes are provided. In addition,
to illustrate different properties of the model, some examples are presented.
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1. Introduction

The mean residual life (MRL) and the hazard rate (HR) functions are commonly

used to characterize the lifetime of a system. The HR function gives the instanta-

neous failure rate at any point of time, whereas the MRL function summarizes the

entire residual life; and this is why the MRL function is found to be more relevant

than the HR function. Let X be the lifetime of a system having survival function

(sf) denoted FX . Then the MRL of the system at age t is defined as the expectation

of Xt = [X − t | X > t], the remaining lifetime of the system after t, that is

mX(t) =

∫

∞

t FX(x) dx

FX(t)
, t ∈ R+.

The authors would like to extend their sincere appreciation to the Deanship of Scientific
Research at King Saud University for funding this Research Group No. (RGP-1435-036).
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For an exhaustive monograph on the MRL function, we refer the readers to Lai

and Xie [10]. As a useful model to describe failure time data, Zahedi [19] proposed

the proportional mean residual life (PMRL) model in which the MRL function of an

individual is expressed as the product of an individual-specific quantity and a baseline

MRL function, written as

(1.1) mT (t) = cmX(t) ∀ t > 0,

where mT and mX are MRL functions of two non-negative random variables (rv’s)

T and X , respectively, with finite expectations. The PMRL model can be inter-

preted in several ways when the rv represents the lifetime of a system or a unit,

which yields several applications of the model. For example, let a series system be

formed with k components, one of which has lifetime distribution FX and the other

k − 1 components have i.i.d. life distributions, which is the equilibrium distribution

corresponding to FX . An equilibrium distribution is obtained as a limiting distribu-

tion of a renewal process. Then the MRL function of the system so formed and the

MRL function corresponding to FX are proportional with constant of proportional-

ity c = 1/k. Other interpretations, properties and applications of the PMRL model

can be found in Magulury and Zhang [11], Gupta and Kirmani [6], Nanda et al. [13]

and Nanda et al. [14]. Recently, Nanda et al. [15] replaced c in Eq. (1.1) by some

non-negative function of t, say c(t), and extended the corresponding model to the

dynamic proportional mean residual life (DPMRL) model written as

(1.2) mT (t) = c(t)mX(t), t > 0.

For interpretation, properties and applications of the DPMRL model we refer the

readers to Nanda et al. [15]. The purpose of this paper is to introduce, study and

analyze the general proportional mean residual life (GPMRL) model. By considering

a covariate rv in the ordinary PMRL model given in (1.1), our model takes more

situations into consideration. Because of the fact that the covariate variable may be

unobservable in some situations, mixture of distributions that follow GPMRL model,

is also considered. In the context of the mixture GPMRL model, a number of char-

acterizations and preservation properties of some dependence structures, stochastic

orders and aging notions are established. To detect how the variation of the baseline

variable and the variation of the mixing variable with respect to some stochastic

orders each affects the model, we seek for conditions under which some ordering

relations between overall variables hold true. The rest of the paper is organized as

follows. In Section 2, we present some definitions and basic properties which will be

used throughout the paper. In Section 3, some basic representations of the GPMRL
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model are given. Preservation properties of the model with respect to some depen-

dence structures and some stochastic orders are studied in Section 4. In that section,

we obtain some implications that indicate the preservation properties of some aging

notions under the formation of the mixture GPMRL model. In Section 5, in view

of the new model, we establish some useful stochastic order relations. Finally, in

Section 6, we conclude the paper with some remarks related to the current research.

Throughout the paper, we use increasing and decreasing in place of non-decreasing

and non-increasing, respectively. In addition, all the integrals and the expectations

are assumed to exist wherever they appear.

2. Preliminaries

This section presents some definitions and basic properties which will be used

across the paper. First, we bring definitions of some stochastic orders and aging

notions. For the stochastic orders we refer to Shaked and Shanthikumar [18] and for

the aging notions we refer to Lai and Xie [10] and Barlow and Proschan [1]. In the

sequel, X and Y are two non-negative rv’s with distribution functions F and G, sf’s

FX = 1 − FX and FY = 1 − FY , probability density functions (pdf’s) fX and fY ,

MRL functions mX and mY and HR functions hX(t) = fX(t)/FX(t) and hY (t) =

fY (t)/FY (t), respectively. We also denote by Xe the equilibrium rv associated with

X having sf FXe
(x) =

∫

∞

x
FX(u) du/E(X) in which E(X) =

∫

∞

0
FX(u) du <∞.

Definition 2.1. The rv X is said to be smaller than the rv Y in the:

(i) Hazard rate order (denoted as X 6HR Y ) if hX(t) > hY (t) for all t > 0;

(ii) Usual stochastic order (denoted as X 6ST Y ) if FX(t) 6 FY (t) for all t > 0;

(iii) Mean residual life (denoted as X 6MRL Y ) if mX(t) 6 mY (t) for all t > 0.

Definition 2.2. The non-negative rv X is said to have:

(i) Increasing [Decreasing] Failure Rate (IFR [DFR]) property if hX is an increasing

[a decreasing] function or equivalently if F is a log-concave [log-convex] function;

(ii) Decreasing [Increasing] Mean Residual Life (DMRL [IMRL]) property if mX

is a decreasing [an increasing] function or equivalently if
∫

∞

x FX(u) du is log-

concave [log-convex] for x > 0;

(iii) New Better [Worse] than Used in Expectation (NBUE [NWUE]) if mX(0) >

(6)mX(t) for all t > 0;

(iv) Decreasing [Increasing] Mean Residual Life in Harmonic Average (DMRLHA

[IMRLHA]) if

[

1

x

∫ x

0

dt

mX(t)

]−1

is decreasing [increasing] in x > 0.
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Definition 2.3 (Karlin [7]). A non-negative function β(x, y) is said to be Totally

Positive (Reverse Regular) of order 2, denoted as TP2 (RR2), in (x, y) ∈ χ× γ if

∣

∣

∣

∣

β(x1, y1) β(x1, y2)

β(x2, y1) β(x2, y2)

∣

∣

∣

∣

> (6) 0

for all x1 6 x2 ∈ χ and y1 6 y2 ∈ γ, in which χ and γ are two real subsets of the

real line R.

3. The model and its representations

Consider Y represents the changes in the conditions that has a multiplicative effect

on X through the relationship

(3.1) m∗(x | y) = a(y)mX(x)

for some positive function a(y), where X has finite expectation. Let X∗ denote the

random variable with its conditional MRL given that Y = y satisfies (3.1). The for-

mal definition of the model is as follows. Assume that Y is an rv with support SY =

(lY , uY ), where lY = inf{y ∈ R : FY (y) > 0} and lY = sup{y ∈ R : FY (y) < 1}.

Definition 3.1. Suppose that X(θ) is a non-negative rv with MRL m(x; θ),

where θ ∈ R is a parameter. The rv’s X and X(θ) are said to have GPMRL model

whenever there exists a non-negative function a(·) such that m(x; θ) = a(θ)mX(x)

for all x > 0.

Special cases of the GPMRL model have found some practical applications in the

literature (see, e.g., Oakes and Dasu [17], Chen and Cheng [3], and Mansourvar et

al. [12]) including some inferential properties based on real data sets. As mentioned

in Nanda et al. [14], there is a one-to-one correspondence between the conditional

MRL function m∗(· | y) and the conditional survival function F ∗(· | y) of X∗, given

Y = y, as below

F ∗(x | y) =
m∗(0 | y)

m∗(x | y)
exp

(

−

∫ x

0

du

m∗(u | y)

)

.

Now, since
∫ x

0

du

mX(u)
= ln

( mX(0)
∫

∞

x FX(u) du

)

,
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it follows from (3.1) that

F ∗(x | y) =
a(y)mX(0)

a(y)mX(x)
exp

(

−
1

a(y)

∫ x

0

du

mX(u)

)

=
E(X)FX(x)
∫

∞

x FX(u) du

(

∫

∞

x FX(u) du

E(X)

)1/a(y)

= FX(x)

(

∫

∞

x
FX(u) du

E(X)

)1/a(y)−1

.

By the formula of the sf of an equilibrium rv, the sf of X∗, given that Y = y, can be

written as

(3.2) F ∗(x | y) = FX(x)F
1/a(y)−1
Xe

(x) = R(x)F
1/a(y)
Xe

(x),

where R(x) = FX(x)/FXe
(x). In the sequel, the rv’s X, Y and X∗ will be referred

to as the baseline, the mixing and the overall variables, respectively. It is assumed

that X∗ has the sf F ∗, the HR h∗ and the MRL m∗. From (3.2), the unconditional

sf of X∗ is

(3.3) F ∗(x) = R(x)

∫

∞

−∞

F
1/a(y)
Xe

(x)fY (y) dy.

Taking x = 0 in (3.1) gives

(3.4) a(y) =
E(X∗ | Y = y)

E(X)
,

which is the regression curve of X∗ on Y divided by the mean of X. An equivalent

representation of (3.3) based on the MRL function instead of the sf is obtained as

follows. The conditional density of (Y | X∗ > x) is given by

(3.5) g(y | X∗ > x) =
F ∗(x | y)fY (y)

F ∗(x)
, F ∗(x) > 0,

=
F

1/a(y)
Xe

(x)fY (y)
∫

∞

−∞
F

1/a(y)
Xe

(x)fY (y) dy
∀x, y > 0.

From (3.1)–(3.5) one can get

(3.6) m∗(x) =

∫

∞

x
F ∗(u) du

F ∗(x)

=

∫

∞

−∞

∫

∞

x F ∗(u | y) du

F ∗(x | y)

F ∗(x | y)fY (y)

F ∗(x)
dy

=

∫

∞

−∞

m∗(x | y)g(y | X∗ > x) dy

= mX(x)E[a(Y ) | X∗ > x].
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The identity given in (3.6) reveals that by taking c(x) = E[a(Y ) | X∗ > x] in (1.2),

X∗ and X satisfy the DPMRL model which was introduced by Nanda et al. [15].

4. Basic properties of the model

4.1. Dependence structures. In the model of (3.3), we will show the existence

of some dependence structures between the overall variable X∗ and the mixing vari-

able Y . Let the vector (X∗, Y ) have joint sf F ∗(·, ·) and joint pdf f∗(·, ·). According

to Nelsen [16], we have the following dependence properties.

Definition 4.1.

(i) The rv’sX∗ and Y have positive [negative] likelihood ratio dependence structure

(PLRD(X∗, Y )) [NLRD(X∗, Y )] if f∗(x, y) is TP2 [RR2] in (x, y) ∈ {(x, y) ∈

R2 : f∗(x, y) > 0}.

(ii) The rv X∗ is stochastically increasing [decreasing] in Y (SI(X∗ | Y )) [SD(X∗ |

Y )] if P (X∗ > x | Y = y) is non-decreasing [non-increasing] in y for all x ∈ R.

(iii) The rv’s X∗ and Y are right corner set increasing [decreasing] (RCSI(X∗, Y ))

[RCSD(X∗, Y )] if F ∗(x, y) is TP2 [RR2] in (x, y) ∈ {(x, y) ∈ R2 : F ∗(x, y) > 0}.

Before stating the first result we need to state the following lemma which is es-

sentially due to Karlin [7].

Lemma 4.1. Let ϕ(x, s) be an TP2(RR2) function in (x, s) ∈ A × B and let

ψ(s, y) be TP2 in (s, y) ∈ B×C, where A, B and C are three arbitrary subsets of R.

Then

̺(x, y) =

∫

s∈B

ϕ(x, s)ψ(s, y) ds

is TP2(RR2) in (x, y) ∈ A× C.

Theorem 4.1.

(i) X∗ is stochastically increasing (decreasing) in Y if and only if a(y) is increasing

(decreasing) in y.

(ii) Let a(y) be increasing (decreasing) in y. Then X∗ and Y are right corner set

increasing (decreasing).

P r o o f. (i) First assume that a is an increasing (a decreasing) function. Based

on (3.2) for any y1 6 y2 ∈ SY ,

F ∗(x | y2)− F ∗(x | y1) = R(x)[F
1/a(y2)
Xe

(x) − F
1/a(y1)
Xe

(x)]

> (6) 0 ∀x > 0,
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which means SI(X∗ | Y ) (SD(X∗ | Y )). Conversely, let SI(X∗ | Y ) (SD(X∗ | Y ))

hold. Equivalently,

(X∗ | Y = y1) 6ST (>ST) (X
∗ | Y = y2) ∀ y1 6 y2 ∈ SY .

Since the ST order implies the expectation order,

E(X∗ | Y = y1) 6 (>) E(X∗ | Y = y2) ∀ y1 6 y2 ∈ SY .

By the above inequality it follows form (3.4) that a(y) is increasing (decreasing) in

y ∈ SY .

(ii) It suffices to show that the joint sf of X∗ and Y is TP2 in (x, y) ∈ R+ × SY .

One has

(4.1) F ∗(x, y) =

∫

∞

y

∫

∞

x

f∗(t, s) dt ds

=

∫

∞

y

FX(x)F
1/a(s)−1
Xe

(x)fY (s) ds

=

∫

∞

−∞

ϕ(x, s)ψ(s, y) ds,

where ϕ(x, s) = FX(x)F
1/a(s)−1
Xe

(x) and ψ(s, y) = fY (s)I[s > y], in which x > 0 and

s ∈ SY . Easily, ϕ(x, s) is TP2(RR2) in (x, s) ∈ R+ × SY when a(s) is increasing

(decreasing) in s ∈ SY . In addition, ψ(s, y) is TP2 in (s, y) ∈ SY × SY . Now, by

applying Lemma 4.1 to (4.1) the proof is obtained at once. �

Theorem 4.2. Let X have a convex (concave) MRL function and let a(y) be

increasing (decreasing) in y. Then X∗ and Y are PLRD (NLRD).

P r o o f. From (3.2) the joint pdf of X∗ and Y is obtained, by total probability

formula, as

f∗(x, y) = fY (y)F
1/a(y)−1
Xe

(x)FX(x)
[( 1

a(y)
− 1

)

hXe
(x) + hX(x)

]

, x > 0,

where

hX(x) =
fX(x)

FX(x)
and hXe

(x) =
FX(x)

∫

∞

x FX(u) du

are, respectively, the baseline HR and the HR of Xe. As in the proof of Theorem 4.1,

when a(y) is increasing (decreasing) in y ∈ SY , then F
1/a(y)−1
Xe

(x) is TP2 (RR2) in
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(x, y) ∈ B = {(x, y) ∈ R+ × SY : f∗(x, y) > 0}. Because the product of two TP2

(RR2) functions is itself a TP2 (RR2) function, we only need to show that

η(x, y) =
[( 1

a(y)
− 1

)

hXe
(x) + hX(x)

]

is TP2 (RR2) in (x, y) ∈ B.We prove that η(x, y2)/η(x, y1) is increasing (decreasing)

in x for all y1 6 y2 ∈ SY and x > 0. Take γ(x) = hX(x)/hXe
(x) and γ′(x) =

dγ(x)/dx. Then we get

d

dx

[η(x, y2)

η(x, y1)

]

=
[1/a(y1)− 1/a(y2)]γ

′(x)

[1/a(y1)− γ(x)]2
,

which is non-negative (non-positive) if γ′(x) > 0 for all x > 0. Because

γ(x) = hX(x)mX(x) = 1 +m′

X(x),

the convexity (concavity) of mX(x) is equivalent to saying that γ(x) is increasing

(decreasing) and hence the proof is completed. �

4.2. Preservation properties with respect to some stochastic orders.

Based on the hazard rate function, an alternative representation of (3.3) can be

obtained. By (3.3), for all x > 0 with F ∗(x) > 0,

(4.2) h∗(x) = −
d

dx
ln[F ∗(x)]

= −
d

dx
ln(R(x))−

d

dx
ln

[
∫

∞

−∞

F
1/a(y)
Xe

(x)fY (y) dy

]

= hX(x) −
d

dx
ln(FXe

(x))

[

1−

∫

∞

−∞
a(y)−1F

1/a(y)
Xe

(x)fY (y) dy
∫

∞

−∞
F

1/a(y)
Xe

(x)fY (y) dy

]

= hX(x) +
1

mX(x)

[

E
( 1

a(Y )
| X∗ > x

)

− 1
]

.

In what follows, we discuss some preservation properties of the GPMRL model

given in (3.3) with respect to some stochastic orders and aging classes of life distri-

butions. Before stating the next result we need the following lemma which is known

as covariance inequality in the literature.
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Lemma 4.2 (Behboodian [2]). Let f and g be two real functions.

(i) If f is increasing (decreasing) and g is increasing (decreasing), then

Cov(f(X), g(X)) > 0.

(ii) If f is increasing (decreasing) and g is decreasing (increasing), then

Cov(f(X), g(X)) 6 0.

For the sake of comparison of HR’s of X and X∗ we can say using (4.2) that

X 6HR (>HR) X
∗ if and only if E[1/a(Y ) | X∗ > x] 6 (>) 1 for all x > 0. To refine

this result we consider the following characterization

Theorem 4.3. Let X and X∗ be the baseline and the overall rv’s. Then

X 6HR X∗ ⇔ E(1/a(Y )) 6 1.

P r o o f. Set η(x) = E[1/a(Y ) | X∗ > x] and observe that η(0) = E[1/a(Y )].

We first prove the “if” part of the theorem. Suppose that E[1/a(Y )] 6 1. In view

of (3.5)

(4.3) η(x) =

∫

∞

−∞

1

a(y)
g(y | X∗ > x) dy

=

∫

∞

−∞
a(y)−1F

1/a(y)
Xe

(x)fY (y) dy
∫

∞

−∞
F

1/a(y)
Xe

(x)fY (y) dy

= E
[F

1/a(Y )
Xe

(x)

a(Y )

]/

E[F
1/a(Y )
Xe

(x)] ∀x > 0.

Note that Fw
Xe

(x) is decreasing in w for all x > 0. Take W = 1/a(Y ). Then

Lemma 4.2 (ii) provides that

Cov[W,FW
Xe

(x)] = E[WFW
Xe

(x)]− E(W )E[FW
Xe

(x)] 6 0 ∀x > 0.

Therefore, from (4.3), η(x) 6 E(1/a(Y )) for all x > 0. Because of this and using

(4.2), we get

hX(x)− h∗(x) =
1

mX(x)
[1− η(x))]

>
1

mX(x)

[

1− E
( 1

a(Y )

)]

> 0 ∀x > 0,

which means that X 6HR X∗. We now prove the “only if” right part. We know that

if X 6HR X∗, then η(x) 6 1 for all x > 0. Hence, η(0) = E[1/a(Y )] 6 1. �
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The following example indicates that “E(1/a(Y )) 6 1” is a necessary condition in

Theorem 4.3.

E x am p l e 4.1. Let X have exponential distribution with survival function

FX(x) = e−5x, x > 0, and let Y have Gamma distribution with pdf fY (y) = ye−y,

y > 0. Now, if a(y) = 1/y is chosen, then E(1/a(Y )) = 2 and F ∗(x) = (5x + 1)−2

for x > 0. Also, we observe that F ∗(x)/FX(x) = e5x(5x+ 1)−2, which is decreasing

for x 6 1/5 and it is increasing for x > 1/5. Hence X �HR X∗. The necessary and

sufficient condition of Theorem 4.3 cannot, therefore, be dropped.

To establish the MRL order between X and X∗ using (3.6) we have X 6MRL

(>MRL) X
∗ if and only if E[a(Y ) | X∗ > x] > (6) 1 for all x > 0. The following

result is also useful.

Theorem 4.4. Let X and X∗ be the baseline and the overall rv’s. Then

X 6MRL X
∗ ⇔ E(X) 6 E(X∗).

P r o o f. First, we prove that X 6MRL X∗ if and only if E[a(Y )] > 1. Let

E[a(Y )] > 1 and set c(x) = E[a(Y ) | X∗ > x] for x > 0. We have

(4.4) c(x) =

∫

∞

−∞

a(y)g(y | X∗ > x) dy

=

∫

∞

−∞
a(y)F

1/a(y)
Xe

(x)fY (y) dy
∫

∞

−∞
F

1/a(y)
Xe

(x)fY (y) dy

=
E[a(Y )F

1/a(Y )
Xe

(x)]

E[F
1/a(Y )
Xe

(x)]
∀x > 0.

It can be seen that F
1/v
Xe

(x) is increasing in v = a(y) for all x > 0. Thus, if we take

V = a(Y ), then by Lemma 4.2 (i),

Cov(V, F
1/V
Xe

(x)) = E[V F
1/V
Xe

(x) − E(V )E(F
1/V
Xe

(x))] > 0 ∀x > 0.

Now, from (4.4) we get c(x) > E[a(Y )] for all x > 0. By (3.6),

m∗(x) −mX(x) = mX(x)(c(x) − 1)

> mX(x)[E(a(Y ))− 1]

> 0 ∀x > 0,
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which means thatX 6MRL X
∗. To prove the reversed implication, note thatX 6MRL

X∗ implies c(x) > 1 for all x > 0. Thus c(0) = E(a(Y )) > 1. Observe from (3.4) that

E[a(Y )] =
E[E(X∗ | Y )]

E(X)
=
E(X∗)

E(X)
.

Hence, E[a(Y )] > 1 if and only if E(X) 6 E(X∗), which completes the proof. �

In the context of Theorem 4.4, Example 4.2 below indicates that the condition

E(X∗) < E(X) cannot be a sufficient condition to conclude X∗ 6MRL X. Therefore,

the set up of Theorem4.4 does not remain true in the reversed direction.

E x am p l e 4.2. Let Y be such that P (Y = 1/2) = 1/2, P (Y = 1/3) = 1/4, and

P (Y = 2) = 1/4. Take a(y) = y for y = 1/2, 1/3, 2.We see that E[a(Y )] = 10/12 < 1.

Because E[a(Y )] = E(X∗)/E(X), it follows that E(X∗) < E(X). Suppose that X

has exponential distribution with sf FX(x) = e−x for x > 0. After some calculation,

F ∗(x) = 0.5e−2x + 0.25(e−3x + e−x/2) for x > 0. Note that the MRL function of

X is mX(x) = 1 for any x > 0, and the MRL function of X∗ is m∗(x) = (3e−2x +

e−3x + 6e−x/2)/(6e−2x + 3e−3x + 3e−x/2) for any x > 0. One can easily see that

mX(x)−m∗(x) is not always non-negative, that is X �MRL X
∗.

Consider a situation where data are coming from the population with sf F ∗. Then

Theorems 4.3 and 4.4 state that if the baseline distribution is mistakenly used in

place of the distribution of the overall variable, then the HR and the MRL functions

of the overall variable are underestimated under some conditions. On the other hand,

it is well-known that the HR order implies the MRL order but in general the converse

is not true (cf. Nanda et al. [14] and Shaked and Shanthikumar [18]). However, in

the context of the GPMRL model, the converse is true as we demonstrate below.

Theorem 4.5. LetX andX∗ be the baseline and the overall rv’s. IfX∗ 6MRL X ,

then X∗ 6HR X, and so X∗ 6ST X.

P r o o f. Suppose that X∗ 6MRL X . Then E[a(Y ) | X∗ > x] 6 1 for all x > 0.

Because of Jensen’s inequality,

E
[ 1

a(Y )
| X∗ > x

]

>
1

E[a(Y ) | X∗ > x]
> 1 ∀x > 0,

which means that X∗ 6HR X. Since the HR order implies the usual stochastic order,

we also have X∗ 6ST X. �

4.3. Preservation properties with respect to several aging notions. Here

we discuss the preservation properties of some aging classes of life distributions under

the transformation X → X∗ and also under the reversed transformation X∗ → X .
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Theorem 4.6.

(i) Let E(1/a(Y ) | X∗ > x) be decreasing in x such that E(1/a(Y ) | X∗ > x) > 1

for all x > 0. If X is DFR, then X∗ is DFR.

(ii) Let E[a(Y ) | X∗ > x] be increasing for x > 0. If X is IMRL (IMRLHA), then

X∗ is IMRL (IMRLHA). In addition, if X∗ is DMRL (DMRLHA), then X is

DMRL (DMRLHA).

(iii) If X is NWUE, then X∗ is NWUE. Also, if X∗ is NBUE, then X is NBUE.

P r o o f. (i) Set l(x) = E(1/a(Y ) | X∗ > x)− 1 for x > 0. By assumption, l(x) is

non-negative and non-increasing. Since X is DFR, hX is decreasing and since DFR ⊂

IMRL, 1/mX(x) is also decreasing. Now, from (4.2), h∗(x) = hX(x) + l(x)/mX(x),

which leaves h∗ decreasing. That is, X∗ is DFR.

(ii) For the cases of IMRL and DMRL, using (3.6), the proof is straightforward.

Take c(x) = E[a(Y ) | X∗ > x] for x > 0, which is increasing by assumption. Suppose

that X is IMRLHA, then
∫ x

0
[1/mX(t) − 1/mX(x)] dt > 0 for all x > 0. Because of

(3.6), since 1/c(t) > 1/c(x) for all t 6 x, one can see that
∫ x

0

[ 1

m∗(t)
−

1

m∗(x)

]

dt =

∫ x

0

[ 1

c(t)mX(t)
−

1

c(x)mX(x)

]

dt

>
1

c(x)

∫ x

0

[ 1

mX(t)
−

1

mX(x)

]

dt > 0 ∀x > 0,

which means that X∗ is IMRLHA. Now, assume that X∗ is DMRLHA, which gives
∫ x

0
(1/m∗(x) − 1/m∗(t)) dt > 0 for all x > 0. We need to show that

∫ x

0
[1/mX(x) −

1/mX(t)] dt > 0 for all x > 0. By (3.6) and because −c(t) > −c(x) for all t 6 x, one

derives
∫ x

0

[ 1

mX(x)
−

1

mX(t)

]

dt =

∫ x

0

[ c(x)

m∗(x)
−

c(t)

m∗(t)

]

dt

> c(x)

∫ x

0

[ 1

m∗(x)
−

1

m∗(t)

]

dt > 0 ∀x > 0.

(iii) As in the proof of Theorem 4.4, E[a(Y )F
1/a(Y )
Xe

(x)] > E[a(Y )]E[F
1/a(Y )
Xe

(x)]

for all x > 0. Hence,

m∗(x)

m∗(0)
=
mX(x)

mX(0)

E[a(Y ) | X∗ > x]

E[a(Y )]

=
mX(x)

mX(0)

E[a(Y )F
1/a(Y )
Xe

(x)]

E[{a(Y )}E{F
1/a(Y )
Xe

(x)}]

>
mX(x)

mX(0)
∀x > 0.

The result now follows by a simple discussion. �
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R em a r k 4.1. The stated sufficient condition in Theorem 4.6 (i) holds true if

a(y) is monotone increasing (or monotone decreasing) in y ∈ SY . We use Theo-

rem 4.1 (ii) to show it. Suppose that a(y) is increasing (decreasing) in y ∈ SY . Then

Theorem 4.1 (ii) says that F ∗(x, y) is TP2 (RR2) in (x, y) ∈ R+ × SY , which can be

simply translated to

(Y | X∗ > x1) 6HR (>HR) (Y | X∗ > x2) ∀x1 6 x2,

and hence,

(Y | X∗ > x1) 6ST (>ST) (Y | X∗ > x2) ∀x1 6 x2.

Because 1/a(y) is decreasing (increasing) in y ∈ SY ,

E[1/a(Y ) | X∗ > x1] > E[1/a(Y ) | X∗ > x2] ∀x1 6 x2,

which means that E(1/a(Y ) | X∗ > x) is decreasing in x > 0. Similarly, to make

Theorem 4.6 (ii) applicable, we see from Theorem 4.1 (ii) that if a(y) is increasing

(decreasing) in y ∈ SY , then E[a(Y ) | X∗ > x] is increasing in x > 0.

5. Mean residual life comparisons

In this section, in order to demonstrate how the variation of the baseline variable

and the variation of the mixing variable each has an effect on the model, we make

a stochastic comparisons of the MRL functions between the two overall variables

arisen from the model. Assume that Xi is the baseline variable in the model that

has sf FXi
, and assume that X∗

i is the associated overall variable with sf

(5.1) F ∗

i (x) = Ri(x)E[F
1/a(Y )
Xie

(x)],

where Ri(x) = FXi
(x)/FXie

(x) for all x > 0, and FXie
is the sf of the equilibrium rv

associated with Xi, i = 1, 2. Denote by mXi
the MRL function of the rv Xi, i = 1, 2.

In the following result, under some appropriate assumptions, we show that the MRL

order between X1 and X2 is translated to the MRL order between X
∗

1 and X
∗

2 .

Theorem 5.1. Let a(y) be increasing (decreasing) in y > 0 and let

(Y | X∗

1 > x) 6ST (>ST) (Y | X∗

2 > x)

for all x > 0. Then

X1 6MRL X2 ⇒ X∗

1 6MRL X
∗

2 .
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P r o o f. First, denote by m∗

i the MRL function of X
∗

i for i = 1, 2. As in (3.6),

we have m∗

i (x) = mXi
(x)E[a(Y ) | X∗

i > x] for i = 1, 2. Thus,

(5.2) m∗

2(x) −m∗

1(x) = mX2
(x)E[a(Y ) | X∗

2 > x]−mX1
(x)E[a(Y ) | X∗

1 > x]

> mX1
(x)(E[a(Y ) | X∗

2 > x]− E[a(Y ) | X∗

1 > x])

= mX1
(x)

∫

∞

−∞

a(y)[g(y | X∗

2 > x)− g(y | X∗

1 > x)] dy

∀x > 0,

where the inequality is due to X1 6MRL X2. Since (Y | X∗

1 > x) 6ST (>ST)

(Y | X∗

2 > x) for all x > 0, we have for all x > 0 that

∫

∞

ν

(
∫ ν

−∞

)

[g(y | X∗

2 > x) − g(y | X∗

1 > x)] dy > 0 ∀ ν > 0.

Now, since a(y) is increasing (decreasing), by an application of Lemma 7.1 of Barlow

and Proschan [9], the non-negativity of the integral given in (5.2) is guaranteed,

which completes the proof. �

Next, we consider the influence of variation of the mixing variable on the model.

Let Yi be a mixing rv with pdf fYi
for i = 1, 2. The resulted overall variable X∗

i ,

i = 1, 2 has sf

F ∗

i (x) = R(x)E[F
1/a(Yi)
Xe

(x)],

where R(x) = FX(x)/FXe
(x) for all x > 0. Let gi(y | X∗

i > x) denote the pdf of

(Yi | X
∗

i > x) which is given by

gi(y | X∗

i > x) =
F

1/a(y)
Xe

(x)fYi
(y)

∫

∞

−∞
F

1/a(y)
Xe

(x)fYi
(y) dy

.

Below, we provide some conditions to make the MRL order between X∗

1 and X
∗

2 .

Theorem 5.2. Let a(y) be increasing (decreasing) in y > 0 and let

(Y1 | X∗

1 > x) 6ST (>ST) (Y2 | X∗

2 > x)

for all x > 0. Then X∗

1 6MRL X
∗

2 .

P r o o f. From (3.6), m∗

i (x) = mX(x)E[a(Yi) | X
∗

i > x] for i = 1, 2. Therefore,

(5.3) m∗

2(x)−m∗

1(x) = mX(x)[E(a(Y2) | X
∗

2 > x)− E(a(Y1) | X
∗

1 > x)]

= mX(x)

∫

∞

−∞

a(y)[g2(y | X∗

2 > x)− g1(y | X∗

1 > x)] dy

∀x > 0.
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Now, appealing to the assumptions, as in the proof of Theorem 5.1, Lemma 7.1 of

Barlow and Proschan [9] can be applied to (5.3), which ends the proof. �

6. Conclusion

Due to the importance of modeling failure time data in reliability and survival

analysis, there is a crucial need to find an appropriate model to fit the data in

various practical situations (cf. Chen et al. [4], Zhao and Elsayed [20], Nanda et

al. [15], Gupta [5], Kayid and Izadkhah [8] and Kayid et al. [9]). In this investigation,

a model called general proportional mean residual life (GPMRL) was studied. This

model is an extension of the ordinary proportional mean residual life model initiated

firstly by Zahedi [19]. Formally, let mX(·) be the MRL function in the baseline

population and consider a covariate rv Y that has an effect on the population dividing

it to some subpopulations. By considering the conditional MRL function arisen in

each subpopulations (denoted by m∗(· | y)) as the product of the baseline MRL mX

and a general function a(·) of Y, the GPMRL model was established. A number of

alternative representations for the GPMRL model based on other reliability measures

were first given. Then, to determine how the overall variable in the model is affected

by the covariate variable, some dependence properties between these two variables

are investigated. After that, preservation properties of the model with respect to the

HR and the MRL orders are provided. In addition, preservation properties of some

aging classes of life distributions under the formation of the model are demonstrated.

Finally, in order to make the MRL order between two GPMRL models with either

different baseline variables or different mixing variables, two results were obtained.

A c k n ow l e d g em e n t. The authors want to thank two reviewers for their in-

sightful comments that greatly improved the paper.
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